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Abstract: Four supported α-diimine nickel(II) catalysts covalently linked to silica via hydroxyl
functionality on α-diimine acenaphthequinone-backbone were prepared and used in slurry poly-
merizations of ethylene to produce branched polyethylenes. The catalytic activities of these still
reached 106 g/molNi·h at 70 ◦C. The life of the supported catalyst is prolonged, as can be seen from
the kinetic profile. The molecular weight of the polyethylene obtained by the 955 silica gel supported
catalyst was higher than that obtained by the 2408D silica gel supported catalyst. The melting points
of polyethylene obtained by the supported catalysts S-C1-a/b are all above 110 ◦C. Compared with
the homogeneous catalyst, the branching numbers of the polyethylenes obtained by the supported
catalysts S-C1-a/b is significantly lower. The polyethylenes obtained by supported catalyst S-C1-a/b
at 30–50 ◦C are free-flowing particles, which is obviously better than the rubber-like cluster polymer
obtained from homogeneous catalyst.

Keywords: α-diimine nickel(II) catalyst; heterogeneous catalysis; branched polyethylene; silica support

1. Introduction

The polymerization of ethylene catalyzed by α-diimine complex is a major break-
through in the field of polyolefin synthesis [1,2]. In recent decades, the polyolefin field has
been keen to enrich the types of α-diimine complexes via introducing different substituents
or changing the skeleton structure of α-diimine ligands, and it is true that these strategies
could not only improve their activity and stability but also achieve pruning of the polymer
microstructure [3–21]. However, it is challenging to use α-diimine catalysts in gas-phase
and slurry commercial polymerization processes. The major disadvantages of homoge-
neous α-diimine catalysts are the shorter lifetimes in polymerization processes, especially
the lack of control over the morphology of polymer particles, resulting in serious reactor
fouling. In order to improve this problem and adapt to the polymerization process, the
general method is to immobilize the homogeneous catalyst on a suitable support [22–26].
The SiO2 and MgCl2 are the commonly used supports.

Although the ionic bond-supporting approach attaches the active center to the support,
many of the catalysts obtained will still be leached, which has a certain negative effect on the
active center. In contrast, the covalent bond-supporting rule can greatly alleviate the above
defect. The typical approach of preparing supported catalyst involves, firstly, pretreatment
of the support with an activator to form linking groups on the surface of the support. Then,
the support is connected with the catalyst with special functional groups through covalent
bonds. The covalent bond between α-diimine catalysts, with functional groups introduced,
and the support avoids the elution of homogeneous catalysts in the process of polymeriza-
tion, thus, producing polymer particles with good morphology. Brookhart’s group prepared
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a covalent bond-supported α-diimine nickel(II) catalyst via introducing hydroxyl or amino
functional groups to the p-aryl position and connecting it with trimethylaluminum treated
silica gel (Scheme 1a) [27]. Li’s group used Si-Cl end groups to modify the allyl-containing
α-diimine nickel(II) ligand and fixed it by chemical reaction with Merrifield resin, mod-
ified via a modifier with silicone or ethanolamine functional groups (Scheme 1b) [28].
Although its activity only reached 3.42 × 105 g/molNi·h at 70 ◦C, the supported cata-
lyst possesses a high loading rate and good chemical stability, and the high molecular
weightbranched polyethylene also largely avoids the fouling of the reactor. Kim’s group
prepared the α-diimine catalyst with trialkoxysilane functional group and immobilized it
on silica supports through covalent bonds to obtain supported catalysts (Scheme 1c) [29].
The highest activity of ethylene polymerization was 2.56 × 105 g/molNi·h at 70 ◦C. Jiang’s
group loaded the α-diimine catalyst onto SiO2-MgCl2 bisupports or MgCl2/AlRn(OEt)3-n
supports to prepare supported catalysts for the ethylene polymerization [30,31]. The MgCl2
and SiO2 were used as supports, respectively, to support the α-diimine nickel(II) catalyst
by Chio’s group [32,33], and the catalyst supported by MgCl2 had higher activities, but,
unfortunately, it was not as strong as that of the SiO2-based supported catalytic system.
Sun’s group prepared different aluminum compound modified silica carriers to support
1-(2,6dibenzhydryl-4-nitrophenylimino)-2-mesityliminoacenaphthyl nickel bromide [34].
Compared with the homogeneous system, it was found that the polymer by supported
catalysts was branched polyethylene with high molecular weight, spherical shape and
moderate branching degree, which proved that these catalysts had great potential.
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Scheme 1. Supported α-diimine nickel(II) catalysts. (a): Ref 27; (b): Ref 28; (c): Ref 29. 
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Besides, organic supports, molecular sieve supports, mesoporous silicas and nanochan-
nels mesoporous silicas are used as supports for immobilizing α-diimine catalysts, each of
which has its uniqueness [35–39].

