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Abstract: In this paper, carbon aerogel (CA)-polyaniline (PANI) composites were prepared and first
applied in the study of H2S gas sensing. Here, 1 and 3 wt% of as-obtained CA powder were blended
with PANI to produce composites, which are denoted by PANI-CA-1 and PANI-CA-3, respectively.
For the H2S gas-sensing studies, the interdigitated electrode (IDE) was spin-coated by performing
PANI and PANI-CA composite dispersion. The H2S gas-sensing properties were studied in terms
of the sensor’s sensitivity, selectivity and repeatability. IDE coated with PANI-CA composites,
as compared with pristine PANI, achieved higher sensor sensitivity, higher selectivity and good
repeatability. Moreover, composites that contain higher loading of CA (e.g., 3 wt%) perform better
than composites with lower loading of CA. At 1 ppm, PANI-CA-3 displayed increased sensitivity of
452% at relative humidity of 60% with a fast average response time of 1 s compared to PANI.

Keywords: polyaniline; carbon aerogel; composite; H2S gas sensor; room temperature

1. Introduction

Hazardous gases may exist in an indoor or outdoor environment. Therefore, analysis
and monitoring of toxic gases such as H2S, SO2 and NOx are required. Hydrogen sulphide
gas (H2S) is a colourless, flammable, poisonous and corrosive gas. It is usually produced
from the bacterial breakdown of organic matter by the absence of oxygen gas and the
decomposing wastes of humans and animals. Exposure to this gas can lead to critical health
issues in humans. Thus, smart devices such as gas sensors are still an important area of
development to avoid risks [1–3]. A growing body of research is focusing on the fabrication
of robust, portable and low-cost gas sensors. These sensors play an important role in the
medical field, environmental monitoring, industrial safety control and security [4,5].

Among the array of conducting polymers (CP), polyaniline (PANI) is considered
highly stable, with a unique redox chemistry and the ability to electrically switch between
its conductive and resistive states through the doping/dedoping process, which can be
controlled by acid/base reaction [6–8]. The redox property of PANI and its derivative
polymers make them applicable for electrochemical sensing [9–11]. Their doping/dedoping
property also expands their useability for gas sensing [12–14]. The first publication related
to H2S sensing was reported by Monkman in 1995.

However, PANI suffers from low electrical conductivity due to insufficient conducting
pathways in its matrix and inconsistency in properties [15]. Hence, significant attention
has focused on coupling PANI with other heterogeneous species, which has resulted in
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many remarkable studies [16]. Among the spectrum of heterogeneous fillers, carbon-based
materials are typically used to extend the functionality, overcome the poor processability
and improve the conductivity of PANI. These carbon-based fillers may enhance the sensi-
tivity and selectivity of PANI-based sensor via electronic interaction, charge transfers or
morphological modification.

In the past decades, carbon aerogels (CA) attracted intensive and extensive research
interest. CA are highly cross-linked nanosized porous materials. Being light weight,
mesoporous and conductive with a large surface area, CA are being employed in different
fields, including supercapacitors, advanced catalyst supports, absorbents, rechargeable
batteries, environmental protection and chromatographic packing [17–26]. CA are formed
by pyrolysis of organic aerogels at temperatures of 800–900 ◦C [27]. During this procedure,
organic aerogels transform into a carbon network with good electrical conductivity as high
as 0.1–1 S/cm [28,29].

To our knowledge, no report has dealt with CA-filled polymer-based conductive
composites as a candidate for application in H2S sensing. Therefore, in this study, we
report the preparation of PANI-CA composites and first applied it in H2S sensing on the
interdigitated electrode (IDE) of ITO glass. The PANI-CA composites were prepared by
incorporating different loadings of CA dispersed in NMP and spin-coated onto the IDE as a
gas sensor. The physical and chemical properties of the composites were analysed, and the
gas-sensing characteristics were studied in terms of sensitivity, selectivity and repeatability.

2. Materials and Methods

Aniline (99%, Alfa aesar, Lancashire, UK) distilled before use, ammonium peroxodisul-
fate (APS) (J. T. Baker, Randor, PA, USA)), N-methyl-2-pyrrolidone (uniregion bio-tech,
Taoyuan, Taiwan), Resorcinol (98%, Sigma Aldrich, Saint Louis, MI, USA), hydrochloric
acid (HCl, 37%, Honey well Riedel-de Haen, New Taipei, Taiwan), sodium carbonate
(99.5%, Sigma Aldrich, Saint Louis, MI, USA), ammonium hydroxide solution (NH4OH,
28%, Honey well Riedel-de Haen, New Taipei, Taiwan) and ethanol (ECHO, Miaoli, Taiwan)
were used as received without further purification.

