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Abstract: Herein, Sb2Se3 and β-Cu2Se nanowires are synthesized via hydrothermal reaction and
water evaporation-induced self-assembly methods, respectively. The successful syntheses and mor-
phologies of the Sb2Se3 and β-Cu2Se nanowires are confirmed via X-ray powder diffraction (XRD),
X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, field emission scanning electron mi-
croscopy (FE-SEM), and field emission transmission electron microscopy (FE-TEM). Sb2Se3 materials
have low electrical conductivity which limits application to the thermoelectric generator. To improve
the electrical conductivity of the Sb2Se3 and β-Cu2Se nanowires, polyaniline (PANI) is coated onto
the surface and confirmed via Fourier-transform infrared spectroscopy (FT-IR), FE-TEM, and XPS
analysis. After coating PANI, the electrical conductivities of Sb2Se3/β-Cu2Se/PANI composites
were increased. The thermoelectric performance of the flexible Sb2Se3/β-Cu2Se/PANI films is then
measured, and the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is shown to provide the highest power
factor of 181.61 µW/m·K2 at 473 K. In addition, a thermoelectric generator consisting of five legs
of the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is constructed and shown to provide an open-circuit
voltage of 7.9 mV and an output power of 80.1 nW at ∆T = 30 K. This study demonstrates that
the combination of inorganic thermoelectric materials and flexible polymers can generate power in
wearable or portable devices.

Keywords: antimony selenide; copper selenide; polyaniline; thermoelectric generator

1. Introduction

In recent years, thermoelectric materials have been studied for use in the thermo-
electric generator (TEG) or Peltier cooler. In particular, inorganic thermoelectric materials
based on Bi2Te3 [1,2], PbTe [3,4], SnSe [5,6], Cu2Se [7,8], skutterudites [9,10], and Zintl
phases [11,12] have been studied during the past few decades. Although such inorganic
thermoelectric materials exhibit better performance than their organic counterparts, they
are difficult to use in wearable or portable devices due to their rigid (inflexible), brittle,
heavy, costly, and toxic properties. Conversely, organic thermoelectric materials such as the
conducting polymers PEDOT:PSS [13–15], polyaniline (PANI) [16–18], polythiophene [19],
and polypyrrole [20,21] can exhibit lightweight, low-cost, non-toxic, and flexible properties
but display low efficiency compared to their inorganic counterparts. To overcome these dif-
ficulties associated with using inorganic or organic thermoelectric materials alone, hybrid
inorganic/organic thermoelectric materials have been studied in the most recent decades.
In addition, the electrical conductivities of various hybrid materials have been further
improved by various coating methods. For example, C. Meng et al. reported a promising
improvement in the thermoelectric performance of carbon nanotubes up to 4–5 times
by enwrapping the base material in PANI to provide a size-dependent energy-filtering
effect [17]. In addition, D. Park et al. reported enhanced thermoelectric properties using
Ag2Se nanowire/Polyvinylidene fluoride composite film via a solution mixing method.
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These studies show a combination of inorganic thermoelectric materials and polymers can
be used for improvement thermoelectric performances [22].