From the results of the previous literature, it can be seen that the immobilization of
α-diimine catalyst can not only prolong the life of the catalyst and stabilize the catalytic
process but also avoid the pollution of the reaction device and the slow heat dissipation in
the process of homogeneous polymerization. The particle morphology and processability
of the polymer prepared by the supported catalyst were obviously better than those of the
polymer prepared by the homogeneous catalyst system. However, when the polymerization
temperature reached 70 ◦C, the activities of these supported catalysts decreased significantly,
which were not suitable for use in industrial polymerization temperature. This phenomenon
is mainly caused by the ligand structure of the catalyst itself. From the structure of reported
supported α-diimine catalysts, the small steric hindrance of substituents on the ligand
is the main reason for the poor thermal stability. Another possible reason is the effect of
the supports on the catalytic active center; the support can act as a barrier for monomer
and cocatalyst access. In the previous studies of supported α-diimine catalyst, the ligand
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was grafted onto the supports by chemical reaction of the activated support through
the functional group carried on the para-position of aniline. According to the reported
support grafting strategy of this kind of aniline, the support occupied the para-position
of aniline, and its catalytic active center was close to the support, which made the larger
steric hindrance of the support and the reactive groups on the surface of the support had a
negative effect on the catalytic active center. Meanwhile, the occupancy of para-position
aniline reduces the tunability of the N-aryl substituents.

So, we will attempt to prepare the novel covalent attachment supported α-diimine
catalyst, which is formed by the reaction of the functional group on the side of the α-diimine
acenaphthequinone backbone with the activated support. In this way, the active center
of the catalyst can be far away from the support, to prevent or attenuate the effect of the
support on the catalytic activity of the catalyst. At the same time, with the change of
the N-aryl substituents, a large variety of supported α-diimine catalysts can be readily
obtained, which greatly improves the tunability of the catalyst structure for the catalytic
performance and the polymer structure. For example, the thermal stability of the catalyst
can be improved via increasing the steric hindrance of the aniline substituent on the
ligand. We have synthesized two α-diimine catalysts with hydroxyethyl phenoxyl group
on acenaphthequinone-backbone (Scheme 2), which showed a higher catalytic activity
and good heat resistance in ethylene polymerization [40]. In this work, these α-diimine
catalysts were supported on silica gel by the reaction of Hydroxyl on acenaphthequinone
backbone with the activated SiO2, and four kinds of supported catalysts were prepared for
catalytic ethylene polymerization. Meanwhile, the effects of the types of silica gel, N-aryl
substituents in ligand, reaction temperature on the catalytic activity, product branching
degree, product melting point, product morphology and molecular weight and distribution
of the product were investigated.

Polymers 2022, 14, x FOR PEER REVIEW 3 of 15 
 

 

decreased significantly, which were not suitable for use in industrial polymerization tem-

perature. This phenomenon is mainly caused by the ligand structure of the catalyst itself. 

