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Abstract: The steady state of motion of two particles in Poiseuille flow of power-law fluid is numer-
ically studied using the lattice Boltzmann method in the range of Reynolds number 20 ≤ Re ≤ 60,
diameter ratio of two particles 0.125 ≤ β ≤ 2.4, and power-law index of the fluid 0.4 ≤ n ≤ 1.2. Some
results are validated by comparing with other available results. The effects of Re, β, and n on the
steady state of motion of two particles are discussed. The results show that, for two particles of
the same diameter, the particle spacing l in the steady state is independent of n. In shear-thinning
fluid, l increases rapidly at first and then slowly, finally approaching a constant for different Re. In
shear-thickening fluid, although l tends to be stable in the end, the values of l after stabilization are
different. For two particles of different sizes, l does not always reach a stable state, and whether it
reaches a stable state depends on n. When the small particle is downstream, l increases rapidly at first
and then slowly in shear-thickening fluid, but increases rapidly at first and then decreases slowly,
finally approaching a constant in a shear-thinning fluid. In shear-thinning fluid, the larger n is, the
smaller l is. In shear-thickening fluid, β has no effect on l in steady-state. When the large particle is
downstream, l increases rapidly at first and then slowly in shear-thinning fluid but increases rapidly
at first and then decreases in a shear-thickening fluid. The effect of n on l in the steady state is obvious.
In shear-thinning fluid, l increases rapidly at first and then slowly, the larger Re is, the smaller l is. In
shear- thickening fluid, l will reach a stable state.

Keywords: particle motion; steady state; Poiseuille flow; power-law fluid; numerical simulation

1. Introduction

Just like the application of electronic robust control in the field of computing and
communication, the precise and programmable control of the equilibrium position of
microdroplets or particles in a channel or pipe has been applied to the field of biomedicine,
materials synthesis, and so on [1]. Mastering the migration characteristics of randomly
distributed particles towards equilibrium positions has gained increasing attention, based
on which technology can be developed to count, focus and separate particles with high
efficiency. With the rapid development of microfluidic chips, the basic research of microscale
flow has gradually formed a scale. Microfluidic chips transport fluids at the microscale. As a
platform, through the manipulation of the flow, various functions such as chemical analysis,
drug screening, and cell culture can be realized. This kind of microscale system involves
chemical and biological flow, so it is necessary to carry out research on the properties of
microscale flow of non-Newtonian fluid or biological fluid [2,3].

Due to its fundamental and practical significance, there have been a large number
of theoretical, experimental, and numerical studies on the migration of rigid particles
in a confined flow. About the migration of particles in a Newtonian fluid, we can get
some intuitions or results from available experimental and numerical results [1,4–7], but in
non-Newtonian fluids, the results could be completely different [8–13]. Non-Newtonian
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fluids have significantly different rheological attributes than Newtonian fluids in their
viscoelasticity and their apparent viscosity varies with shear rate. When particles migrate
in non-Newtonian fluids, the migration properties would change significantly. However,
non-Newtonian fluids are very common in engineering applications and daily life. As a
special non-Newtonian fluid, power-law fluids exhibit shear-thinning or shear-thickening
properties. For example, blood is a kind of shear-thinning fluid, it is critical to study the
flow of blood cells and the migration of viruses or drugs in blood. Chrit et al. [14] studied
the migration of particles in a two-dimensional Poiseuille flow of power-law fluid using the
lattice Boltzmann method, and it turned out that the velocity profile of power-law fluid is
different from that of a Newtonian fluid, so the force exerted on the particles by the fluid is
different because of different velocity gradients around the particles. As a result, the lateral
equilibrium position of the particles is changed, i.e., the equilibrium position of the particles
in the shear-thinning fluids is closer to the wall than that in the shear-thickening fluids.