Antimony selenide (Sb2Se3) is a chalcogenide material that is easy to synthesize in
various structures such as thin films [23], nanosheets [24], and nanorods/wires [25,26].
Although Sb2Se3 has a large Seebeck coefficient of 750 µV/K, the extremely low electrical
conductivity of 10−4 S/m [26] is a limitation in thermoelectric applications. To address
this problem, an alloy of Sb2Se3 with copper selenide (Cu2Se) is proposed herein. Also a
chalcogenide, Cu2Se complements Sb2Se3 by exhibiting a high electrical conductivity along
with a low Seebeck coefficient. Similarly to Sb2Se3, Cu2Se is easy to synthesize in various
structures, including films [13], nanoplates [27], and nanowires [28]. In our previous work,
β-Cu2Se nanowires were synthesized and combined with Sb2Se3 nanowires to make the
rigid disk shape composite to improve thermoelectric performance [29]. In addition to
our previous work, to further improve the electrical conductivity of the Sb2Se3/β-Cu2Se
composite, the conducting polymer polyaniline (PANI) (with an electrical conductivity of
360 S/cm [16]) was used to coat the composite surface. Moreover, in our previous work,
it was found that the rigid and brittle nature of the resulting inorganic thermoelectric
composites makes them difficult to use in preparing flexible films. To address this problem,
a flexible thin film of polyvinylidene fluoride (PVDF) is developed. The flexible thin
film with 70% β-Cu2Se and 30% Sb2Se3 nanowires is shown to provide a power factor
of 181.61 µW/m•K2. This film is then used to fabricate a thermoelectric device with an
output voltage of 7.9 mV and an output power of 80.1 nW at a temperature difference of
30 K. These results demonstrate that the Sb2Se3/β-Cu2Se/PANI flexible thin film can be
used as a TEG for flexible devices.

2. Experimental Section
2.1. Materials

Sodium selenite (Na2SeO3, 99.9%), selenium powder (Se, 99.5%), and sodium do-
decylbenzene sulfonate (CH3(CH2)11C6H4SO3Na, SDBS) were purchased from Sigma-
Aldrich. Potassium antimony tartrate (C8H4K2O12Sb2·3H2O, 99.5) was acquired from
FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). Ammonium peroxydisulfate
((NH4)2S2O8, APS, 98%) was purchased from Alfa Aesar. Sodium hydroxide (NaOH, 97%),
copper(II) nitrate trihydrate (Cu(NO3)2·3H2O, 99%), hydrazine monohydrate (N2H4·H2O,
80%), tetrahydrofuran ((CH2)4O, 99%), m-cresol (C7H8O, 98%), D(+)-10-camphorsulfonic
acid (C10H16O4S, CSA, 98%), Dimethylformamide (C3H7NO, DMF), and aniline (C6H5NH2,
99%) were acquired from Daejung Chemical and Metals Co., Ltd. (Seoul, Korea). All
reagents were used as received without further purification.

2.2. Sample Preparation
2.2.1. Synthesis of Sb2Se3 Nanowires

The selenium and antimony precursors were reduced using hydrazine monohydrate
and synthesized to Sb2Se3 nanowires using a previously reported method [24]. In de-
tail, potassium antimony tartrate (0.605 g) and sodium selenite (0.51 g) were completely
dissolved in distilled water (100 mL) with magnetic stirring. Hydrazine monohydrate
(30 mL) was then added, and the mixture was transferred to a Teflon-lined autoclave with
tetrahydrofuran (40 mL). The sealed autoclave was heated to 135 ◦C for 9 h, then the
product was centrifuged at 10,000 rpm for 1 h, washed several times with distilled water
and ethanol, then dried overnight in a vacuum oven at 70 ◦C.

2.2.2. Synthesis of β-Cu2Se Nanowires

The β-Cu2Se nanowires were synthesized via a previously reported method [28]. In
detail, a mixture of Se powder (0.45 g) and NaOH (15 g) in distilled water (60 mL) was
heated at 90 ◦C to completely dissolve the Se powder. Then, a 0.5 M Cu(NO3)2 solution
(5 mL) was added, and the mixture was heated to dryness in an oven at 140 °C for 12 h.
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The precipitated product was then collected using hot distilled water, washed several times
with hot distilled water and ethanol, then dried overnight in a vacuum oven at 60 °C.

2.2.3. Synthesis of Sb2Se3/β-Cu2Se/PANI Composite Films and Fabrication of a
TEG Device

The SDBS (0.06 g) was dissolved in 1 M HCl solution (10 mL), followed by sonication
for 30 min to prepare a homogeneous solution. Using an ice bath to maintain a temperature
of 273 K, the aniline monomer (0.02 g) was then added to the solution with steady stirring
for 12 h. Then, APS (0.04 g) was dissolved in HCl solution (5 mL) and slowly added to
the prepared solution. The product was then washed three times with distilled water and
dried overnight in a vacuum oven at 60 °C to obtain the polyaniline powder.