From the structure of reported supported α-diimine catalysts, the small steric hindrance 

of substituents on the ligand is the main reason for the poor thermal stability. Another 

possible reason is the effect of the supports on the catalytic active center; the support can 

act as a barrier for monomer and cocatalyst access. In the previous studies of supported 

α-diimine catalyst, the ligand was grafted onto the supports by chemical reaction of the 

activated support through the functional group carried on the para-position of aniline. 

According to the reported support grafting strategy of this kind of aniline, the support 

occupied the para-position of aniline, and its catalytic active center was close to the sup-

port, which made the larger steric hindrance of the support and the reactive groups on 

the surface of the support had a negative effect on the catalytic active center. Meanwhile, 

the occupancy of para-position aniline reduces the tunability of the N-aryl substituents. 

So, we will attempt to prepare the novel covalent attachment supported α-diimine 

catalyst, which is formed by the reaction of the functional group on the side of the α-

diimine acenaphthequinone backbone with the activated support. In this way, the active 

center of the catalyst can be far away from the support, to prevent or attenuate the effect 

of the support on the catalytic activity of the catalyst. At the same time, with the change 

of the N-aryl substituents, a large variety of supported α-diimine catalysts can be readily 

obtained, which greatly improves the tunability of the catalyst structure for the catalytic 

performance and the polymer structure. For example, the thermal stability of the catalyst 

can be improved via increasing the steric hindrance of the aniline substituent on the lig-

and. We have synthesized two α-diimine catalysts with hydroxyethyl phenoxyl group on 

acenaphthequinone-backbone (Scheme 2), which showed a higher catalytic activity and 

good heat resistance in ethylene polymerization [40]. In this work, these α-diimine cata-

lysts were supported on silica gel by the reaction of Hydroxyl on acenaphthequinone 

backbone with the activated SiO2, and four kinds of supported catalysts were prepared 

for catalytic ethylene polymerization. Meanwhile, the effects of the types of silica gel, N-

aryl substituents in ligand, reaction temperature on the catalytic activity, product branch-

ing degree, product melting point, product morphology and molecular weight and distri-

bution of the product were investigated. 

N N

Ni

O

OH

C1

N N

Ni

O

OH

C2

Br Br

Ph

Ph

Ph

Ph

Ph

Ph

Ph
Ph

Br Br

 

Scheme 2. The α-diimine nickel(II) complexes. 

2. Materials and Methods 

2.1. Materials 

All the reactions sensitive to water and oxygen were performed under a purified ni-

trogen atmosphere using Schlenk technique. Diethylaluminum chloride (1 M solution in 

hexane) and trimethylaluminum (TMA, 1 M solution in hexane) were purchased from 

Yanfeng Technology Co., Ltd. (LiaoNing, China). The α-diimine Ni(II) catalysts were pre-

pared according to the literature (Scheme 2) [41]. Hexane solvent and toluene solvent were 

dried through soaking the active molecular sieve (4Å ) then refluxed with sodium diphe-

nylketyl in distillation unit prior to use. In addition, dichloromethane (CH2Cl2) were dried 

through calcium hydride. The silica gel (955 and 2408D) was supplied by Daqing 

Scheme 2. The α-diimine nickel(II) complexes.

2. Materials and Methods
2.1. Materials

All the reactions sensitive to water and oxygen were performed under a purified
nitrogen atmosphere using Schlenk technique. Diethylaluminum chloride (1 M solution
in hexane) and trimethylaluminum (TMA, 1 M solution in hexane) were purchased from
Yanfeng Technology Co., Ltd. (Shenyang, China). The α-diimine Ni(II) catalysts were
prepared according to the literature (Scheme 2) [41]. Hexane solvent and toluene solvent
were dried through soaking the active molecular sieve (4Å) then refluxed with sodium
diphenylketyl in distillation unit prior to use. In addition, dichloromethane (CH2Cl2)
were dried through calcium hydride. The silica gel (955 and 2408D) was supplied by
Daqing Chemical Research Center. High-purity ethylene monomer was purchased from
Air Products & Chemicals Co., Ltd. (TianJin, China). All other experimental supplies and
chemicals were obtained commercially and used as received.