Most of the previous studies focused on the flows with low Reynolds numbers, and the
inertia can be ignored in such flows [8,15,16]. Although the characteristic scale is relatively
small in microchannel flow, the fluid velocity is sometimes large. In this case, the Reynolds
number is not small, so the inertia cannot be ignored. Therefore, the effect of the inertial
force should be considered in the design of the microfluidic chip, thus the fluid inertia can
be used to control the equilibrium position of particles in the microchannel [3]. Particle
dynamics are complicated because of the instability and aggregation of particle interactions
caused by fluid inertia. The inertial effect was first discovered by Segre’ and Silberberg [17],
i.e., the particles flowing in the circular tube will spontaneously aggregate to the position
of 0.6 times the pipe diameter, which is known as the “tubular pinch effect”. Behind this
particle, the focus is the combined effect of fluid shear, the constraint of the tube wall,
and particle rotation. More interestingly, the particles not only migrate to the equilibrium
position of the cross-section by inertia but also self-assemble into uniformly spaced particle
trains in the flow direction due to the interactions between particles. Matas et al. [18]
found experimentally that a stable uniformly spaced particle train is formed during the
inertial migration of particles in both straight and curved pipes, which was confirmed by
Di Carlo et al. [19]. Humphry et al. [5] stated that the ability of particles to form trains is
related to the particle number in the channel flow. Through a combination of experiments
and numerical simulations, they captured the evolution of the equilibrium position of
the particles in the rectangular channel and provided some guidance for the formation
of particle trains. In recent years, efforts have been made to understand more about this
organized state [4,5,7,8,10,18–27].

To better understand the interactions between particles, and between particles and
fluid, as well as the formation mechanism of a stable particle train, we first studied the
motion of two particles in the Poiseuille flow at a finite Reynolds number and provided a
preliminary understanding of the mechanism through the interaction of two particles. It
is possible to obtain predictions of the attractive or repulsive interaction of particles. For
two particles, the results are different when the particles are initially on or not on the same
horizontal line. Schaaf et al. [28] studied the stability of the relative position of two particles
under different initial conditions and found that the relative position of two particles is
stable and anti-interference when the particles are initially not on the same horizontal line,
while they could only be stable on one side but not anti-interference when the particles are
initially on the same horizontal line. Hood and Roper [29] indicated that both cases are
stable when the particles are initially on or not on the same horizontal line, with viscosity
acting as the dominant (first-order) analogous to spring motion, and inertia acting as a
perturbation (second-order) analogous to friction damping. When the particles are initially
on the same horizontal line, the particle motion is much like a damped harmonic oscillation,
or a spring motion with frictional resistance. The formation of the stable relative position
of two particles is a result of the minimization of the kinetic energy of the fluid. Two and
three particles can form stable relative positions and give the acceleration curves of each
particle. In the process of forming a stable relative position, the repulsion is synchronous,
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and the attraction is asynchronous, but eventually, a stable relative position is formed. In a
previous study [30], we studied the migration of particles of different sizes in a Newtonian
fluid. Hu et al. [31] found that the particles bear great resistance when moving in shear-
thickening fluids, the inertial migration of particles to form particle train is slower than
that in shear-thinning fluids.

It can be seen from the above studies that there is still a lack of research on the
formation of the stable relative position of two particles with different sizes in power-law
fluid, and the effects of fluid characteristics, particle size, and flow conditions on the stable
relative position of two particles have not been reported. Exploring the steady state of
particles migrating in the flow has practical significance for particle detection, separation,
focusing, and counting in an application. Therefore, the aim of this study is to assess the
steady state of motion of two particles in the Poiseuille flow of power-law fluid and explore
the effects of the power-law index of the fluid, Reynolds number, diameter ratio of two
particles on the steady state of motion of two particles. We focus on the Poiseuille flow
because it is very common in practical applications [32].

