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Abstract: Three-dimensional bioprinting has attracted much attention for biomedical applications,
including wound dressing and tissue regeneration. The development of functional and easy-to-
handle inks is expected to expand the applications of this technology. In this study, aqueous solutions
of chitosan derivatives containing sodium persulfate (SPS) and Tris(2,2′-bipyridyl) ruthenium(II)
chloride (Ru(bpy)3) were applied as inks for both extrusion-based and vat polymerization-based
bioprinting. In both the printing systems, the curation of ink was caused by visible light irradiation.
The gelation time of the solution and the mechanical properties of the resultant hydrogels could be
altered by changing the concentrations of SPS and Ru(bpy)3. The 3D hydrogel constructs with a
good shape fidelity were obtained from the chitosan inks with a composition that formed gel within
10 s. In addition, we confirmed that the chitosan hydrogels have biodegradability and antimicrobial
activity. These results demonstrate the significant potential of using the visible light-curable inks
containing a chitosan derivative for extrusion and vat polymerization-based bioprinting toward
biomedical applications.

Keywords: bioprinting; extrusion-based printing; vat polymerization-based printing; chitosan;
photocurable material

1. Introduction

Three-dimensional (3D) bioprinting is an emerging technology to fabricate hydrogel
constructs containing cells and/or functional materials for biomedical applications, includ-
ing wound dressings and scaffolds for cell culture [1]. Material jetting-based bioprinting,
material extrusion-based bioprinting, and vat polymerization-based bioprinting are the
main 3D bioprinting modalities [2–7]. Primarily, extrusion-based and vat polymerization-
based bioprinting have been widely studied. To widen the application of 3D bioprinting, it
is important to develop inks suitable for the fabrication processes and intended applica-
tions [8,9]. To date, varieties of polymers such as gelatin, alginate, hyaluronic acid, and
chitosan, including their derivatives, have been applied as ink components for 3D bioprint-
ing [10–12]. Among them, chitosan has attractive features such as antimicrobial activity,
biodegradability, and biocompatibility. It is one of the most well-studied biomaterials for
biomedical applications, including tissue engineering and regenerative medicine [13–16].
There are several reports about 3D bioprinting using inks containing chitosan and its
derivatives [17–20]. For example, Jie et al. [18] reported 3D bioprinting using ink contain-
ing carboxymethyl chitosan, sodium alginate, and gelatin. The ink was extruded from
a microneedle onto a platform and cooled down to a temperature that caused thermal
gelation due to the presence of gelatin. Then, the resultant hydrogel construct was further
treated with CaCl2 aqueous solution to induce the cross-linking of alginate. Liu et al. re-
ported 3D bioprinting using a pre-cross-linked hydrogel ink obtained from a photo-curable
chitosan derivative aqueous solution through visible light irradiation [20]. In the report,
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the extruded pre-cross-linked hydrogel was irradiated again with visible light to stabilize
the structure by post-cross-linking. A common point of these works is the necessity of
multiple steps of cross-linking to obtain the final stabilized products. The inks which enable
fabrication of the final products with fewer cross-linking steps and good shape fidelity
are believed to be more useful for practical application. Moreover, the pre-cross-linked
hydrogel ink is not suitable for stereolithographic 3D bioprinting, which requires solution
inks [21].

In this study, we aimed to demonstrate the feasibility of an aqueous solution of a
chitosan derivative curable through visible light-irradiation as an ink for both extrusion-
based bioprinting and vat polymerization-based bioprinting. As far as we know, there are
no previous reports on chitosan-based inks suitable for both the bioprinting modalities. In
addition, we aimed to demonstrate that the resultant hydrogel constructs have attractive
functions for biomedical applications attributed to chitosan.

