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Abstract: Wood-based products are traditionally bonded with synthetic adhesives. Resources avail-
ability and ecological concerns have drawn attention to bio-based sources. The use of tannin-based
adhesives for engineered wood products has been known for decades, however, these formulations
were hardly used for the gluing of solid wood because their rigidity involved low performance. In
this work, a completely bio-based formulation consisting of Quebracho (Schinopsis balancae) extract
and furfural is characterized in terms of viscosity, gel time, and FT-IR spectroscopy. Further, the
usability as an adhesive for beech (Fagus sylvatica) plywood with regard to press parameters (time and
temperature) and its influence on physical (density and thickness) and mechanical properties (modu-
lus of elasticity, modulus of rupture and tensile shear strength) were determined. These polyphenolic
adhesives presented non-Newtonian behavior but still good spreading at room temperature as well
as evident signs of crosslinking when exposed to 100 ◦C. Within the press temperature, a range
of 125 ◦C to 140 ◦C gained suitable results with regard to mechanical properties. The modulus of
elasticity of five layered 10 mm beech plywood ranged between 9600 N/mm2 and 11,600 N/mm2,
respectively, with 66 N/mm2 to 100 N/mm2 for the modulus of rupture. The dry state tensile shear
strength of ~2.2 N/mm2 matched with other tannin-based formulations, but showed delamination
after 24 h of water storage. The proposed quebracho tannin-furfural formulation can be a bio-based
alternative adhesive for industrial applicability for special plywood products in a dry environment,
and it offers new possibilities in terms of recyclability.

Keywords: plywood; quebracho; tannin furfural; biogenic adhesives

1. Introduction

Lignocellulosics are abundant bio-resources, nowadays perceived as a gamechanger in
the scope of the climate crisis. Wood products contribute as carbon dioxide (CO2) storage
sinks due to increasing the time that CO2 captured in forests is kept out of the atmosphere.
Encouraging more forest growth, wood products enhance the efficiency of forest sinks by
acting as carbon stores [1]. Indeed, numerous studies have emphasized the environmental
benefits of wood-based materials compared to mineral-based compounds [2,3], due to
the low embodied emissions and the lower material intensity of wood [4]. Within wood-
based products, wood panels cover a major assortment of applications in the construction,
packaging, and furniture sectors [5]. In order to achieve well-distinct properties, wood
panel manufacturing adapts the dimensions of engineered wood products (EWPs) through
the intelligent (re)assembly of wooden parts. Assembly that is regularly done with the
application of adhesive resins. The high market that EWPs are gaining have caused
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environmental concerns related to the emissions from formaldehyde and other volatile
compound that underlie the main adhesives used [6]. Consequently, workable alternatives
are required in accordance with environmental standards and safety and market demands to
direct future development through a sustainable use of wood. For instance, the generation
of adhesives from bio-resources enables both a reduction in the use of chemical reagents
harmful to health and a further move away from petroleum derivatives, thus decreasing
the carbon footprint of the final product [7]. Actually, recent market forecasts highlight the
importance of the bio-adhesives field and a growth from between USD 3.7–6.0 billion in
2020 to USD 5.2–9.7 billion by 2025–2028 is expected [8,9]. Different renewable substances
have been proposed as a building block to manufacture bio-resins, from plant protein
such as soy, starch based polysaccharides, and lignocellulosic molecules such as lignin
and tannins [10,11]. Additionally, to overcome issues related to toxic reagents such as
the formaldehyde traditionally used to manufacture wood-based products [12], different
bio-based formaldehyde free formulations have been developed. Oktay et al. (2021)
used bio-based corn-starch Mimosa tannin sugar adhesives for panels to meet the EN
312:2010 particleboard (P2) standard requirements for interior fittings in a dry state [13].
Similar results are given by Paul et al. (2021) for particleboard bonded with lignin-based
adhesives [14]. Plywood, for example, assembled with PVOH–lignin–hexamine showed a
dry tensile shear strength of 0.95 N/mm2 [15] or with a soybean meal-based adhesive, which
displayed excellent water resistance with a tensile shear strength exceeding 1 N/mm2 [16].
Ghahri et al. (2022) reported a wet state tensile shear strength of ~0.8 N/mm2 for a
Quebracho tannin and isolate soy protein adhesive without hardener [17]. According to
the mentioned research, tannins are of particular interest due to their chemical structure
and good reactivity [18,19], which make these compounds great candidates. Tannins are
classified into hydrolysable and condensed, the former class are mixtures of simple phenols,
such as pyrogallol and ellagic acid, and esters of glucose, with gallic and digallic acids [20].
The latter, also known as proanthocyanins or flavanol, constitutes more than 90% of world
production [20], which due to its reactivity is more suitable for industrial application.
Condensed tannins are polyhydroxy-flavan-3-ol oligomers bonded together mostly by
C-C bonds between the A rings of the flavanol units and the pyran rings of other flavanol
units [19]. Particularly, the polyphenolic structure suggests the comparison and the possible
replacement of phenol-formaldehyde (PF) synthetic resins used for gluing EWPs, whose
production has seen a sharp increase in the last decade [21]. Moreover, during processing,
PF resins have the highest environmental impact of all major synthetic resins [22], ranking
tannins as a potential prime substitute.