2.2. Characterization

Nickel loading of supported catalysts was characterized by inductively coupled
plasma (ICP) atomic emission spectrometer on ICP-715ES (Thermo Jarrell Ash Co., Waltham,
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MA, USA). The morphology of supported catalysts, silica supports and polyethylenes were
determined by scanning electron microscopy (SEM) on NovanosM 450 (FEI Co., Hillsboro,
OR, USA). The pore size, surface area and pore volume of supported catalysts and silica
supports were measured by using a standard Brunauer Emmett Teller (N2-BET) method
performed by ASAP-2000 (Micromeritics Instrument Co., Norcross, GA, USA). The X-ray
photoelectron spectroscopy (XPS) of supported catalyst was performed on Thermo Sci-
entific ESCALAB Xi+ (Thermo Fisher Scientific, Waltham, MA, USA). Molecular weight
and molecular weight distribution of branched polyethylenes were tested by PL-GPC-220
in 1,2,4-trichlorobenzene solution at 150 ◦C (Agilent Technologies, Inc., Santa Clara, CA,
USA). The branched chain structure of polyethylene was tested on Bruker DMX 400 MHz
instrument and 13C NMR spectra was derived, in which 1,2-dichlorobenzene was used as
the internal standard and the temperature was 120 ◦C (Bruker Co., Billerica, MA, USA).
The fusion enthalpy (∆Hf) and melting temperature (Tm) of branched polyethylenes were
characterized by differential scanning calorimetry (DSC) with DSC-Diamond (PerkinElmer,
Inc., Waltham, MA, USA). In nitrogen atmosphere, the temperature range of the instrument
was 0 ◦C to 150, and the heating rate was 10 ◦C/min. Using the melting temperature
measured during the second heating up, the crystallinity (χc%) was calculated by the
formula (∆Hf/∆Hf

◦) × 100%, where ∆Hf
◦ is the melting heat of folded chain polyethylene

(289.0 J/g) [42].

2.3. Synthesis of Supported α-Diimine Nickel(II) Catalysts

The mechanical stirring device was assembled, and silica gel (2 g, 955 or 2408D,
calcined at 200 ◦C) and 50 mL of distilled toluene solvent were successively added, then
6 mL AlMe3 (1 M, hexane solution) was added at 0 ◦C, and the device was left to rest for
a while before stirring. After heating up to 40 ◦C and stirring for 6 h, the excess solution
was removed, and then the activated silica supports were washed with hexane and toluene,
respectively. Activated silica gel was filtered and dried in vacuum for 10 h at 20 ◦C. Under
mechanical stirring, activated silica supports were soaked in CH2Cl2, and the solution
of the α-diimine Ni(II) catalysts in CH2Cl2 was added at 40 ◦C. After stirring for 8 h,
the supported catalysts were washed with CH2Cl2 for many times and dried in vacuum
under 20 ◦C for 10 h. According to this method, the supported α-diimine Ni(II) complexes
S-C1-a, S-C2-a, S-C1-b, S-C2-b were prepared, respectively. In the names of the catalysts, S
represents the support, C1 or C2 is homogeneous catalyst in , a and b represent the support
955 silica gel and 2408D silica gel, respectively.

2.4. Polymerization

It is worth noting that the 100 mL reactor needed to be baked in a constant temperature
drying box at 100 ◦C for 6 h before assembly, then purged with argon for three times and
injected ethylene gas to maintain the ethylene atmosphere in the device. The reactor was
kept at the required polymerization temperature, and then a certain amount of solvent,
co-catalyst solution and catalyst were added sequentially, and ethylene gas was injected to
carry out the ethylene polymerization for 60 min. After the polymerization was stopped,
the reactor was cooled to room temperature and the polymerization mixture was quenched
by addition of 10 vol% HCl/ethanol solution. Then, the polyethylenes were washed with
anhydrous ethanol and distilled water and then baked 8 h to 12 h in a 60 ◦C vacuum oven
to achieve constant weight.