The visible light-curable inks were prepared from a derivative of chitosan possess-
ing phenolic hydroxy (Ph) moieties (chitosan-Ph), sodium persulfate (SPS), and Tris(2,2′-
bipyridyl) dichlororuthenium (II) (Ru(bpy)3). The cross-linking process using SPS and
Ru(bpy)3 can be progressed with exposure to visible light and has outstanding potential
for biofabrication [22]. It also has been reported that aqueous solutions of derivatives
of hyaluronic acid [23] and alginate [24], both possessing Ph moieties, were cured by
visible light-irradiation through the formation of cross-links between Ph moieties in the
presence of SPS and Ru(bpy)3. Photo-induced cross-linking with SPS and Ru(bpy)3 has the
advantage of being an easy-to-control reaction by on/off switching of photo-irradiation.

In this study, we showed that our ink was rapidly curable enough for fabricating 3D
constructs by both extrusion-based bioprinting and vat polymerization-based bioprinting.
Additionally, we showed that the resultant hydrogel has antimicrobial activity against
Gram-positive bacteria and Gram-negative bacteria and has biodegradability. These results
demonstrate the great potential for the solutions of chitosan-Ph, SPS, and Ru(bpy)3, as inks
of 3D bioprinting for biomedical applications.

2. Materials and Methods
2.1. Materials

Chitosan (Chitosan LL, deacetylation: 80%, weight average molecular weight: 50–
100 kDa) was purchased from Yaizu Suisankagaku Industry (Shizuoka, Japan). Lactobionic
acid, N,N,N′,N′-Tetramethylethylenediamine (TEMED), and SPS were purchased from
Wako (Tokyo, Japan). Ru(bpy)3·Cl2·6H2O, 1-ethyl-3-(3-dimethylaminopropyl) carbodi-
imide hydrochloride (EDC·HCl), and 3-(4-hydroxyphenyl) propionic acid (HPP) were
purchased from Sigma-Aldrich (St. Louis, MO, United States of America (USA)), Pep-
tide Institute (Osaka, Japan), and Tokyo Chemical Industry (Tokyo, Japan), respectively.
Yatalase, with complex lytic activities of fungal cell, mainly consisting of chitinase and
chitobiase activities, from Corynebacterium sp. OZ-21, was obtained from Takara Bio (Shiga,
Japan). Escherichia coli OP50 was cultured in LB medium containing 0.5%(w/v) NaCl,
1%(w/v) bacto tryptone (Becton Dickinson and Company, Flanklin Lakes, NJ, USA) and
bacto yeast extract (Becton Dickinson and Company). For culturing E. coli on an agar
plate, LB medium containing 1.5%(w/v) agar was used. Staphylococcus aureus was extracted
from facial skin as described in the literature [25] and cultured in BHI medium containing
3.5%(w/v) brain heart infusion (Nissui Pharmaceutical Co., Tokyo, Japan). For culturing S.
aureus on an agar plate, BHI medium containing 1.5%(w/v) agar was used.

2.2. Synthesis of Chitosan-Ph

Chitosan-Ph was synthesized based on information found in the literature [26,27].
Briefly, chitosan was dissolved in 20 mM HCl at 7%(w/v). TEMED was poured into the
solution at 2%(w/v). Then, the pH was adjusted to 4 with NaOH. To this solution, HPP,
lactobionic acid, and EDC·HCl were added at 1.5, 0.04 and 1%(w/v), respectively, and stirred
for 20 h at room temperature. After precipitation in acetone, the resultant polymer was
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rinsed with 80%(v/v) ethanol and 20%(v/v) water to remove the remaining reagents, and
dried in a vacuum. The content of Ph groups in chitosan-Ph was 3.0–4.8 × 10−4 mol-Ph/g-
chitosan-Ph, which was measured by UV-vis measurement based on the literature [28].

2.3. Gelation Time

Gelation time was measured based on a method described in the literature [29]. Briefly,
100 µL Chitosan-Ph solution (1%(w/v)) containing 1–10 mM SPS and 0.5–2 mM Ru(bpy)3
was poured into a well of a 48-well dish and stirred using a magnetic stirrer bar at 20 rpm.
Then, the solution was irradiated with visible light (3.18 W/m2 @ 452 nm, Figure S1 in
supplementary material). The formation of a gel state was indicated by the hindrance of
magnetic stirring and swelling of the solution’s surface.