Deep research has been carried out on the application of tannin adhesives [23–26].
However, it is useful to mention that a synthetic crosslinker is almost always required to
form the three-dimensional polymeric structure. In the current study, an entirely renewable
tannin-based adhesive is proposed, using furfural as hardener. Furfural, belonging to the
furan compounds, is produced through the acid hydrolysis of biomass [27], and agricultural
residues can be used, too [28]. The renewability and the abundance of lignocellulosic
biomass make it a viable resource.

This study proposes a new Quebracho tannin-furfural adhesive formulation to be
used for the production of plywood. The aim of our investigation is to characterize the
Quebracho tannin-furfural adhesive, previously studied and compared with the main
synthetic and non-synthetic hardeners [29], in terms of gel time, viscosity, and FT-IR
spectroscopy as well as to determine the mechanical performance of five layered beech
(Fagus sylvatica) plywood with regard to the press parameter of time and temperature,
which consequently contribute to the production and the use of bio-based adhesives.

2. Materials and Methods
2.1. Materials

The tannin-based adhesives were prepared using Quebracho (Schinopsis balancae) tan-
nin extract (Fintan 737B), kindly provided by the company Silvateam (S. Michele Mondovì,
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Cuneo, Italy) and furfural (99%) obtained by International Furan Chemical IFC (Rotterdam,
The Netherlands). Sodium hydroxide was purchased from Alfa Aesar (Thermo Fisher,
Waltham, MA, USA) and it was applied to change the pH of the formulation.

Pre-conditioned (20 ◦C, 65% relative air humidity) rotary cut defect free beech
(Fagus sylvatica) veneers, purchased from Europlac (Topolčany, Slovakia,), with a nom-
inal thickness of 2.2 mm, an average density of 0.72 g/cm3, and an average moisture
content of 12% were used to prepare the plywood for this study.

2.2. Methods
2.2.1. Adhesive Preparation

The tannin-furfural formulation was prepared by mixing under vigorous stirring the
commercial extract with water to obtain a 65% homogeneous suspension. The starting pH
of 6.7 was adjusted to 8 by adding a 33% sodium hydroxide solution and finally 10% of
furfural calculated on solid tannin was added.

2.2.2. Adhesive Characterization

Gel time: 5 g of the formulation were inserted into a glass test tube which was
immersed in an oil bath at 100 ◦C. The transition time to obtain a solid was recorded using
a stopwatch. The tests were repeated three times.

Viscosity: A freshly prepared formulation was analyzed with Rheometer Kinexus Lab
from Malvern Panalytical (Malvern, UK). The measurement was conducted at 25 ◦C using
cone-shaped geometry spindles with a diameter of 4 cm and a gap between the plates of
0.15 mm. The rotational speed was set from 10 s−1 to 300 s−1.

FT-IR: A Frontier ATR-FT-MIR from Perkin Elmer (Waltham, MA, USA) was used
for scanning the industrial Quebracho powder, Quebracho furfural formulation dried
at room temperature for 24 h and the same formulation cross-linked at 100 ◦C for 24 h.
Every spectrum was acquired with the ATR diamond device with 32 scans from 4000 to
600 cm−1 and the fingerprint spectral region between 1800 and 600 cm−1 was considered
after normalization and baseline correction.