Using the same polymerization procedure, Sb2Se3/β-Cu2Se/PANI powders were
synthesized by adding various ratios of Sb2Se3 and β-Cu2Se to 1 M HCl solution (10 mL),
SDBS (0.06 g), and aniline monomer (0.02 g). The obtained Sb2Se3/β-Cu2Se/PANI powders
were then added to 1 M ammonia solution (10 mL) and magnetically stirred for 24 h to
prepare the emeraldine base PANI product. The products were then washed several
times with distilled water and dried overnight in a vacuum oven at 60 °C. To improve
the electrical conductivity of the emeraldine base PANI, CSA was used as a dopant in
m-cresol (10 mL) in a mole ratio of 1:2 with stirring for 24 h. The obtained powder was
dried overnight in a vacuum oven at 60 °C.

To synthesize the Sb2Se3/β-Cu2Se/PANI film, the Sb2Se3/β-Cu2Se/PANI powder
(0.05 g) and polyvinylidene fluoride (PVDF) (0.025 g) were added to DMF solution (1 mL) at
a weight ratio of 2:1 and sonicated for 1h to generate a homogenous mixture. The mixture
was then drop-casted onto a glass substrate (18 mm× 18 mm) and dried at 60 °C for 24 h.

To fabricate a TEG device, the Sb2Se3/β-Cu2Se/PANI film was cut into five (18 mm x 6 mm)
strips with a thickness of 100 µm. These were then pasted onto a polyimide film and
connected with copper wire. Silver (Ag) adhesive (ELCOAT P-100, CANS) was used to
connect the copper wire and film.

2.3. Characterization

The crystalline structures of the prepared nanowire powders and de-doped PANI were
examined by X-ray diffraction (XRD; D8 Advance, AXS Bruker, Billerica, US) under Cu Kα

radiation (λ = 0.154056 nm) at 40 kV and 40 mA over a 2θ range of 10−80◦ at a scan rate
of 1◦ s−1. The binding energies of the synthesized nanowires and Sb2Se3/β-Cu2Se/PANI
powders were determined via X-ray photoelectron spectroscopy (XPS; K-Alpha, Thermo
Fisher Scientific, Waltham, USA) using a 1486.6 eV Al Kα X-ray source. Fourier-transform
infrared (FT-IR) spectroscopy (PerkinElmer Spectrum One) was conducted to confirm
the synthesis of PANI. Raman spectra were recorded using a Raman spectrometer II
(DXR2xi, Thermo Fisher Scientific, Waltham, USA) with a near infrared laser operating
at 532 nm and a CCD detector. Field emission scanning electron microscopy (FE-SEM;
SIGMA, Oberkochen, Germany), and field emission transmission electron microscopy
(FE-TEM; JEM-F200) were used to visualize the shape and microstructures of the Sb2Se3
and Cu2Se nanowire samples. Energy-dispersive X-ray spectroscopy (EDS) was used to
obtain the elemental mappings of the nanowire powders (JEM-F200, JEOL Ltd., Akishima,
Japan). The thermoelectric properties, Seebeck coefficients, and electrical conductivities
were measured in the direction parallel to the pressing direction. A four-probe method
involving a homemade device with a pair of thermocouples and a pair of voltmeters was
used to quantify the electrical conductivity (σ) between room temperature (RT) and 473 K,
and the Seebeck coefficient was calculated from the relationship in Equation (1):

S = ∆V/∆T (1)

where ∆V is the change in the thermal electromotive force and ∆T is the temperature difference.
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In addition, the power factor (PF) was calculated using Equation (2):

PF = S2·σ (2)

The properties of the generator were measured using a homemade device with ther-
mocouples and a multimeter (SENIT, A830L).