2.4. Viscoelastic Property of Hydrogels

The viscoelastic properties of chitosan-Ph hydrogels, prepared from 1%(w/v) chitosan-
Ph solutions containing 1–10 mM SPS and 0.5–2 mM Ru(bpy)3 by irradiating with visible
light (3.18 W/m2 @ 452 nm, Figure S1) for 20 min, were measured using a rheometer
(HAAKE MARS III, Thermo Fisher Scientific, Waltham, MA, USA) equipped with a parallel
plate geometry at 25 ◦C and at a frequency of 1.6 Hz.

2.5. Extrusion-Based Bioprinting

A commercially available 3D printing system (FLSUN-QQ-S, Zhengzhou Chaokuo
Electronic Technology Co., Henan, China) equipped with a visible-light source (LK-5BL,
EK Japan, Fukuoka, Japan) was used to print 3D hydrogel structures. The light intensity
was 3.18 W/m2 @ 452 nm (Figure S1). The inks containing 1%(w/v) chitosan-Ph and
1 mM Ru(bpy)3 were extruded from a 21-gauge stainless needle (outer diameter: 0.81 mm,
inner diameter: 0.51 mm) onto the stage, moving at 6 mm/s at room temperature. The
concentration of SPS and the extrusion rate of the ink were varied in the range of 1–10 mM
and 3.0–13.6 mm/s, respectively.

2.6. Vat Polymerization-Based Bioprinting

A commercial liquid crystal display (LCD) printer (NOVA 3D, Shenzhen Nova In-
telligent Technology Co., Shenzhen, China) was used to print a 3D chitosan structure.
The ink containing 1%(w/v) chitosan-Ph, 7 mM SPS, and 2 mM Ru(bpy)3 was poured into
a transparent plastic vat and exposed to visible light with an intensity of 0.14 W/m2 @
405 nm (Figure S2 in Supplementary Material). The thickness and light irradiation time for
each hydrogel layer deposition was set at 50 µm and 8 s. Rectangular structures with line
and space patterns were printed to evaluate the resolution.

2.7. Chitosan-Ph Hydrogel Swelling

A disk of chitosan-Ph hydrogel (thickness, 1 mm; diameter, 7 mm) was printed by
extrusion-based bioprinting using the ink containing 1%(w/v) chitosan-Ph, 4 mM SPS and
1 mM Ru(bpy)3. The resultant hydrogel disk was soaked in PBS and incubated in an
incubator at 37 ◦C. The degree of swelling was evaluated from the change in diameter of
the structure. Measurements were performed on five structures for 5 days.

2.8. Chitosan-Ph Hydrogel Biodegradability

A disk of chitosan-Ph hydrogel was printed by extrusion-based bioprinting using the
ink containing 1%(w/v) chitosan-Ph, 4 mM SPS and 1 mM Ru(bpy)3. Then, the resultant
hydrogel disk was soaked in a solution containing 1.9 × 10−2 U/mL yatalase and kept at
37 ◦C. The change in shape of the hydrogel disk was observed for 60 min.

2.9. Chitosan-Ph Antimicrobial Activity

Antimicrobial activity against photo-cured chitosan-Ph hydrogel was evaluated using
Gram-negative bacteria, E. coli, and Gram-positive bacteria, S. aureus. These bacteria were



Polymers 2021, 13, 1382 4 of 10

cultured in LB medium and HBI medium, respectively. The solution, 100 µL, containing
either of the bacteria at 108–109 CFU/mL, was spread on an agar plate (10 cm diameter),
then, 10–100 µL of solutions containing 1%(w/v) chitosan-Ph, 4 mM SPS and 1 mM Ru(bpy)3
was put onto the agar plate and exposed to visible light (3.18 W/m2 @ 452 nm, Figure S1)
for 10 s. Subsequently, the agar plate was incubated at 37 ◦C overnight. As a comparison,
the phenol derivative of alginate (alginate-Ph) [24] was used instead of chitosan-Ph, and its
hydrogel was prepared under the same condition on the agar plate with bacteria.