2. Numerical Model
2.1. Lattice Boltzmann Method

The lattice Boltzmann method (LBM) is used to numerically simulate the neutral
suspended particles in the Poiseuille flow of power-law fluid. The LBM is a new type of hy-
drodynamic numerical method based on the molecular dynamics theory at the mesoscopic
scale and has proven to be an effective method in the simulation of two-phase flow [33]. Its
main variables are the density distribution functions in several discrete velocity directions.
The viscous incompressible flow can be expressed by a single relaxed lattice Boltzmann
equation with an external force term as:

fi(x + ∆tei, t + ∆t) = fi(x, t) +
1
τ

[
f eq
i (x, t)− fi(x, t)

]
+ ∆t · Fp (1)

where fi(x,t) is the distribution function for the microscopic velocity ei in theith direction; τ is
the dimensionless relaxation time τ = τ0/∆t(τ0 is collision time); fieq(x,t)is the equilibrium
distribution function; ∆t is the unit time step; Fp is the external force term.

The equilibrium distribution function following the D3Q19 model proposed by
Qian et al. [34] is:

f eq
i = ρwi

[
1 +

ei · u
c2

s
+

(ei · u)2

2c4
s
− u2

2c2
s

]
, cs =

1√
3

, w0 =
1
3

, w1∼6 =
1

18
, w7∼18 =

1
36

(2)

where cs is the speed of sound; wi is the weight factor; ρ and u represent the fluid density
and velocity, respectively.

The speed configuration of the D3Q19 model is as follows:

E =

 0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1

 (3)

The external force term with good stability proposed by He et al. [35] is:

Fp =

(
1− 1

2τ

)
(ei − u) · Fb

c2
s

f eq
i (x, t) (4)

where Fb is the body force. The fluid density (total number of particles) and velocity satisfy:

ρ = ∑ fi, u =
1
ρ∑ fiei +

∆t
2ρ

Fb (5)

The macroscopic pressure is given directly by the equation of state by p = ρcs
2.
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By performing a Chapman–Enskog expansion, the macroscopic mass and momentum
equations in the low Mach number limit can be recovered and have second-order accuracy
in both time and space:

∇ · u = 0 (6)

ρ
Du
Dt

= −∇p + ρ f +∇ · τ (7)

where u is the velocity; ρ is the fluid density; p is the pressure; f is the body force; τ is
the shear stress and given by τ = µ

.
γ with µ the dynamic viscosity and

.
γ the rate of

shearing tensor:
.
γ =

1
2

[
(∇u) + (∇u)T

]
(8)

the power-law fluid model is expressed as:

τ = m
∣∣ .
γ
∣∣n−1 .

γ (9)

The effective viscosity is related to the shearing rate of the fluid by:

µ = m
∣∣ .
γ
∣∣n−1 (10)

where m is the flow consistency coefficient; n is the power-law index, n = 1 corresponds to
Newtonian fluid, and n < 1 and n > 1 correspond to shear-thinning and shear-thickening
fluids, respectively;

∣∣ .
γ
∣∣ is the local shear rate and can be obtained from the strain rate tensor:

∣∣ .
γ
∣∣ = √2D : D =

√
2
(

∂u
∂x

)2
+ 2
(

∂v
∂y

)2
+

(
∂u
∂x

+
∂v
∂y

)2
(11)

where D is the velocity gradient tensor
∣∣ .
γ
∣∣ can be computed from a fourth-order finite-

difference approximation to the local derivatives of the velocity:

∂u
∂x

=
2

3∆x

(
ui+1,j,k − ui−1,j,k

)
+

1
12∆x

(
ui+2,j,k − ui−2,j,k

)
+ O

(
∆x4

)
(12)

∂v
∂y

=
2

3∆x

(
ui,j+1,k − ui,j−1,k

)
+

1
12∆x

(
ui,j+2,k − ui,j−2,k

)
+ O

(
∆x4

)
(13)

The instantaneous local relaxation time for each fluid lattice point can be obtained by
ν =(2τf−1)c2∆t/6, where τf is the instantaneous local relaxation time for each fluid lattice
point and c is the ratio of grid step to time step.