2.2.3. Plywood Preparation

The plywood consisted of five layered 90◦ crosswise oriented 2.2 mm thick beech
veneer plies. Adhesive application was carried out manually by weighing the required
adhesive amount of 150 g/m2 per glue line with a KERN ITB 35K1IP device (Balingen-
Frommern, Germany). Pressing was conducted using a Höfler HLOP 280 (Taiskirchen,
Austria). Pressure was set to 3 N/mm2; press-time was 10 min, 15 min, respectively 20 min
and press-temperature was 110 ◦C, 125 ◦C and 140 ◦C.

A pretest to determine the time depended temperature behavior within the glue line
during hot pressing as well as in order to check temperature difference between press and
glue line was conducted using a Lutron electronic enterprise BTM 4208SD (Taipei City,
Taiwan) datalogger with K-couple thermo-wired sensors. The sensors were placed on the
outer plies surfaces and within the glue lines between the singular plies. The temperature
at the press control unit was adjusted according to the pretest results.

After pressing, the boards were stored until mass constancy under a climate of 20 ◦C
and 65% relative humidity. Test specimen were cut from the plywood boards for the
determination of density, bending strength (MOR), stiffness (MOE), and tensile shear
strength (TSS).

2.2.4. Plywood Characterization

The density was determined according to EN 323:2005, and it was obtained from the
bending test specimen [30].

The density profile was measured with a DENSE-LAB X (EWS, Hammeln, Germany)
and the specimen dimensions 50 mm × 50 mm. The thickness was obtained from the bend-
ing test specimens. The “Degree of compression” (DoC) was calculated by the percentage
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based difference between the theoretical thickness of 11 mm of non-compressed veneer ply
stack before pressing and the actual thickness of the bending test specimens according to
Spulle et al. (2021) [31].

Dry state tensile shear strength (TSS) and 24 h water soaking TSS was determined
according to EN 314:2005 with specimen dimensions 100 mm × 25 mm [32]. Modulus of
rupture (MOR) and modulus of elasticity (MOE) were determined by a three-point bending
test according to EN 310:2005 with specimen dimensions 250 mm × 50 mm [33].

All mechanical properties (SS, MOE, and MOR) were determined using a Zwick/Roell
250 8497.04.00 test device (Ulm, Germany) under constant climatic conditions (rel. humidity
65%, ambient temperature 20 ◦C). The set-up and the number of specimens of the conducted
tests is given in Table 1.

Table 1. Number of test specimen for the physical and mechanical properties testing of Quebracho
tannin-furfural bonded five layered beech plywood.

Time [min]

10 15 200

Temperature [◦C] 110 125 140 110 125 140 110 125 140

Number of Test Specimens N

Density 5 5 5 5 5 5 5 5 5
Density profile 5 5 5 5 5 5 5 5 5

Thickness 5 5 5 5 5 5 5 5 5
MOE/MOR 5 5 5 5 5 5 5 5 5

TSS dry state and 24 h 5 5 5 5 5 5 5 5 5

2.2.5. Data Analysis

For statistical evaluation IBM SPSS (Armonk, NY, USA) was used for descriptive data
exploration and univariate and multivariate methods for the evaluation of the different Que-
bracho tannin-furfural bonded plywood test specimen. To determine differences between
the press parameters, an ANOVA at a significance level of 95% was used. Multivariate
ANOVA was used to determine the influence of “Temperature” and “Press-time” with the
“Density” as covariant. The significance of correlations (Pearson) were evaluated using
two-sided confidence intervals of 95%.

3. Results & Discussion
3.1. Adhesive Characterization

Tannin-furfural adhesives showed the most favorable hardening conditions at pH 8 [29].
Due to the limited viscosity of the adhesive at 50% solid content (s.c.), in this work tannin
formulations with 65% s.c. were tested for their viscosity, gel time, and hardening. It was
observed that concentrated tannin-furfural formulation presents a non-Newtonian pseu-
doplastic behavior (Figure 1), described as an increase of shear rate leading to a decrease
of viscosity.