3. Results and Discussion
3.1. Hydrogelation and Hydrogel Properties

We first confirmed the hydrogelation of 1%(w/v) chitosan-Ph aqueous solution contain-
ing 2 mM of SPS and 1 mM of Ru(bpy)3 by visible light irradiation (3.18 W/m2 @ 452 nm,
Figure S1) (Figure 1, center). Next, the effects of SPS and Ru(bpy)3 concentrations on
gelation time were measured by fixing the concentrations of either SPS (4 mM) or Ru(bpy)3
(1 mM). The information regarding the factors affecting gelation time is important to decide
the operation parameters during printing. The gelation time of chitosan-Ph decreased with
an increase of SPS concentration (Figure 2a). The shortest gelation time was 5.5 ± 1.3 s.
Gelation time also decreased with an increase in Ru(bpy)3 concentration (Figure 2b). These
results corresponded with our previous report for alginate derivative possessing Ph moi-
eties in terms of the effect on gelation time [24]. The mechanism of gelation is explained
as follows [30]: (1) an electron of Ru(bpy)3 was excited with exposure to visible light, and
the electron was donated to SPS. (2) SPS was dissociated and formed a radical. (3) The
cross-linking reaction between the phenol groups on chitosan-Ph was promoted by the
radical. Therefore, it was suggested that the increases in SPS and Ru(bpy)3 concentrations
accelerated the gelation.

We also measured the storage modulus (G’) of chitosan-Ph hydrogels prepared at dif-
ferent SPS and Ru(bpy)3 concentrations. G’ is a physical quantity expressing the stiffness of
materials. As shown in Figure 3a, the storage modulus of chitosan-Ph hydrogels increased
with the increase of SPS concentration (≤7 mM), but the storage modulus decreased at
10 mM compared to 7 mM. The decrease in stiffness at 10 mM SPS would be due to the
degradation of the chitosan backbone through oxidization by SPS. Hong et al. [31] reported
that the hyaluronic acid derivative was degraded by SPS due to the formation of persulfate
free radicals. On the other hand, Ru(bpy)3 did not have much of an effect on the G’ of
chitosan-Ph hydrogels (Figure 3b). As described in the cross-linking reaction mechanism
above, Ru(bpy)3 catalyzes the cross-linking reaction, but it does not affect the storage
modulus. From these results, it was suggested that SPS concentration is an important factor
for 3D bioprinting of chitosan-Ph hydrogel constructs through visible light irradiation.
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Figure 3. Effect of (a) SPS and (b) Ru(bpy)3 concentrations on storage modulus (G’) of 1%(w/v)
chitosan-Ph hydrogel after irradiation with visible light (3.18 W/m2 @ 452 nm, Figure S1) for
1200 s. The concentrations of (a) Ru(bpy)3 and (b) SPS were fixed at 1 and 4 mM, respectively. The
measurement was conducted a frequency of 1.6 Hz. Bars: mean ± SD (n = 4).