For shear-thinning fluids, at the zero-shear rate fluid lattice point, its apparent viscosity
tends to infinity and diverges. For shear-thickening fluids, at the zero-shear rate fluid lattice
point, its apparent viscosity will be equal to zero. Both of these cases can lead to unstable or
low computational accuracy of the LBM. Therefore, the upper and lower limits of apparent
viscosity can be set, respectively [36]:[

µ(x)
ρ

]
min

= 0.001;
[

µ(x)
ρ

]
max

= 0.1 (14)

2.2. Fluid-Particle Coupling and Boundary Treatment

When the LBE is applied, the boundary conditions of the distribution function need to
be given. The velocity boundary can be divided into the straight boundary and the curved
boundary. At the exit and entrance, the periodic boundary conditions are used:

fi(x, t + ∆t) = f ∗i [(x− ei∆t + xT)%xT , t] (15)
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where * represents the step after collision; xT is the vector composed of periodic lengths in
each coordinate direction; % is the remainder operation.

The periodic scheme assumes that the fluid and particles leave the flow from one
boundary and re-enter the flow from the other side of the flow at the next time step, obtain-
ing an infinite domain in the flow direction, which can strictly guarantee the conservation
of mass and momentum at the boundary.

A no-slip boundary condition is applied in this paper. The reason is that although
microchannels are studied here, the Kn number (the ratio of the average free path of
molecules to the characteristic length of the flow) is far less than 0.001. For the no-slip
condition on the walls, the standard bounce format is used:

fi(x, t + ∆t) = f ∗i′ (x, t) (16)

which is based on the reflection principle, i.e., using the distribution function of the bound-
ary nodes after the collision step to obtain the unknown partial function.

For the numerical simulation method that adopts the full analysis of particles, the
accurate analysis of the boundary conditions of the particles plays a crucial role in the
calculation accuracy. Ladd [37] proposed a half-way bounce scheme thatis suitable for
moving boundaries:

fi′(x, t + ∆t) = f ∗i (x, t+)− 2Bi(ei · ub) (17)

where i′ and i are the reflected and incident directions, respectively; t+ is the post-collision
time; Bi = 3ρωi/c2; ub = u0 + Ω × xb, u0 is the translational velocity of the mass center of
the particle, and Ω is the angular velocity; xb = x + ∆tei/2−x0 with x0 being the position of
the mass center.

The hydrodynamic force and torque exerted by a fluid at xb are given by:

Fh

(
x +

∆t
2

ei, t
)
= 2ei[ fi(x, t+)− Bi(ei · ub)], Th

(
x +

∆t
2

ei, t
)
= xb × Fh (18)

The properties of some lattice points would change when particles move, causing
momentum exchange with the particles.

Aidun et al. [38] proposed a model of impact force and moment caused by the change
of node properties. When the node changes from a fluid node to a solid one, the impact
force and moment on the particles are:

Fc(x, t) = ρ f (x, t)u(x, t), Tc(x, t) = (x− x0)× Fc (19)

where ρf is the fluid density at the node.
Similarly, when the grid point in the solid particle at the previous time step becomes a

fluid grid point in the current time distribution, the fluid at this grid point will also exert
an impulse force and moment on the solid particle:

Fu(x, t) = −ρ f (x, t)u(x, t), Tu(x, t) = (x− x0)× Fu (20)

Combining Equations (18)–(21), the total force and torque on the particle are given by
Equations (21) and (22) during the time period [t, t +1]:

F = ∑ Fh

(
x +

∆t
2

ei, t
)
+ ∑ Fc(x, t) + ∑ Fu(x, t) (21)

T = ∑ Th

(
x +

∆t
2

ei, t
)
+ ∑ Tc(x, t) + ∑ Tu(x, t) (22)

For a moving boundary, a stepped zigzag boundary for particle calculation is formed
using the bounce scheme proposed and perfected by Ladd [37] and Aidun et al. [38]. This
kind of method is the better way of treating boundaries when the mesh is fine enough.
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Finally, the velocity and position of the particle are obtained through Newton’s
second law.