DMSO-d6 was used to perform 1H-NMR spectra on a Bruker 300 spectrometer. FTIR
spectra ranging from 4000 to 650 cm−1 were recorded on FT/IR-4100 spectrometer at
a resolution 4.0 cm−1. Scanning electron microscopy (SEM), (Hitachi S-2300) was used
for examining the surface morphologies of the materials while the surface area and pore
volume were determined by N2 adsorption–desorption isotherm (BET). Hitachi U-2000
UV-Visible spectrometer and Waters GPC-150CV (Waters, Shanghai, China) were used for
UV-Vis spectroscopy and molecular weight determination. Electro-spinning facility and
gas-sensing devices were constructed in our lab.

2.1. Synthesis of CA

Scheme 1 shows the schematic for the preparation of CA. First, resorcinol (1 M)
and sodium carbonate (1.32 × 10−3) were mixed in water and stirred for 5 min at room
temperature. Then, formaldehyde (1.32 M) was added and stirred for 1 h. Afterwards,
the resulting solution was kept for two days (first day at 45 ◦C, second day at 75 ◦C) for
hydrolysis and condensation reactions. At this point, the process of cross-linking had
finished and gel was formed. The obtained gel was subsequently immersed in ethanol for
five days, with the ethanol being replaced each day to remove the residual solvents in the
gel. The gel was stored at 25 ◦C for 7 days to remove excess ethanol. Lastly, the carbon
aerogel was obtained by carbonisation at 1000 ◦C for 6 h under a nitrogen environment [30].
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Scheme 1. Schematic diagram for the preparation of PANI-CA composite.

2.2. Preparation of Carbon Aerogel-Based Polyaniline Composites

The carbon aerogel-based PANI composites were prepared by a simple physical
mixing method, as a representative procedure. First, 1 wt% of the emeraldine base form
of PANI fine powder was dissolved in NMP and followed by magnetic stirring for 3 h.
Subsequently, 1 and 3 wt% of CA fine powder (with respect to PANI) were introduced into
the previous PANI solution under stirring, followed by sonicating for 2 h. The as-obtained
composites were denoted by PANI-CA-1 and PANI-CA-3, respectively.

2.3. Preparation of PANI and PANI/CA Sensor

In this study, the IDE coated with PANI and PANI-AC composite dispersion was
constructed by spin-coating technique, as shown in Scheme 2. PANI, PANI-AC-1 and
PANI-AC-3 solutions (1 wt%) were prepared by dissolving 0.1 gm of the respective sample
in 10 gm of NMP by stirring at room temperature. Afterwards, thin films were prepared by
spin-coating a 200 µL solution on an IDE at a rotation speed of 1600 rpm. The IDE sensor
was then dried in a vacuum oven prior to use in gas sensing.
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Scheme 2. Schematic steps of the gas sensor fabrication process.

2.4. Gas Sensing

The H2S gas-sensing property was studied via a gas sensor setup, which is shown
in Scheme 3. The experiment was initiated by exposing the sensor to N2 gas [31,32] to
attain the steady state, followed by exposure to H2S gas concentration ranging from 1 to
50 ppm for 2 min. All the experiments were performed at room temperature (25 ± 0.5 ◦C)
at two relative humidity (RH%) of 60% RH and 80% RH by applying a fixed voltage of
0.1 V (1000 sccm). The change in electrical conductivity [33–36] of a PANI and PANI-CA
composite was used to the determine the gas response as follows: [37,38]

Sensor′sresponse =
I
I0

(1)

where Io and I represent the conductance of the material in N2 gas and upon exposure to
H2S gas, respectively.
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Scheme 3. Illustration of the setup for H2S sensing measurement.