3.2. Printability of Chitosan-Ph Inks

Based on the results of the effects of SPS and Ru(bpy)3 concentrations on the gelation
of chitosan-Ph solutions and properties of resultant hydrogels, we studied the printability
of chitosan-Ph inks. We first investigated the relationship between the linear velocity of
ink extrusion and line width. The stable printing was achieved at 4.4 mm/s of linear
velocity and 6 mm/s of stage speed with a 21-gauge nozzle (outer diameter: 0.81 mm, inner
diameter: 0.51 mm) (Figure 4a). The slower linear velocity (<4.4 mm/s) caused unstable
ink ejection because the flow rate of ink was not enough against the stage speed. The faster
velocity (≥6.6 mm/s) caused unstable gelation due to an excess amount of ink (Figure 4b).
Next, the effect of SPS concentration on printability was evaluated at a 4.4 mm/s linear
velocity of ink extrusion. Higher SPS concentration (>2 mM) enabled high printability, as
shown in Figure 4c. However, nozzle clogging occurred at 7 mM SPS after a while of the
printing process, making printability worse. The clogging was caused by the occurrence of
too rapid gelation.
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Based on these results, we printed several hydrogel constructs under the following
conditions: 4 mM SPS, 1 mM Ru(bpy)3, and 4.4 mm/s linear velocity of ink extrusion.
Hemisphere, disk, and grid structures could be printed (Figure 5a). The printed hydrogel
was stable in a PBS solution during the 5 days of study (Figure 5b). The stability of polymer-
Ph hydrogel in the solution corresponded to the results previously reported [28,29]. For
further improvement of the resolution, dye or brightener may be required [24]. There are
several reports about bioprinting using inks containing chitosan [17–20]. In these previous
studies, multiple cross-linking steps were required for obtaining stabilized final constructs.
Our chitosan ink was ejected as a liquid from a needle and gelated rapidly by visible light.
This allowed for fewer steps in building a chitosan 3D hydrogel structure without pre and
post-cross-linking processes.

Next, we applied the chitosan-Ph solution to an LCD printer, a type of vat polymerization-
based bioprinting. The resolution of the chitosan-Ph hydrogel construct was tested by
building rectangular structures with different line and space patterns (Figure 6a). As
shown in the figure, the patterns disappeared at 100 µm of line width. Although the size
error of the printed structure was large on a submillimeter scale due to light scattering
during the printing process, smaller patterns were printed with high reproducibility. Error
control would be needed to achieve higher resolution printing structures during the design
process or by adjusting the parameters of the printer [32]. There are several techniques
of vat polymerization-based printing with light-curable material such as stereolithogra-
phy appearance (SLA), digital light processing (DLP), and liquid crystal display (LCD)
printing [33]. LCD printing has a high processing speed compared to extrusion-based
printing because the hydrogel structure can be built layer-by-layer, while extrusion-based
printing builds the structure linearly. LCD printers can also print multiple structures in
parallel, unlike other methods such as material jetting-based printing and extrusion-based
printing. Multiple chitosan structures were printed at one time (Figure 6b). Photo-curable
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chitosan-Ph solution containing SPS and Ru(bpy)3 enabled the effective building of 3D
chitosan hydrogel constructs. This study is the first example of vat polymerization-based
bioprinting using a photo-curable chitosan-Ph solution.

Polymers 2021, 13, x FOR PEER REVIEW 7 of 11 
 

 

 

 

(a) (b) 

Figure 5. (a) 3D printed constructs (bottom) based on blueprints (top) by extruding 1%(w/v) chitosan-Ph ink containing 4 
mM SPS and 1 mM Ru(bpy)3. Bars: 5 mm. (b) Change in diameter of printed disk in PBS. Disk structure was printed by 
extrusion-based bioprinting using 1%(w/v) chitosan-Ph, 4 mM SPS and 1 mM Ru(bpy)3. Bars: mean ± SD (n = 5). 