In these conditions, the formulation easily resulted in being homogeneously spread on
wood. The curing behavior of the formulation was measured through gel time at 100 ◦C,
which was 238 (+/−10) seconds that is slightly slower than commercial urea-formaldehyde’s
(UF) as it hardens after 127 s [34] but rather faster than phenol-formaldehyde’s (PF) with a
gelation time ranging within 10 min [35].
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steric hindrance for out of plane C-OH wagging and C-H bending vibrations [36,37]. 
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The main differences between Mimosa and Quebracho tannin is related to the nature 
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Conversely, the B ring of Quebracho bonds principally two hydroxyl groups (catechol 
unit) decreasing the reactivity due to the chemistry of phenol [29]. Thus concluding, the 

Figure 1. Viscosity of a 65% tannin furfural formulation.

From the chemical point of view, the curing process was observed comparing the
spectra of the resin exposed 24 h at 25 and 100 ◦C. Figure 2 reports the spectra of the dry
resin before and after curing. Comparing the two spectra, the most evident difference
is that after curing the bands become broader suggesting the formation of polymeric
structures, in particular the region at lower wavenumber become almost flat due to the
steric hindrance for out of plane C-OH wagging and C-H bending vibrations [36,37].
Further major observations are the decreasing/disappearing of some signals such as those
at 1670, 1392, 1018, 929, and 758 cm−1, which are related to furfural compounds [38,39].
According to these observations, the crosslinking process could be similar to that observed
for the polymer with Mimosa extract, involving the bridging through methylene–furanic
units [40].
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Figure 2. ATR-FTIR of Quebracho tannin furfural formulations at room temperature (black) and
cured at 100 ◦C (red).

The main differences between Mimosa and Quebracho tannin is related to the nature of
the B ring where the former bonds three hydroxyl groups (pyrogallic unit) [40]. Conversely,
the B ring of Quebracho bonds principally two hydroxyl groups (catechol unit) decreasing
the reactivity due to the chemistry of phenol [29]. Thus concluding, the reaction between
Quebracho and furfural mainly involves the benzene ring A, as reported in Figure 3.
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3.2. Plywood Characterization
3.2.1. Density

Density is one of the major physical parameters influencing the mechanical properties
of plywood while enhancing MOE and tensile strength (TS) [41]. The mean density of the
tested groups range between 0.768 g/cm3 (press temperature 140 ◦C; press time 10 min)
and 0.810 g/cm3 (press temperature 125 ◦C; press time 20 min) (Figure 4a). The gained
results are within the range compared to the values mentioned in the literature for identical
five-layered beech plywood set-ups [42,43]. Testing of the density specimen for 110 ◦C press
temperature and 10 min press time was not possible due to delamination after pressing
and conditioning.
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Figure 4. (a) Density grouped by time and temperature. Dots and stars within the box plot indicate
outliers and (b) density profile for the 5-layers plywood glued for 15 min with Quebracho tannin-
furfural adhesives at different temperature.

The density profile, plotting density against thickness, displays a method to gain infor-
mation of the bonding performance within the adhesive layer [44,45]. The selected density
profiles (Figure 4b) of specimen from the test set 15 min and three different temperatures,
demonstrating differing bonding behavior. The specimen for the press temperature of
110 ◦C reveals delamination within the glue line (GL) 4 due to a significant sharp declined
density gap and wider thickness. Further, a double peaking at glue line 3 indicates inap-
propriate bonding behavior. Test specimen for the press temperature of 125 ◦C illustrates a
deeper adhesive penetration into the plies adjacent to the glue line due to wider and slightly
lower density peaks than the selected specimen of the press temperature 140 ◦C. Compared
to the previous described samples, the specimen for 140 ◦C has a sharper curvature of the
density peaks indicating a reduced adhesive penetration into the adjacent wood layers, and
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a higher degree of compression is visible due to the lower thickness (<10 mm) compared to
the other test specimen (>10 mm) with a lower temperature (Figure 5a).
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The thickness of the Quebracho tannin-furfural bonded five layered plywood ranges
between 9.74 mm (press temperature 140 ◦C; press time 20 min) and 10.21 mm (press
temperature 125 ◦C; press time 15 min) (Figure 5a), respectively, and between 11.45% and
7.18% for the degree of compression (DoC) (Figure 5b). This is according to Bekhta et al.
(2009), stating a compression of ~10% for plywood manufacturing [46].