3. Results

The base form of PANI synthesised by oxidative chemical polymerisation can be
schematically represented by the following general formula:
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where x + y = 1, when x = 1, y = 0 for the fully reduced polymer (so-called leuco-emeraldine);
x = 0, y = 1 for the fully oxidised polymer (so-called pernigraniline); and x = 0.5, y = 0.5
for the half-oxidised polymer (emeraldine). CA was fabricated by high-temperature
carbonisation of as-prepared phenolic resin. A specific feeding ratio of CA was incorporated
into the PANI matrix to prepare the CA-based PANI composites.

3.1. Characterisation
3.1.1. Polyaniline (PANI)

Figure S1a shows the representative 1H-NMR spectrum (in DMSO-d6) of the con-
ventional PANI. The chemical shift at 2.5 and 3.34 ppm was assigned to the solvent and
residual water protons, respectively. The major signal centred at around 6.5–7.5 ppm was
due to protons on phenylene and disubstituted phenylene units. The weak peak at 5.7
and 6.5 ppm was due to the (–NH– and –NH2) end group, respectively [39]. Figure S1b
exhibits the representative FTIR spectrum. The characteristic peaks of PANI observed
at 1584 and 1490 cm−1 correspond to quinoid ring stretching (-N=Q=N-) and benzene
ring stretching (-N-B-N-), respectively, where Q represents a quinoid ring and B denotes a
benzene ring. The adsorption peaks that appeared at 3255 and 1309 cm−1 correspond to the
amine N-H stretching and C-N stretching vibration in the benzenoid ring, while the peak
at 1163 cm−1 corresponds to the vibrational mode of protonated amines formed during
acid doping. The peaks found at the position of 3155, 3021 and 823 cm−1 are attributed to
C-H stretching vibration and out-of-plane bending vibration of the benzenoid ring [40].
The molecular weight of the as-prepared PANI was obtained by GPC analysis with the
value of Mw = 76,700, Mn = 10,100 and PDI = 7.6, respectively.
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3.1.2. Carbon Aerogel (CA)

CA was successfully synthesised through atmospheric drying followed by carbonisa-
tion. The N2 adsorption–desorption isotherm of CA is shown in Figure 1a. The isotherm
was type IV, indicating the dominant effect of capillary condensation phenomenon on the
surface of CA. A smaller and sharper hysteresis loop indicates a narrower pore size distri-
bution. When the relative pressure was greater than 0.8, the adsorption quantity increased
sharply. The hysteresis loops indicated the coexistence of microspores and mesoporous in
the structure. The inset in Figure 2 shows the pore size distribution of the CA. The pore
size distribution focused on 19 nm and the reduced pore size resulted in a more compact
network structure [41,42], which was consistent with the SEM images. The specific surface
area of as-prepared CA was ~724 m2/g [30].
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Raman spectroscopy was performed to identify the extent of the disorder of CA.
As shown in Figure 1b, two peaks were observed in neat CA. The peak appeared at the
1343 cm−1 (D-band) and 1574 cm−1 (G-band) for C-C bonds, corresponding to the defects
or partially disordered structure of the carbon domain and conjugated bond, respectively.
For the PANI-CA composite, the same peaks were observed with a slight shift in G-band,
implying the formation of a new covalent bond. Moreover, the intensity ratio between D
and G band (ID/IG) was 0.849 and 0.845 for CA and PANI-CA composites, respectively,
indicating a good similarity between the two products [43,44].

3.1.3. Composites

The Fourier-transform infrared spectroscopy (FTIR) spectra of PANI, CA, PANI-CA-1
and PANI-CA-3 are shown in Figure 2. The peak at 3741 cm−1 can be attributed mainly
to the –OH groups bonded to the benzene ring but also may be due to –CH2OH groups
connected to the resorcinol molecule, which did not take part in network formation. The
small peak appears at 3361 cm−1 can be correlated to the primary OH groups. The peak at
1588 cm−1 is due to aromatic ring stretching. The peaks observed at 1091 cm−1 confirm
the C-O-C linkage stretching between the two resorcinol molecules. Because of heating,
some of the CH2-O-CH2 linkages may have broken to form CH2OH and =CH2 groups
attached to different resorcinol molecules. This is further supported by the peak observed
at 668 cm−1 due to the C=CH2 groups.