3. Results and Discussion
3.1. Synthesis and Characterization of Supported Catalysts

Two types of silica gel (955 and 2408D) were not treated according to the traditional
method of calcining above 600 ◦C for a long time, instead drying the adsorbed moisture at
200 ◦C, and then being treated with TMA. Subsequently, covalent attachment (Scheme 3)
was obtained by chemical reaction of hydroxyl groups of α-diimine nickel(II) catalysts
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(C1 and C2, ) with alumina organic compounds on activated silica gel. The supported
α-diimine Ni(II) complexes S-C1-a, S-C2-a, S-C1-b, S-C2-b were prepared, respectively.
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Scheme 3. Preparation of silica-supported α-diimine nickel(II) catalysts.

In order to further explore the specific grafting mode between the homogeneous cata-
lysts and supports, we took the supported catalyst S-C1-a as an example to carry out X-ray
photoelectron spectroscopy characterization, and the results are shown in Figures 1 and 2.
The peaks at binding energy (BE) of the supported catalyst were about 285, 400, 75, 859,
102 and 533 eV, which were attributed to C 1s, N 1s, Al 2p, Ni 2p3, Si 2p and O 1s. For
SiO2-supported catalysts, the absorption signals of Si 2p and O 1s were very strong, which
was related to the large amount of silicon and oxygen on the surface of SiO2. In addition,
the Al element in the activated supports is an important connection element between the
homogeneous catalyst and the supports. Figure 2 shows the Al 2p level spectrum of cova-
lently supported catalyst. It can be seen that the absorption of Al 2p occurs at approximately
75.5 eV and 74.7 eV, which were attributed to O-Al-O and O-Al-CH3, respectively [43].
Among them, the absorption peak of O-Al-O at 75.6 eV indicated that the α-diimine
nickel(II) catalyst had been successfully grafted to SiO2 through the covalent bond.
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Figure 1. XPS wide scan spectrum of covalently supported catalyst S-C1-a. 
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Figure 2. Al 2p level spectra of covalently supported catalyst S-C1-a.

Nickel contents in the covalently supported catalysts were identified by ICP analysis.
The theoretical nickel loading of C1 on 955 and 2408D silica gel was 1.40 wt%, and the
measured nickel loading of C1 on 955 and 2408D silica gel was 1.25 wt% and 1.06 wt%,
respectively, which was only slightly lower than the theoretical maximum nickel loading.
However, the measured nickel loading of C2 on 955 and 2408D silica gel was 0.54 wt% and
0.53 wt%, respectively, which were almost reduced to half of the theoretical nickel contents
(1.20 wt%). These results are related to the steric hindrance of the catalyst. Compared to the
steric hindrance of isopropyl substituents on C1, the steric hindrance of diphenylmethyl
substituents at the C2 N-aryl position is significantly greater. The large steric hindrance of
C2 hinders the reaction of the hydroxyl group of the catalysts with the active supports, so
the nickel content was significantly reduced. Here, we report the catalytic activity per mole
of the catalyst based on the detected nickel content. Furthermore, the surface area and pore
structure of silica gel and supported catalysts were analyzed by BET, and the data were
summarized in Table 1.

Table 1. Physical properties of silica gel or supported catalyst.

Silica Gel or
Supported

Catalyst

BET Surface
Area

(m2/g)

Pore Volume
(cm3/g)

Average Pore
Diameter

(nm)

Nickel Content
(%)

955 280 1.50 18.20 -
2408D 318 1.10 15.10 -
S-C1-a 158 1.00 16.40 1.25
S-C1-b 220 0.90 14.10 1.06
S-C2-a 206 0.90 16.40 0.54
S-C2-b 212 0.80 14.20 0.53