3. Results and Discussion
3.1. Crystallin Structure and Morphology of Sb2Se3 Nanowires

The Sb2Se3 nanowires with diameters of 100−200 nm and lengths of 1−2 µm were
successfully synthesized via the hydrothermal reaction, as shown in Figure 1a.
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In addition, the FE-TEM images of the Sb2Se3 nanowires are presented in Figure 1b,c.
Here, the lattice fringes of the Sb2Se3 nanowires are 0.365 nm in size, which corresponds to
the (1 3 0) crystal plane [30]. The EDS mappings of the Sb2Se3 nanowires in Figure 1d,e
indicate a stoichiometric atomic ratio of Sb:Se = 42.01:57.99. Moreover, the XRD pattern
of the Sb2Se3 nanowires in Figure 1f reveals a diffraction peak with lattice constants of
a = 1.168 nm, b = 1.172 nm, and c = 0.397 nm, corresponding to the orthorhombic structure
(JCPDS #15-0681, a = 1.1633 nm, b = 1.1780 nm, and c = 0.3985 nm). The absence of
any second phase peaks demonstrates the high purity of the nanowires, and the strong
intensities of the (h k 0) planes indicate that the Sb2Se3 particles have a 1-dimensional
nanowire structure. Further, the XPS spectra of the Sb2Se3 nanowires are presented in
Figure 1g−i. Here, the XPS wide scan spectra exhibit the Sb 3d and Se 3d peaks with no O
1s peak, thus indicating that the Sb2O3 phase was not produced during the synthesis, in
agreement with the above interpretation of the XRD pattern. Further, the high-resolution
Sb 3d spectrum in Figure 1h exhibits the Sb 3d5/2 and Sb 3d3/2 peaks at binding energies
of 529.5 and 538.8 eV, respectively, in agreement with the previously reported data [24].
Similarly, the binding energies of Se 3d5/2 and Se 3d3/2 are located at 53.91 and 54.73 eV,
which is in close agreement with the previously reported data [25]. The atomic ratio of
Sb:Se obtained from the XPS spectra is 41.21:58.79, which is close to that obtained from
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the EDS mapping data and to the stoichiometric ratio. The Raman spectrum of the Sb2Se3
nanowires is provided in Figure S1 of the Supplementary Information. Here, the peaks
located at 118, 188, and 208 cm−1 are consistent with the Sb2Se3 phase [31,32], whereas
the peak at 252 cm−1 is consistent with the Sb2O3 phase. As this second phase was not
observed in the XRD pattern and XPS spectra, the small Raman peak can be attributed
to oxidation of the Sb2Se3 surface to Sb2O3 by the high-density laser (1 mW/µm2) of the
Raman II instrument [31].

3.2. Crystallin Structure and Morphology of β-Cu2Se Nanowires

The β-Cu2Se nanowires with diameters of 100−200 nm diameter and lengths of
1–2 µm were obtained as shown in Figure 2a.
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Further, the FE-TEM images in Figure 2b,c exhibit 0.201 nm lattice fringes correspond-
ing to the (2 2 0) crystal plane. In addition, the EDS mapping images in Figure 2d,e indicate
an atomic ratio of Cu:Se = 68.14:31.86, which is close to the stoichiometric ratio. Meanwhile,
the XRD pattern of β-Cu2Se in Figure 2f exhibits a diffraction peak with a lattice constant
of a = 0.5692 nm, corresponding to the cubic structure (JCPDS #06-0680, a = 0.5759 nm).
The absence of any peaks of the second phases in the XRD pattern corresponding to other
phases indicates the high purity of the β-Cu2Se nanowires.