All the characteristic peaks of PANI and CA appeared in the FTIR spectrum of PANI-
CA-1 and PANI-CA-3, which is attributed to the covering of PANI network on the surface
of CA. However, due to the incorporation of CA in the plane matrix, a slight shift in the
characteristic bands occurred. The slight shift in the observed bands indicated the presence
of interaction between PANI and CA. Viewed from the blue line region of FTIR spectra,
there exist peaks (near 3272 cm−1, caused by –NH– group) in the curves of PANI and
PANI-CA, but not CA. Furthermore, for the CA-based PANI composites, all the typical
peaks of PANI were apparent with less intensity, thereby clearly revealing the presence
of CA.
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3.2. Morphological Observations of PANI, CA and Composite

In investigating the surface morphologies, the SEM observations of PANI, CA and
their composites were studied, as shown in Figure 3.
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The SEM image of PANI (Figure 3a) film generates a characteristic granular morphol-
ogy where the chain organisation is reduced and leads to the structure of conducting island.
Ordered polymer chains are separated by disordered regions of low conductivity [45]. The
image in Figure 3b shows the surface morphology of as-prepared CA, which confirmed
that the polymeric gel structure resulted in the formation of mesoporous CA with a larger
surface area. The network in CA clearly has pores, which have a diameter of 50 nm [46].

The morphology of PANI changed after CA was added, as shown in Figure 3c,d. No
obvious large agglomeration was observed on the surface of PANI-CA, thereby indicating
that PANI diffused into the mesopores of CA during the blending process. Figure 3c
shows the SEM of PANI-CA-1 with fewer pores and CA was diffused into the PANI. PANI-
CA-3 (Figure 3d) had a more porous blended surface, thereby leading to a much higher
sensor response.
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3.3. H2S Gas-Sensing Performance
3.3.1. Gas-Sensing Mechanism

PANI is a p-type semiconductor in which the majority of charge carriers are holes.
When it is exposed to a reducing gas such as H2S, a decrease in conductivity may be
expected. However, an increase in conductivity was observed instead, which may have
been caused by the presence of water vapours in the test chamber and sensing layer. H2S
can react with water molecules and ionise into H+ and HS-, where H+ ion may have doped
the PANI [12,47], thus increasing the conductivity [13].

H2S + PANI → HS−1 + PANIH+ (2)

During the recovery process, PANI had a longer recovery time due to the presence of
water, preventing the H2S from escaping easily from the surface.

3.3.2. Sensor’s Response and Sensitivity

Figure 4 shows the transient response of PANI and its composites at two RH % to
H2S as a function of time to highlight the effect of filler on the gas-sensing properties. IDE
coated with PANI, PANI-CA-1 and PANI-CA-3 switched between H2S (1–50 ppm) and N2
as exposure and recovery duration. The response was determined in terms of conductivity
by applying a fixed voltage of 0.1 V. Generally, the response of all sensors increased with
the increase in gas concentration, with the smallest response at 1 ppm and the highest
response at 50 ppm. The H2S-sensing properties of all the sensors were compared at room
temperature. A marked difference can be seen in the response behaviour of a sensor with
and without the filler, i.e., CA.
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At 60% RH the response values (Figure 4a) for PANI without any filler were 0.84,
3.88, 4.95, 6.69, 9.77, 12.04 and 13.83 at corresponding gas concentrations of 1, 5, 10, 20,
30, 40 and 50 ppm, respectively. For PANI-CA-1, the observed response was in the order
of 2.35, 5.64, 8.89, 12.71, 16.57, 19.51 and 22.75 towards H2S concentration ranging from
1–50 ppm. The response of PANI-CA-1 sensor was two times higher than that of PANI
on average. In addition, a much higher response can be seen in the case of PANI-CA-3
with response values of 3.80, 7.37, 9.50, 13.87, 17.01, 21.57 and 24.64, which on average are
2.24 and 1.2 times higher than those of PANI and PANI-CA-1, respectively. This marked
increase in sensitivity response may be associated with the large surface area of CA. The
relative response increased due to the availability of a large number of active sites in the
sensing layer. In our experiment, the lower detection limit for the sensors was 1 ppm. At a
higher concentration rate of increase, the sensor’s response slows down probably due to
the less availability of active sites on the surface due to the adsorption of gas molecules.
Hence, the performance of sensors increased in the order PANI < PANI-CA-1 < PANI-CA-3.