Thickness and therefore the degree of compression is influenced by the moisture
content of veneers, press time and temperature. An elongated press time with a higher tem-
perature influences the chemical wood structure due to a shift toward the glass transition
of the singular chemical wood constituents while softening the natural polymeric cellular
fiber composite character of wood [47].

3.2.2. Bending Properties

Modulus of elasticity (MOE) ranges between 448 (SD = 34) N/mm2 (press-time
15 min/-temp. 110 ◦C) and 11,628 (SD = 592) N/mm2 (press-time 10 min/-temperature
140 ◦C) (Figure 6a). Modulus of rupture (MOR) ranges between 18.73 (SD = 2.65) N/mm2

(press-time 15 min/-temperature 110 ◦C) and 104.61 (SD = 20.67) N/mm2 (press-time
15 min/-temperature 140 ◦C) (Figure 6b). Testing of specimen of test-group press time
10 min and press temperature 110 ◦C could not be carried out due to delamination after
pressing and within conditioning. All tested specimen regardless of the test group failed
within the adhesive layers, indicating low cohesive strength. Notable is the shift of the
failure pattern from the pressure zone to the tension zone of the three-point bending test
specimens, with increasing press-temperature and time. This fact reveals an improved
adhesive performance with increasing press-time and temperature (Figure 7).

The modulus of elasticity is clearly affected by the combination of temperature and
time. At a higher temperature, similar MOE are achieved independently of the press-
ing time.

Applying 20 min curing time, 110 ◦C is already sufficient to exceed 9000 N/mm2,
while at 140 ◦C with 10 min already a modulus of elasticity exceeding 11,000 N/mm2 is
reached. Hence, an increase of the temperature above 15 min does not further influence the
final MOE. Additionally, the modulus of rupture (MOR) is dependent on the combined
effect between temperature and time, where temperature is still crucial (Figure 6b). It can
be observed that, the overall preferable pressing conditions for the bending properties
require higher temperature (140 ◦C) and a pressing time of 10 to 15 min.
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different temperatures.

Comparing the presented MOE and MOR values to the literature, there is a gen-
eral divergent picture. Niemz (1993) stated general values for MOE between 1500 and
7000 N/mm2 for plywood without regard to adhesives [48]. Values for MOE according
to DIN 68 705-5 range between 5900 and 9600 N/mm2 [49]. Hrazsky and Kral (2005)
stated a mean MOE of 12,493 N/mm2 and a mean MOR of 77.50 N/mm2 for seven layered
foiled 10 mm thick beech plywood [50]. Biadala et al. (2020) obtained a mean MOE of
13,720 N/mm2 for three layered phenol-formaldehyde bonded beech plywood with a nom-
inal veneer thickness of 1.7 mm and a MOR of 158.4 N/mm2 [51]. Lower values are given
by Dieste et al. (2008) for MOE with a mean of 9369 N/mm2 of Fagus sylvatica five layered
phenolic resin (150 g/m2) bonded plywood at 140 ◦C press temperature, 10 min of pressing
and a pressure of 1 N/mm2 [52]. This is 20% lower compared to the presented mean MOE
of 11,628 N/mm2 for 10 min and 140 ◦C of the current study. The variation within the
numbers can be explained by the natural variation of native wood and its anisotropic
behavior. Lohmann (2008) stated for the MOE of Fagus sylvatica a range between 10,000 to
18,000 N/mm2 and for MOR 74 to 210 N/mm2 [53]. Additionally, the mechanical perfor-
mance of wood-based materials is influenced by the press parameters, according to Réh
et al. (2021), as well as the specific lay-up of laminar wood-based products [54]. Further,
the type of adhesive has a significant influence on MOE and MOR [55], concluding that
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the presented adhesive formulation can compete with synthetic phenolic resins in terms of
MOE and MOR.

3.2.3. Tensile Shear Strength

Tensile shear strength had been tested in the dry state and after 24 h water storage.
The results for the dry state tensile shear strength range between 0.00 N/mm2 (press-
time 10 min; press-temperature 110 ◦C), respectively, 1.74 (SD = 0.32) N/mm2 (press-time
10 min; press-temperature 140 ◦C) and 2.29 (SD = 0.69) N/mm2 (press-time 15 min; and
press-temperature 125 ◦C) (Figure 8). It has to be noted that specimens of test group
110 ◦C/10 min failed subsequently before testing due to delamination and only two spec-
imen per test group 125 ◦C/10 min and test group 110 ◦C/15 min due to delamination
during specimen cutting could be tested. This indicates a poor bonding behavior within
the glue line. Tensile shear strength testing at dry state revealed excellent results even at
moderate curing temperature (125 ◦C) with limited influence of the press time.
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All tested specimens regardless of the test group failed within the glue line without
displaying a wood fracture pattern according to EN 314 [56].