Next, we applied the chitosan-Ph solution to an LCD printer, a type of vat polymer-
ization-based bioprinting. The resolution of the chitosan-Ph hydrogel construct was tested 
by building rectangular structures with different line and space patterns (Figure 6a). As 
shown in the figure, the patterns disappeared at 100 μm of line width. Although the size 
error of the printed structure was large on a submillimeter scale due to light scattering 
during the printing process, smaller patterns were printed with high reproducibility. Er-
ror control would be needed to achieve higher resolution printing structures during the 
design process or by adjusting the parameters of the printer [32]. There are several tech-
niques of vat polymerization-based printing with light-curable material such as stereo-
lithography appearance (SLA), digital light processing (DLP), and liquid crystal display 
(LCD) printing [33]. LCD printing has a high processing speed compared to extrusion-
based printing because the hydrogel structure can be built layer-by-layer, while extrusion-
based printing builds the structure linearly. LCD printers can also print multiple struc-
tures in parallel, unlike other methods such as material jetting-based printing and extru-
sion-based printing. Multiple chitosan structures were printed at one time (Figure 6b). 
Photo-curable chitosan-Ph solution containing SPS and Ru(bpy)3 enabled the effective 
building of 3D chitosan hydrogel constructs. This study is the first example of vat 
polymerization-based bioprinting using a photo-curable chitosan-Ph solution.  

 

 

(a) (b) 

Figure 6. (a) Printed rectangular structures with line and space patterns (bottom) from 1%(w/v) 
chitosan-Ph ink containing 7 mM SPS and 2 mM Ru(bpy)3 based on blueprints (top). Bars: 200 μm. 
(b) Printed constructs on a platform at one time. Bar: 10 mm. 

3.3. Biodegradability 
We next investigated the degradability of printed chitosan-Ph hydrogel. Yatalase, as 

an enzyme to degrade chitosan, was used to test the biodegradability of the photo-cured 
chitosan-Ph hydrogel. A disk was printed at 4 mM SPS and 1 mM Ru(bpy)3 by extrusion-

Figure 5. (a) 3D printed constructs (bottom) based on blueprints (top) by extruding 1%(w/v) chitosan-Ph ink containing
4 mM SPS and 1 mM Ru(bpy)3. Bars: 5 mm. (b) Change in diameter of printed disk in PBS. Disk structure was printed by
extrusion-based bioprinting using 1%(w/v) chitosan-Ph, 4 mM SPS and 1 mM Ru(bpy)3. Bars: mean ± SD (n = 5).

Polymers 2021, 13, x FOR PEER REVIEW 7 of 11 
 

 

 

 

(a) (b) 

Figure 5. (a) 3D printed constructs (bottom) based on blueprints (top) by extruding 1%(w/v) chitosan-Ph ink containing 4 
mM SPS and 1 mM Ru(bpy)3. Bars: 5 mm. (b) Change in diameter of printed disk in PBS. Disk structure was printed by 
extrusion-based bioprinting using 1%(w/v) chitosan-Ph, 4 mM SPS and 1 mM Ru(bpy)3. Bars: mean ± SD (n = 5). 

Next, we applied the chitosan-Ph solution to an LCD printer, a type of vat polymer-
ization-based bioprinting. The resolution of the chitosan-Ph hydrogel construct was tested 
by building rectangular structures with different line and space patterns (Figure 6a). As 
shown in the figure, the patterns disappeared at 100 μm of line width. Although the size 
error of the printed structure was large on a submillimeter scale due to light scattering 
during the printing process, smaller patterns were printed with high reproducibility. Er-
ror control would be needed to achieve higher resolution printing structures during the 
design process or by adjusting the parameters of the printer [32]. There are several tech-
niques of vat polymerization-based printing with light-curable material such as stereo-
lithography appearance (SLA), digital light processing (DLP), and liquid crystal display 
(LCD) printing [33]. LCD printing has a high processing speed compared to extrusion-
based printing because the hydrogel structure can be built layer-by-layer, while extrusion-
based printing builds the structure linearly. LCD printers can also print multiple struc-
tures in parallel, unlike other methods such as material jetting-based printing and extru-
sion-based printing. Multiple chitosan structures were printed at one time (Figure 6b). 
Photo-curable chitosan-Ph solution containing SPS and Ru(bpy)3 enabled the effective 
building of 3D chitosan hydrogel constructs. This study is the first example of vat 
polymerization-based bioprinting using a photo-curable chitosan-Ph solution.  