It has been observed that the sensor’s response is strongly dependent on the ambient
RH. The PANI sensor showed response values of 1, 1.6, 2, 3, 4, 5 and 6.5 in 80% RH
(Figure 4b) towards H2S at corresponding concentrations of 1, 5, 10, 20, 30, 40 and 50 ppm
respectively. While the PANI-CA-1 sensor showed a response value of 1.5, 3, 4, 6, 8, 9.7
and 11.3 in 80% RH at the same concentration, which was 1.85 times higher than PANI on
average. Similarly PANI-CA-3 sensor showed response values of 2, 3.7, 4.5, 6.9, 8.5, 10.7
and 12.3 in 80% RH towards H2S gas concentration ranging from 1–50 ppm respectively.
The response observed in case of PANI-CA-3 sensor was 1.2 times and 2.3 times higher
than PANI-CA-1 and PANI respectively.

However, we found that the sensor conductivity and response to H2S are dramatically
decreased with increasing humidity. In a humid environment, different types of interactions
can occur when water vapour is adsorbed on the sensor’s surface such as swelling, physical
entrapment due to high porosity, electron withdrawing and hydrogen bonding etc. In our
experiments, it was observed that after increasing the humidity inside the chamber, the
conductivity of the sensors was decreased. Since the water molecules are polar and can act
as a weak acid, they can dope PANI, and as a result increase the conductivity. Therefore, as
the RH increases, the sensitivity of the as prepared sensors to H2S decreases. When RH is
very high such as 80%, the PANI molecules are highly doped and H2S molecules interact
with H2O molecules instead of PANI since no more room exists for further doping in the
PANI [47].

The linear calibration curve in Figure 5a shows the response of these gas sensors as
a function of H2S concentration. The linear fitting equations (at 60% RH) are determined
as y = 0.2293x + 1.8732, y = 0.3992x +3.7348 and 0.4096x + 4.8369 for the PANI, PANI-
CA-1 and PANI-CA-3 sensors, respectively. The correlation coefficients of the fitted data
(R2) are 0.9766, 0.9786 and 0.9887, respectively (Table 1). While at 80% RH, the observed
linear fitting equations for PANI, PANI-CA-1 and PANI-CA-3 are y = 0.107x + 0.9164,
y = 0.1952x + 1.8639 and y = 0.2042x + 2.393 respectively. Moreover, the sensor’s sensitivity
(S, [ppm−1]) was calculated as the slope of the normalised sensor response I/I0 as shown in
Figure 5b. Evidently, the PANI-CA-1 and PANI-CA-3 sensors exhibited better sensitivity in
comparison with the PANI sensor. For PANI, at 60% RH the sensitivity was 0.2493, which
increased to 0.3992 (1.6 times) for PANI-CA-1. The highest sensitivity was found in the
PANI-CA-3 sensor, with a value of 0.4096 (Table 1). Also, at 80% RH the highest sensitivity
(0.2042 ppm−1) value was observed for PANI-CA-3, which was 1.05 times and 1.91 times
higher than PANI-CA-1 and PANI respectively. Hence, the optimal amount of CA filler in
PANI-CA composite was 3 wt%.
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Figure 5. (a) Response curve of PANI, PANI-CA-1, PANI-CA-3 sensor (60% RH (blue) and 80% RH
(red)) to increasing concentration of H2S (V = 0.1 V). (b) The sensor’s sensitivity values were reported
in the bar plot.

Table 1. Sensor’s sensitivity of PANI at distinctive loadings of CA (0, 1, 3 wt%).

Sensor RH % Sensitivity
(ppm−1) SD R2

PANI 60% 0.2293 0.007 0.9766
PANI 80% 0.107 0.008 0.9943

PANI-CA-1 60% 0.3992 0.01 0.9786
PANI-CA-1 80% 0.1952 0.001 0.9922
PANI-CA-3 60% 0.4096 0.008 0.9887
PANI-CA-3 80% 0.2042 0.007 0.9915