2.3. Repulsive Force

The above method of calculating force or density reconstruction will fail if the distances
between particles or between particles and walls are too small. Therefore, a short-range
repulsion model should be introduced, i.e., the distances between particles or between
particle and wall are not less than 1–2 lattice cells, thus the overlapping and collision of
particles are also avoided.

The repulsive force is introduced [39]:

fr =

Cm
ε

(
d−dmin−∆r

∆r

)2
er, d ≤ dmin + ∆r

(0, 0), d >dmin + ∆r
(23)

where Cm =MU2/a, M is the particle mass, U is the velocity and a is the particle radius;
ε = 10−4 is a positive coefficient; d is the distance between the centers of two particles or
the distance between the center of particle and wall; er is the direction vector; dmin = 2a;
∆r = 2∆x represents two lattice cells when the repulsive force exists in the simulation.

2.4. Problem Definition

Two rigid particles, initially on the same horizontal line, migrate in a Poiseuille flow of
power-law fluid as shown in Figure 1. In a confined channel, when the Reynolds number
is in a limited regime, the particles will move to the equilibrium position on the x-y plane
under the combined action of inertial force, viscoelasticity, and lift induced by the walls
(the existence of the wall creates a velocity gradient. One side of the particle near the wall
has low velocity and high pressure, while the other side is opposite. The resulting pressure
difference forms a lifting force). In the simulation, L/H = 14:1 (L = 2000∆x) for balancing
the computational efficiency and precision; a = 18 × lattice units; H/W ≤ 0.5 for ensuring
that the number of equilibrium positions along the y-direction is only two sittings [22];
particle diameter Dl = 18~45∆x (Dl is the diameter of a large particle); blockage ratio
k = Dl/H = 0.125~0.3, which reflects the influence of the walls on particle migration; the
Reynolds number Re = ρUmax

2−nHn/m [40], where ρ and Umax are the fluid density and
maximum velocity, m is the power-law consistency, the range of Reynolds numbers is
20 ≤ Re ≤60 because the inertial migration of particles has a certain limit on Re [41]; the
diameter ratio of particle located downstream to that located upstream is β = 0.125~2.4; the
power-law index of the fluid n = 0.4~1.2. A periodic constraint is enforced in the x-direction
to replicate an infinite domain in the flow direction. In the computation, the calculated
time steps are 12 × 106 and 6 × 106 when the particles move to x/H = 500 and x/H = 250,
respectively, along the flow direction (each step is the time taken for particles to migrate
one grid).
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3. Validation
3.1. Velocity Profile for the Power-Law Fluid

For the Poiseuille flow of power-law fluid, there exist analytical solutions for the
velocity given by Bird et al. [42]:

ux = Umax

[
1−

(∣∣∣∣1− 2y
H

∣∣∣∣)n+ 1
n
]

f or 0 ≤ y ≤ H, uy = 0 (24)

The numerical results of fluid velocity are given in Figure 2 where the analytical
solutions are given as a comparison. We can see that the numerical results are in good
agreement with the analytical solution.
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3.2. Particle Trajectories

The trajectories of two particles in a simple shear flow are shown in Figure 3 where the
other results [24] are also given as a comparison. In Figure 3, two particles with different
initial horizontal distance l are placed on the center-line of the flow.

Polymers 2022, 14, x FOR PEER REVIEW 7 of 16 
 

 

  
(a) (b) 

Figure 1. Two particles in Poiseuille flow of power-law fluid. (a) overall diagram, (b) on x-y plane. 