 

 

(a) (b) 

Figure 6. (a) Printed rectangular structures with line and space patterns (bottom) from 1%(w/v) 
chitosan-Ph ink containing 7 mM SPS and 2 mM Ru(bpy)3 based on blueprints (top). Bars: 200 μm. 
(b) Printed constructs on a platform at one time. Bar: 10 mm. 

3.3. Biodegradability 
We next investigated the degradability of printed chitosan-Ph hydrogel. Yatalase, as 

an enzyme to degrade chitosan, was used to test the biodegradability of the photo-cured 
chitosan-Ph hydrogel. A disk was printed at 4 mM SPS and 1 mM Ru(bpy)3 by extrusion-
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3.3. Biodegradability

We next investigated the degradability of printed chitosan-Ph hydrogel. Yatalase, as
an enzyme to degrade chitosan, was used to test the biodegradability of the photo-cured
chitosan-Ph hydrogel. A disk was printed at 4 mM SPS and 1 mM Ru(bpy)3 by extrusion-
based bioprinting, and it was put in PBS containing 1.9 × 10−2 U/mL of yatalase. The
disk was broken down almost completely in 60 min (Figure 7). We confirmed that the
photo-cured chitosan-Ph hydrogel is degradable. Biodegradable material is suitable for
biomedical applications because the printed material can be broken down and excreted or
resorbed without removal or surgical revision [34,35].
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3.4. Antimicrobial Activity

Finally, the antimicrobial activity of the photo-cured chitosan-Ph hydrogel was evalu-
ated (Figure 8). Gram-negative bacteria, E. coli, and Gram-positive bacteria, S. aureus, were
used for testing antimicrobial activity. The growths of both bacteria were suppressed on the
area close to the chitosan-Ph hydrogel on agar. These results showed that the photo-cured
chitosan-Ph hydrogel did not lose antimicrobial activity after gelation. The antimicrobial
activity of chitosan has been reported in several papers [36–38]. The mechanism of antimi-
crobial activity was considered as follows [39]: Chitosan is a cationic polymer due to the
protonated amino group. The bacteria cell membrane has anionic properties, and chitosan
is absorbed on the surface and disrupts the activity of the bacteria. Antimicrobial activity is
important, as is biodegradability, for the biomedical application of 3D bioprinting in terms
of preventing bacterial infections [40,41].
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Figure 8. Evaluation of chitosan-Ph antimicrobial activity against (upper) Gram-negative bacteria, E.
coli, on LB agar and (bottom) Gram-positive bacteria, S. aureus, on BHI agar. 10–100 µL of 1%(w/v)
chitosan-Ph solutions containing 4 mM SPS and Ru(bpy)3 were spotted on agar plates with either of
the bacteria and were irradiated with visible light (3.18 W/m2 @ 452 nm, Figure S1) for 10 s. The
photographs were taken after overnight culture at 37 ◦C.

4. Conclusions

In this study, a visible light-curable chitosan solution was applied to extrusion-based
and vat polymerization-based bioprintings. The gelation time and mechanical properties
of the chitosan hydrogel were controlled by altering SPS and Ru(bpy)3 concentrations. We
confirmed that chitosan 3D structures were printed in fewer steps without pre and post-
cross-linking processes by using extrusion-based bioprinting. Further, we confirmed that
our chitosan hydrogel could be applied to vat polymerization-based bioprinting. Moreover,
we showed that the resultant chitosan-Ph hydrogels had biodegradability and antimicrobial
activity. We believe that the visible light-curable inks containing chitosan-Ph have a great
potential for biomedical applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13091382/s1, Figure S1: Spectrum of visible light used in extrusion-based 3D printing.
The spectrum was measured by an illuminance meter (CL-70F, Konica Minolta, Tokyo, Japan),
Figure S2: Spectrum of visible light used in vat polymerization-based 3D printing. The spectrum was
measured by an illuminance meter (CL-70F, Konica Minolta, Tokyo, Japan).

https://www.mdpi.com/article/10.3390/polym13091382/s1
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