Testing of tensile shear strength for class 1 plywood applications according to EN 314
with 24 h water storage could not be carried out due to delamination failure of all test
specimens within the 24 h of immersion into water [32].

Compared to the literature, Xi et al. (2020) gained values for tensile shear strength at
a dry state between 0.98 and 1.99 N/mm2 for three layered poplar (Populus tremuloides)
plywood bonded with different Mimosa tannin glucose mixtures [57]. Similar results are
stated by Hafiz et al. (2020) for tannin phenol-formaldehyde (TPF) co-polymer bonded
rubber wood (Hevea brasiliensis) plywood in a range between 1.71 and 2.58 N/mm2 and
3.41 N/mm2 for the phenol-formaldehyde (PF) bonded reference [58]. Compared to indus-
trial applicated adhesives, Jorda et al. (2021) stated for five layered beech (Fagus sylvatica)
urea-formaldehyde (UF) bonded plywood a mean tensile shear strength in a dry state of
5.47 N/mm2, for melamine-urea formaldehyde (MUF) 6.29 N/mm2 and polyurethane
(PUR) of 6.74 N/mm2 [42]. Biadala et al. (2020) obtained a tensile shear strength value for
phenol formaldehyde resin bonded beech plywood after 24 h water soaking of 2.99 N/mm2,
respectively 2.44 N/mm2 after the boiling test [51]. Concluding that the presented Quebra-
cho tannin-furfural adhesive formulation is capable of preserving with other mentioned
tannin adhesives formulations for dry state tensile shear strength. Compared to industrial
applicated adhesives, the dry-state performance is significantly lower and after 24 h water
exposure incapable in terms of water resistance. This could be related to tensions induced
by swelling of the singular veneer plies, especially beech (Fagus sylvatica L.) reacts sensitive
to moisture induced swelling and shrinkage, resulting in low stress transfer capability
within the glue line due to the brittle structure of the hardened Quebracho tannin-furfural
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adhesive. This is in line with several studies mentioning the brittle behavior of tannin-based
adhesive formed glue lines [59–61].

3.2.4. Statistical Considerations

Significant correlations between thickness and MOE (R = −0.609; p-value 0.001),
thickness and MOR (R = −0.823; p-value 0.001) and the correlation between MOE and MOR
(R = 0.831; p-value 0.001) could be stated. The correlation of MOE versus density (R = 0.098;
p-value 0.546) and MOR versus density (R = −0.025; p-value 0.876) is not detected. No
correlation between tensile shear strength versus MOE (R = −0.147; p-value 0.456) and
tensile shear strength versus MOR (R = −0.105; p-value 0.596) are detected.

The selected press parameters “time” and “temperature” have been accessed by uni-
and multivariate methods to determine the influence on density, thickness, modulus of
elasticity, modulus of rupture, and tensile shear strength (Table 2).

Table 2. Results of statistical significance for one-way ANOVA.

Properties Variable Mean Square F-Value p-Value

Density Temperature 0.001 4.671 0.016 *
Time 0.001 6.021 0.005 *

Thickness
Temperature 0.654 90.577 <0.001 *

Time 0.036 0.876 0.425

MOE
Temperature 130,074,609 7.985 0.001 *

Time 489,227,828.8 2.360 0.108

MOR
Temperature 17,277.397 47.926 <0.001 *

Time 609.421 0.483 0.621

TSS
Temperature 0.360 1.850 0.178

Time 0.206 0.994 0.384
* The p-value lower than α = 0.05 displays significant influence on the physical and mechanical plywood properties.