For further characterization, the XPS spectra of the β-Cu2Se nanowires are presented
in Figure 2g,i. Here, the presence of the Cu+ oxidation state is indicated by the Cu 2p3/2
and Cu 2p1/2 peaks located at binding energies of 933.66 and 954.56 eV, respectively
(Figure 2h). The relatively weaker peaks at 932.38 and 952.33 eV indicate the presence of
the Cu2+ oxidation state, but other phases such as CuO are not observed. In addition,
the Se 3d5/2 and Se 3d3/2 peaks are located at binding energies of 54.01 and 54.94 eV,
respectively (Figure 2i). Further, the atomic ratio of Cu:Se is seen to be 64.76:35.24, which is
in agreement with that obtained from the EDS mapping ratio and with the stoichiometric
ratio. The Raman spectrum of the β-Cu2Se nanowire is provided in Figure S2. Here, the
peak at 260 cm−1 corresponds to the previously reported Raman data for β-Cu2Se [33]. In
contrast to the Raman spectrum of the Sb2Se3 nanowires (Figure S1), no oxidized peak
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is observed for the β-Cu2Se nanowires. This confirms the high purity of the synthesized
β-Cu2Se nanowires.

3.3. Confirmation of PANI Coated Sb2Se3/β-Cu2Se Nanowire Powders

The XRD pattern of the de-doped PANI is presented in Figure 3a and is in agreement
with the previously reported data [34].
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In addition, the FT-IR spectrum of the de-doped PANI is presented in Figure 3b. Here,
the peaks at 1587 and 1490 cm−1 are attributed to the C=C stretching vibrations of the
quinoid and benzenoid ring, respectively; the peaks at 1300 and 1240 cm−1 indicate the
C-N stretching of the benzenoid ring, and the peak at 1151 cm−1 indicates the N=quinoid-
ring=N vibrational mode [35]. Taken together, the FT-IR and XRD results demonstrate the
successful synthesis of the de-doped PANI with the emeraldine structure incorporating
both the benzenoid and quinoid rings.

By comparison, the FT-IR spectrum of the composite Sb2Se3/β-Cu2Se/PANI material
in Figure 4a reveals the appearance of peaks at 1591, 1490, 1300, 1240, and 1151 cm−1 due
to the PANI coated on the surface of Sb2Se3 and β-Cu2Se nanowires.

Further, the FE-SEM images of the composite materials with various ratios of Sb2Se3
and β-Cu2Se nanowires in Figure S3 reveal the change in morphology and increased
roughness of the Sb2Se3/β-Cu2Se/PANI nanowire surface. In addition, the FE-TEM
images in Figure 4b–f indicate that the PANI is coated on the surface of the Sb2Se3/β-Cu2Se
nanowires with a uniform thickness of 4−5 nm. For further characterization, the N 1s
and C 1s peaks in the XPS spectra of the 70%-Sb2Se3/30%-β-Cu2Se/PANI composites are
presented in Figure 4g,h. Here, the peaks at 398.15, 400.04, and 402.25 eV are respectively
attributed to the −N= bonds, the −NH− bonds, and the N+ species of the emeraldine base
PANI [36]. Meanwhile, the binding energies of 284.38 and 286.31 eV are attributed to the
C−C/C−H bonds and the C−N bonds, respectively, of the emeraldine based PANI [36].
Taken together, the FE-TEM and XPS results demonstrate the successful formation of PANI
on the surface of the nanowires.
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3.4. Thermoelectric Properties of Sb2Se3/β-Cu2Se/PANI Flexible Films and TEG Properties

The Sb2Se3/β-Cu2Se/PANI films were synthesized from the Sb2Se3/β-Cu2Se/PANI
powders with various ratios of Sb2Se3 and β-Cu2Se as described in Section 2.2.3. The
flexible properties of the obtained films are indicated in Figure S4, while the Seebeck
coefficients (S) and electrical conductivities (σ) of the Sb2Se3/β-Cu2Se nanowires and
Sb2Se3/β-Cu2Se/PANI films are indicated in Figure 5a,b.