3.3.3. Response/Recovery Time

Another factor that characterises a gas sensor is response/recovery time. When the
sensor is exposed to gas, adsorption and desorption take place simultaneously. Therefore,
response and recovery time depends solely on the relative adsorption/desorption rate.
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Figure 6 shows the dynamic response curves for the response/recovery time of all IDE
sensors as a function of H2S gas concentration (60% RH). Figure 6a shows that the quick
response time for PANI was in the range of 1 s to 108 s (±0.05) as the gas concentration
increased from 1 to 50 ppm. On the other hand, the response time reduced to just 1 s for
PANI-CA-1 and PANI-CA-3 at all concentrations with the addition of CA. The fast response
time for composites may be attributed to the higher absorption rate due to a larger surface
area as compared with PANI. On the other hand, the recovery time for hybrid composites
was in the range of 135 s to 1065 s (±0.05), while that for the PANI was 340 s to 985 s, as
shown in Figure 6b. At 50 ppm, IDE coated with PANI-CA-3 and PANI-CA-1 showed a
longer recovery time of 1065 and 1005 s (±0.05), respectively, as compared with PANI, with
a recovery time of 985 s. The poor recovery time for composites may be attributed to the
high surface area, which allows the absorption of a sufficient amount of H2S gas molecules
to dope. Thus, dedoping the sensing material takes a longer time, i.e., the desorption
rate is much slower than the absorption rate. The response/recovery data at 80% RH are
presented in Table S2.
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3.3.4. Repeatability

Repeatability is an important performance indicator of a gas sensor. For this part,
all the IDEs coated with PANI and its composites underwent successive exposure to H2S
at 20 ppm. Each test was performed three times at a 120 s interval in H2S gas at room
temperature (Table S3). The sensors showed excellent repeatability with almost identical
curves, as shown in Figure 7. All the sensors displayed a stable response with values of
6.69 ± 0.008, 12.8± 0.1 and 13.88± 0.01 for PANI, PANI-CA-1 and PANI-CA-3, respectively.
However, the PANI-CA-3 sensor showed a stable response with the highest response value.
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3.3.5. Selectivity

Selectivity is another salient feature for executing gas-sensing studies. It is the ability
of a sensor to respond to a particular gas in the presence of other test gases and is an
important parameter to determine the reliability of a gas sensor. In this part, IDE sensors
coated with PANI, PANI-CA-1 and PANI-CA-3 were exposed to various gases, including
H2S, SO2 and CO2, under the same concentration of 50 ppm at room temperature. Figure 8
shows the response curves of all sensors towards different gases. In general, all the sensors
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show a similar trend and exhibited a maximum response towards H2S as compared with
other gases. In the case of H2S, PANI-CA-3 showed the highest response value of 2464%
followed by PANI-CA-1, which had a response value of 2275%. The smallest response value
of 1383% was observed for PANI. Hence, the selectivity of PANI and its composite-based
sensors exhibited the following trend: PANI < PANI-CA-1 < PANI-CA-3. In contrast, all
the IDE sensors showed low or almost no response towards SO2 and CO2.
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4. Conclusions

We successfully prepared a PANI-CA composite by using the physical mixing method.
FTIR, Raman spectroscopy and SEM revealed the presence of CA in the PANI matrix. The
SEM images confirmed that the CA was uniformly dispersed on the surface of PANI. The
prepared PANI-CA composite possesses a porous structure and surface defects, which
help improve the gas-sensing properties of the prepared samples. From the gas-sensing
results, the PANI-CA-based gas sensor can be concluded to have good sensing performance
towards H2S gas at room temperature at concentrations ranging from 1–50 ppm. Moreover,
the composites exhibit quick response and good reproducibility, indicating their promising
application as gas-sensing materials. The response time was just 1 s upon exposure to
H2S gas (60% RH). The most sensitive composite thin film to H2S gas was obtained by
incorporating 3 wt% CA into the PANI matrix. Thus, PANI-CA porous composite-based
gas sensor can be a good candidate for room temperature H2S sensing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13091457/s1, Table S1. Quick response(s) and recovery time data of PANI (a) PANI-
CA-1 (b) PANI-CA-3 (c) sensor as normalized current (I/I0) to the concentration ranging from 1 to
50 ppm flowed through the measuring chamber (1000 sccm, V = +0.1 V) at 60% RH, Table S2. Quick
response(s) and recovery time data of PANI (a) PANI-CA-1 (b) PANI-CA-3 (c) sensor as normalized
current (I/I0) to the concentration ranging from 1 to 50 ppm flowed through the measuring chamber
(1000 sccm, V = +0.1 V) at 80% RH, Table S3. Repeatability data of PANI (a) PANI-CA-1 (b) PANI-CA-
3 (c) sensor as normalized current (I/I0) to the same concentration of H2S (20 ppm) flowed through
the measuring chamber (1000 sccm, V = +0.1 V).
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