The one-way ANOVA for the factor “temperature” reveals the influence on density
(p-value = 0.016; η2 0.202), thickness (p-value < 0.001; η2 0.830), modulus of elasticity
(p-value = 0.001; η2 0.301) and modulus of rupture (p-value < 0.001; η2 0.721). It does not
influence tensile shear strength (p-value = 0.178; η2 0.129). A significant influence can be
stated for the factor “time” on density (p-value = 0.005; η2 0.246) but not for thickness
(p-value = 0.425; η2 0.045), tensile shear strength (p-value = 0.384; η2 0.074), modulus of
elasticity (p-value = 0.108; η2 0.113) and modulus of rupture (p-value = 0.621; η2 0.025).

The multivariate test conducted for the factors “time” and “temperature” with the
covariant “density” displays a similar picture for the factor “temperature” significantly
influencing thickness (p-value < 0.001), modulus of elasticity (p-value < 0.001), modulus of
rupture (p-value < 0.001) and tensile shear strength (p-value 0.048). The factor “time” does
significantly influence the thickness (p-value < 0.001) but not tensile shear strength (p-value
0.127), modulus of elasticity (p-value 0.428) and modulus of rupture (p-value 0.271).

Comparing the trend of the estimated marginal means trends for temperature, in-
creasing the temperature between 110 ◦C to 125 ◦C increases thickness. A further increase
in temperature significantly decreases the thickness. This can be explained by the glass
transition of the singular chemical constituents of wood resulting in a shape change of the
cellular structure [45]. The factor press time displays a similar trend.

Interaction effects between the factors “time” and “temperature” are given for thick-
ness and the mechanical properties of modulus of elasticity and modulus of rupture with a
p-value < 0.001 but not for tensile shear strength with a p-value of 0.303.

For MOE, the “time” has a great influence at a low temperature; but, reaching a tem-
perature between 125 and 140 ◦C, the increase of pressing time does not lead to improving
properties. Similar behavior is found for MOR, but the temperature must reach 140 ◦C
to achieve best features. Tensile shear strength is influenced by time only at 110 ◦C. With
increasing temperature no similar trends are observed, as stated for MOE and MOR.
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Concluding the importance of the factor “temperature” on the performance of the
mechanical properties led to suggest a temperature range between 125 ◦C and 140 ◦C in
order to gain sufficient bonding quality. It can be explained by the phenolic character
of tannin. The industrial applicated temperature for hot pressing of plywood with PF
adhesives is ~130 ◦C [62].

4. Conclusions

The aim of the study was to determine the adhesive characteristics gel time and
viscosity as well as the influence of the press parameters, time and temperature, on the
selected physical and mechanical properties—density, thickness, modulus of elasticity, mod-
ulus of rupture and tensile shear strength—of a totally bio-based sustainable Quebracho
tannin-furfural bonded, five-layered beech plywood.

The presented adhesive formulation has shown good viscosity and curing behavior
at a relatively low temperature (100 ◦C), producing polymers after curing. The non-
reactivity at room temperature has to be highlighted as a clear advantage in terms of
industrial application due to a prolonged open-time and storage duration. Their use as a
fully bio-based sustainable adhesive for plywood displayed good bending (modulus of
elasticity range ~9600 to ~11,600 N/mm2; modulus of rupture range 66 to 100 N/mm2)
and acceptable tensile shear strength (~2.2 N/mm2) in a dry environment, especially for
the test specimens in the temperature range 125–140 ◦C, concluding that the presented
formulation is comparable to industrial applicated PF adhesives. Depending on the field of
application, as a negative drawback, the low water-resistance due to the brittle character
of the adhesive layer structure has to be mentioned as it limits the use of the proposed
Quebracho tannin-furfural formulation. On the other hand, it can improve and contribute
to recyclability for specific interior plywood applications, as a key element of the bio-based
circular economy.

Further research should focus on improving the elastic character of the glue line and
enhancing the water resistance of the adhesive, likewise by adding some proportion of
isocyanate or epoxy resins in order to further improve the mechanical properties of the
adhesive. Additionally, the usability of different wood species, due to the fact that beech
(Fagus sylvatica) reacts sensitively to moisture induced swelling and shrinkage. Further
investigation of press parameters such as pressure and adhesive amount per layer should
be taken into consideration. This study used 3 N/mm2 as press pressure whereas other
studies about tannin-based adhesives range between 1.2 N/mm2 [63] and 1.6 N/mm2 [64]
as well as ~1.4 N/mm2 [51] for phenol formaldehyde plywood. For industrial application,
the adhesive amount per layer could be further optimized.
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