3. Validation 

3.1. Velocity Profile for the Power-Law Fluid 

For the Poiseuille flow of power-law fluid, there exist analytical solutions for the ve-

locity given by Bird et al.[42]: 

1

max

2
1 1     for    0 ,          0

n
n

x y

y
u U y H u

H

+ 
  

=   =  
 

  

− −  (24) 

The numerical results of fluid velocity are given in Figure 2 where the analytical so-

lutions are given as a comparison. We can see that the numerical results are in good 

agreement with the analytical solution. 

 

Figure 2.Comparison of numerical results. 

3.2. Particle Trajectories 

The trajectories of two particles in a simple shear flow are shown in Figure 3 where 

the other results [24] are also given as a comparison. In Figure 3, two particles with dif-

ferent initial horizontal distance l are placed on the center-line of the flow. 

 

Figure 3. Comparison of trajectories of two analytical solutions of velocity profile, particles in a
simple shear flow.

3.3. Grid and Compute-Domain Independence

The moving boundary is at the midpoint of the solid interior lattice and the fluid
exterior lattice, which makes the boundary appear jagged and the calculation results
oscillate, so a sufficient number of grids are required to ensure the stability of the calculation.
To validate that the calculation results do not depend on the number of grids, the numerical
results of particle trajectories for different H and D are shown in Figure 4a (the time to
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reach a steady state is 7200 s), based on which we select D = 18.75∆x and H = 150∆x in the
following simulation for balancing the computational efficiency and precision.
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In order to verify that the selected length of the flow does not affect the calculation
results, the numerical results of particle trajectories for different length L are shown in
Figure 4b (the time to reach a steady state is 2160 s) where other numerical results [27] are
also given as comparison. It can be seen that there was only a little difference in the results
for three L, so we select L = 2100∆x (14H) in the following simulation.

4. Results and Discussion
4.1. Effect of Fluid Properties on the Steady State of Motion of Two Particles
4.1.1. Two Particles of Same Diameter (β = 1)

Two particles of the same diameter (β = 1) are located initially on the same horizontal
line with spacing l = 2D (D is the diameter of the large particle), the changes of the spacing
of one of two particles along the flow direction for different power-law index n are shown
in Figure 5 (the time to reach a steady-state is 28,800 s). We can see that l/D approaches
10 for three kinds of n, i.e., l/D will eventually stabilize at 10 regardless of whether it is in
a Newtonian fluid, shear-thinning fluid, or shear-thickening fluid, the particle spacing in
the steady-state is independent of fluid properties. In addition, it can be seen that the l/D
increases rapidly at the initial stage (0 < x/H < 10), and then slowly.
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4.1.2. Two Particles with Different Sizes

Two particles with different sizes are located initially on the same horizontal line with
spacing l = 2D. Figure 6 shows the changes of l/D along the flow direction for different n.
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For the case of β = 0.5 (i.e., the small particle is downstream) as shown in Figure 6a
(the time to reach a steady state is 18,000s), l/D increases rapidly at first, and then slowly
and linearly in Newtonian fluid (n = 1).The case is the same as Newtonian fluid in shear-
thickening fluid (n = 1.2), but the growth rate is greater for the latter. For shear-thinning
fluid (n = 0.8), the case is completely different, l/D increases rapidly at first and then
decreases slowly, finally approaching a constant, indicating that the particle spacing can
reach a stable state finally.

For the case of β = 1.2 (i.e., the large particle is downstream) as shown in Figure 6b
(the time to reach a steady-state is 21,600 s), l/D increases rapidly at first, then slowly and
linearly in shear-thinning fluid, but l/D increases rapidly at first and then decreases in
the shear-thickening fluid. In a Newtonian fluid, l/D increases rapidly at first and then
decreases slowly, finally approaching a constant, and the particle spacing can reach a stable
state finally. Therefore, the effect of fluid property on the particle spacing in the steady
state is obvious.