Although the specific surface area of 2408D silica gel is higher than that of 955 silica
gel, the pore size and pore volume of 2408D silica gel are less than that of 955 silica gel.
The BET data show that pore size, specific surface area, and pore volume of the silica-
supported catalysts are smaller than those of the supports. This indicates that the catalyst
was successfully supported on the surface of the silica gel and in the pores. After loading on
the same silica gel, the specific surface area of the C2-supported catalyst decreases less than
that of the C1-supported catalyst, which is consistent with the large steric hindrance and
low nickel loading of C2 catalyst. The catalytic properties of the catalyst and the properties
of the polyethylenes are restricted by various factors of the support and the supported
catalyst.
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3.2. Ethylene Polymerization

Ethylene slurry polymerizations were carried out by using supported catalysts S-C1-
a/b and S-C2-a/b in hexane with AlEt2Cl, and the supported catalysts were obtained by
loading catalyst C1 (or C2) on two different silica gels. The ethylene polymerization results
were summarized in Tables 2 and 3. The kinetic distributions of ethylene polymerization
catalyzed by the supported catalyst S-C1-a and homogeneous catalyst C1 are shown in
Figure 1. We found that the kinetic of the homogeneous catalyst C1 is a typical decay type,
with a high initial rate and then rapid decay, the polymerization was basically stopped in
about 30 min. Although the catalyst C1 displays higher activity than supported system
S-C1-a at the initial stage, the catalytic activity decay rate (or deactivation rate) of the
catalyst C1 is much faster than that of the catalyst S-C1-a. We believe that the introduction
of spherical silica gel into the homogeneous catalysts not only obstructs the insertion of
ethylene, decelerating the rate of association replacement, but also reduces the deactivation
rate of the catalysts and prolongs the life of the catalysts.

Table 2. Results of ethylene polymerization catalyzed by S-C1-a/b catalysts a.

Entry Catalyst T
(◦C) A1

b A2
c Tm

d

(◦C)
χc

d

(%)
Mw

e

(kg/mol) PDI e Branches f

(1000 C)

1 S-C1-a 30 1.64 349 120 33 n.d. n.d. n.d.
2 S-C1-a 50 2.08 443 116 31 563 3.9 67
3 S-C1-a 70 1.11 236 114 16 417 4.0 78
4 S-C1-b 10 0.24 44 123 56 n.d. n.d. n.d.
5 S-C1-b 30 1.42 258 118 38 774 4.0 56
6 S-C1-b 50 1.83 333 116 22 482 4.2 n.d.
7 S-C1-b 70 1.00 182 113 13 261 3.2 82

a Conditions: P = 0.5 MPa, V(hexane) = 50 mL, n(Al)/n(Ni) = 1000. b Activity, 106 gPE/(molNi·h). c Activity
gPE/(gcat·h). d Determined by DSC. e Determined by GPC. f Determined by 13C-NMR. n.d. = not determined.

Table 3. Results of ethylene polymerization catalyzed by S-C2-a/b catalysts a.

Entry Catalyst T
(◦C) A1

b A2
c Tm

d

(◦C)
χc

d

(%)
Mw

e

(kg/mol) PDI e

8 S-C2-a 30 1.02 94 80/123 16 n.d. n.d.
9 S-C2-a 50 1.28 107 74 13 969 2.5

10 S-C2-a 70 1.19 109 60 15 911 2.3
11 S-C2-a 80 0.90 82 58 13 n.d. n.d.
12 S-C2-b 30 0.87 78 79 20 n.d. n.d.
13 S-C2-b 50 1.07 96 75 14 825 2.8
14 S-C2-b 70 1.01 91 61 11 725 2.5

a Conditions: P = 0.5 MPa, V(hexane) = 50 mL, cocat: DEAC, n(Al)/n(Ni) = 1000. b Activity, 106 gPE/(molNi·h).
c Activity gPE/(gcat·h). d Determined by DSC. e Determined by GPC. n.d. = not determined.