Here, the pure Sb2Se3 and β-Cu2Se exhibit Seebeck coefficients of 400 and 3−4 µV/K,
respectively, while the Seebeck coefficient of the Sb2Se3/β-Cu2Se composite is seen to
decrease with increasing proportion of β-Cu2Se. Meanwhile, the electrical conductivity
of the Sb2Se3/β-Cu2Se composites is seen to increase with the increasing proportion of
β-Cu2Se due to the high electrical conductivity of β-Cu2Se (45.3 S/cm−1). Compared to the
non-coated Sb2Se3/β-Cu2Se composite, the Sb2Se3/β-Cu2Se/PANI film exhibits a lower
Seebeck coefficient and a higher electrical conductivity due to the high electrical conduc-
tivity of PANI (i.e., 360 S/cm) [16]. These trends in the Seebeck coefficient and electrical
conductivity can be explained by a parallel-connected model, as described in the Support-
ing Information. Although the complicated interfacial interactions can distort the electrical
conductivity curves and, thus, lead to inaccuracy, the parallel-connected model can be con-
sidered a useful guideline [37–39]. The results of the parallel-connected model are indicated
by the dashed line in Figure 5a,b, while the Seebeck coefficients, electrical conductivities,
and power factors of the Sb2Se3/β-Cu2Se nanowires and Sb2Se3/β-Cu2Se/PANI films
over the temperature range of room temperature to 473 K are presented in Figure 5c−e.

In all cases, the Seebeck coefficients and electrical conductivities are seen to increase
with the increasing temperature. In addition, the maximum power factor (PF), as calculated
using Equation (2), is 181.61 µW/m·K2 for the 70%-Sb2Se3/30%-β-Cu2Se/PANI film.
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The flexible film of thermoelectric materials can be used as a TEG for wearable or
portable devices. Hence, the highest-performing material in the present study, namely the
70%-Sb2Se3/30%-β-Cu2Se/PANI film, was used to fabricate a TEG, as shown in Figure 6a.
The open-circuit voltage (Voc) and output power of the device are indicated in Figure 6b,c.
The open-circuit voltage of the fabricated TEG was measured under a temperature differ-
ence of ∆T = 30 K and reached a value of 7.9 mV. The theoretical value of the open-circuit
voltage was calculated using Equation (3):

Voc = N·|S|·∆T (3)

where N is the number of TEG legs [39].
The output power (P) was calculated using Equation (4):

P = I2·Rload = (
Voc

Rin + Rload
)

2
·Rload (4)

where I, Rload, and Rin are respectively the output current, the load resistance, and the
internal resistance of the homemade TEG37. The Rin and Rload values were both 770 Ω, and
the calculated maximum output power was 80.1 nW at ∆T = 30 K.
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4. Conclusions

Two nanowire materials, namely Sb2Se3 and β-Cu2Se, were synthesized via hydrother-
mal reaction and water evaporation-induced self-assembly methods, respectively. The
conducting polymer, PANI was then formed on the Sb2Se3 and β-Cu2Se nanowire surfaces
in order to improve their electrical conductivities. Composite PANI-coated materials with
various ratios of Sb2Se3 and β-Cu2Se were produced, and their thermoelectric properties
were measured. The 70%-Sb2Se3/30%-β-Cu2Se/PANI film was shown to provide the high-
est power factor of 181.61 µW/m·K2 at 473 K. In addition, a thermoelectric generator was
fabricated from five legs of the 70% Sb2Se3/30% β-Cu2Se/PANI film and was found to pro-
vide an open-circuit voltage of 7.9 mV and an output power of 80.1 nW at ∆T = 30 K. This
study demonstrates that the fabricated flexible TEG which combines the high performance
of inorganic thermoelectric materials with flexibility of a polymer has potential application
as a next-generation power generator for wearable or portable devices. In addition, this
study can also influence other electronic devices requiring compact power generators.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13091518/s1, Figure S1: Raman spectrum of Sb2Se3 nanowires, Figure S2: Raman
spectrum of β-Cu2Se nanowires, Figure S3: FE-SEM images of Sb2Se3/β-Cu2Se nanowires before
and after PANI coating on the nanowire surfaces, Figure S4: Raman spectrum of 70%-Sb2Se3/30%-β-
Cu2Se/PANI powders, Figure S5: Macro-scaled morphology of the 70%-Sb2Se3/30%-β-Cu2Se/PANI
flexible film.
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