4.2. Effect of Reynolds Number on the Steady State of Motion of TwoParticles
4.2.1. Two Particles of the Same Diameter
Newtonian Fluid

The changes of l/D along the flow direction for different Re are shown in Figure 7
(the time to reach a steady state is 32,400 s) where l/D approaches 10 for three kinds of Re,
i.e., the particle spacing in the steady-state is independent of Re in a Newtonian fluid. In
addition, the time for particles to reach a steady-state is the shortest for Re = 20, followed
by Re = 40 and Re = 60, the smaller Re is, the shorter the time for the particles to reach the
steady-state is.

Shear-Thinning Fluid and Shear-Thickening Fluid

Figure 8 shows the changes of l/D along the flow direction for different Re. For
the case of shear-thinning fluid, as shown in Figure 8a (the time to reach a steady-state
is 33,120 s), l/D increases rapidly at first and then slowly, finally approaching ten for
three kinds of Re, which is similar to the previous results [6,32,41]. However, the result is
different in shear-thickening fluid as shown in Figure 8b (the time to reach a steady-state is
18,000 s). Although the particle spacing tends to be stable in the end, the values of l/D after
stabilization are different. l/D is the largest for Re = 20, followed by Re = 40 and Re = 60.
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4.2.2. Two Particles with Different Sizes
Newtonian Fluid

Figure 9 shows the changes of l/D of two particles with different sizes along the flow
direction for different Re. For the case of β = 0.5, as shown in Figure 9a (the time to reach
a steady state is 7200 s), l/D increases rapidly at first and then slowly and linearly, but
the growth rate is different for different Re. The larger Re is, the greater the growth rate
is, and the larger the particle spacing is. The curves for Re = 60 Re = 40 are very close,
so the change of l/D along the flow direction is not affected by Re at large Re. When a
large particle is upstream, the wake area behind the large particle is relatively large, which
directly affects the migration of small particle downstream, thus affecting the particle
spacing. The characteristics of wake are related to Re, so there are different particle spacing
at different Re.

For the case of β = 2, as shown in Figure 9b (the time to reach a steady state is 12,960 s),
l/D finally approaches a constant for different Re. When a small particle is upstream, the
wake area behind the small particle is relatively small and has little effect on the migration
of a large particle downstream, thus l/D approaches approximately the same constant for
different Re.

Shear-Thinning Fluid

The changes of l/D along the flow direction at different Re in the shear-thinning fluid
are shown in Figure 10 where the result is opposite to that in a Newtonian fluid. For the
case of β = 0.5 as shown in Figure 10a (the time to reach a steady state is 14,400 s), l/D
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approaches approximately the same constant for different Re. However, for the case of
β = 2 as shown in Figure 10b (the time to reach a steady state is 18,000 s), l/D increases
rapidly at first and then slowly, the larger Re is, the smaller the particle spacing is.
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Shear-Thickening Fluid

Figure 11 shows the changes of l/D along the flow direction at different Re in the
shear-thickening fluid. It can be seen that l/D increases rapidly at first and then slowly,
and the particle spacing cannot reach a stable state when a large particle is upstream as
shown in Figure 11a (the time to reach a steady state is 5040 s), which is similar to the case
in a Newtonian fluid. On the contrary, the particle spacing will reach a stable state when a
small particle is upstream as shown in Figure 11b (the time to reach a steady state is 8640 s).

From Figure 9b, Figure 10a, and Figure 11b, we can see that l/D approaches approxi-
mately the constant five for the case of two particles of different sizes, while approaching
approximately the constant ten for the case of two particles of the same size as shown in
Figure 5. This interesting phenomenon has not been reported before.

4.3. Stability Characteristics of Particle Spacing under Differentβand n

In the simulation, it is found that the Reynolds number does not affect the stability
characteristics of particle spacing within the range of Re in the present study but has a small
effect on the value of particle spacing when a steady-state is reached. Therefore, only the
stability characteristics of particle spacing at Re = 20 are analyzed here. The phase diagram
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for the stability properties of particle spacing under different β and n is shown in Figure 12
where we can intuitively see whether the final particle spacing is stable or unstable for a
fixed β and n.
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4.4. Effect of Non-Particle Spacing in Steady State

In Figure 10a, the particle spacing finally approaches a steady-state in shear-thinning
fluid when the large particle is upstream. In order to illustrate the effect of power-law
index n on the particle spacing, we give the relationship between l/D and n as shown in
Figure 13 (the time to reach a steady-state is 18,000 s), it can be seen that the stronger the
shear-thinning degree is, the smaller the particle spacing is. In Figure 11b, the particle
spacing finally approaches a steady-state in shear-thickening fluid when the small particle is
upstream, and the effect of power-law index non the particle spacing is shown in Figure 14
(the time to reach a steady-state is 15,120 s) where we can see that the degree of shear-
thickening has little effect on the particle spacing in the steady-state.

4.5. Effect of βon Particle Spacing in SteadyState

The relationship between l/D and β is shown in Figure 15. When the large particle is
upstream in shear-thinning fluid as shown in Figure 15a (the time to reach a steady-state is
21,600 s), the particle spacing in the steady-state approaches the same value for different β.
The situation is the same when the small particle is upstream in shear-thickening fluid as
shown in Figure 15b (the time to reach a steady-state is 20,160 s). Therefore, whether it is
shear-thinning fluid or shear-thickening fluid, and whether a large particle is upstream or
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downstream, the particle spacing is the same when the spacing between the two particles
finally tends to be stable.
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5. Conclusions

The steady state of motion of two particles in the Poiseuille flow of power-law fluid
is numerically studied using the LBM in the range of 20 ≤ Re ≤ 60, 0.125 ≤ β ≤ 2.4, and
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0.4 ≤ n ≤ 1.2. Some results are validated by comparing the present results with available
other results. The effects of Re, β, and n on the steady state of motion of two particles are
discussed. The main conclusions are summarized as follows:

(1) For two particles of the same diameter, the particle spacing increases rapidly at
the initial stage, and then slowly, and the particle spacing in the steady state is
independent of the power-law index of fluid. In a Newtonian fluid, the particle
spacing in the steady state is independent of Re. The smaller Re is, the shorter the time
for particles to reach the steady state. In shear-thinning fluid, the particle spacing
increases rapidly at first and then slowly, finally approaching 10 for different Re. In
shear-thickening fluid, although the particle spacing tends to be stable in the end, the
values of particle spacing after stabilization are different, the smaller Re is, the larger
particle spacing is.

(2) For two particles of different sizes, the particle spacing does not always reach a stable
state, and whether it reaches a stable state depends on the power-law index of the fluid.
When the small particle is downstream, the particle spacing increases rapidly at first,
then slowly and linearly in Newtonian fluid and shear-thickening fluid, but increases
rapidly at first and then decreases slowly, finally approaching a constant in the shear-
thinning fluid. In a Newtonian fluid, the particle spacing increases rapidly at first
and then slowly and linearly, the larger Re is, the greater the growth rate is, and the
larger the particle spacing is. In shear-thinning fluid, the particle spacing approaches
approximately the same constant for different Re. The stronger the shear-thinning
degree is, the smaller the particle spacing is. In shear-thickening fluid, particle spacing
increases rapidly at first and then slowly, and cannot reach a stable state. The diameter
ratio of two particles has no effect on the particle spacing in a steady state.

When the large particle is downstream, the particle spacing increases rapidly at first
and then slowly and linearly in shear-thinning fluid, but increases rapidly at first and then
decreases in the shear-thickening fluid. In a Newtonian fluid, the particle spacing increases
rapidly at first, and then decreases slowly, finally approaching a constant. The effect of the
power-law index on the particle spacing in the steady state is obvious. In a Newtonian
fluid, the particle spacing finally approaches a constant for different Re. In a shear-thinning
fluid, the particle spacing increases rapidly at first and then slowly; the larger Re is, the
smaller the particle spacing is. In shear-thickening fluid, the particle spacing will reach a
stable state.
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