Temperature inevitably has an influence on the catalytic activity and the molecular
weight of the resultant polyethylene. At elevated temperatures, the catalytic activity
increased firstly and then decreased. When the polymerization temperature was 50 ◦C, the
kinetic profile (Figure 3) of ethylene polymerization was almost stable. However, with the
increase in temperature up to 70 ◦C, the initial stage exhibited a higher reaction rate, but
with the extension of polymerization time, the activity decreased gradually.
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Figure 3. The kinetic curves of ethylene polymerization. 
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Figure 3. The kinetic curves of ethylene polymerization.

However, the catalytic activities of four supported catalysts still reached 106 g/molNi·h
at 70 ◦C and 0.5 MPa ethylene pressure, which suggested that these supported catalysts
had good thermal stability. The molecular weight of the resultant polyethylene decreased
with the increase in temperature. For example, the molecular weight decreased from
774 kg/mol at 30 ◦C to 261 kg/mol at 70 ◦C for catalyst S-C1-b (Entries 5 and 7, Table 2).
This phenomenon may be caused by the acceleration of chain transfer at high temperature.

In the experiment, we used two different kinds of silica gel to prepare supported
catalysts. From the data in the two tables, it can be found that the two different supports
have little influence on polymerization activity; the catalytic activity of the supported
catalyst loaded by 955 silica gel is slightly higher than that of 2408D silica gel, but they
have a great influence on the molecular weight of the obtained polymer. Previous studies
have shown that it is not that the greater the specific surface area of the support, the greater
the catalyst activity. Although the specific surface area of 955 silica gel was smaller than
that of 2408D, the activity of the catalyst supported on 955 silica gel (S-C1-a/S-C2-a) was
slightly higher than that of the catalyst supported on 2408D silica gel (S-C1-b/S-C2-b) at
the same polymerization condition. The polyethylene obtained from catalyst S-C1-a (or
S-C2-a) showed a higher molecular weight than that of the polyethylene obtained from
catalyst S-C1-b (or S-C2-b) under same conditions. These phenomena may be related to
the larger pore volume and pore size of 955 silica gel, and the higher nickel-loading rate of
955 supported catalysts. These factors are favorable for the polymerization of the monomer.
For the catalysts supported on 2408D silica gel, lower nickel content makes the unloaded
part of silica gel have a great negative effect on the loaded active center, which further
affects the chain growth reaction.

Furthermore, we studied the cases of catalysts with different structures supported
on the same silica gel. The substituents on N-aryl of complex C1 are 2,6-diisopropyl sub-
stituents, those of catalyst C2 are 2,6-diphenylmethyl substituents. Compared to catalysts
S-C1-a/b, the activities of S-C2-a/b were lower than those of S-C1-a/b at the same poly-
merization condition. It should be related to the large steric hindrance with dibenzhydryl
substituents of catalysts S-C2-a/b, which hinders the insertion speed of ethylene and
resulting in the reduced activity at 30–50 ◦C. On the contrary, the large steric hindrance
substituents on S-C2-a/b can reduce the occurrence of chain transfer during polymer-
ization at high temperatures, and thus they showed the greater thermal stability. When
the polymerization temperature further increases to 70 ◦C, the polymerization activity
decreases slightly.

The structure of the catalyst also has a great influence on molecular weight of the
obtained polymer. The polyethylenes obtained by catalysts S-C2-a/b performed the higher
molecular weight of 911 kg/mol and 725 kg/mol (Entries 10 and 14, Table 3), which is
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more than two times as much as that of the polyethylenes prepared from catalysts S-C1-a/b
(Entries 3 and 7, Table 2) under same conditions (Figure 4). On the other hand, S-C2-
a/b reduces the polymerization rate due to the introduction of diphenyl with large steric
hindrance, but diphenyl also effectively hinders the chain transfer reaction, which promotes
the chain growth reaction and obtains high molecular weight polyethylenes. Other GPC
curves of polyethylene are shown in the Supplementary Materials (Figures S1 and S2).
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Figure 4. GPC curves of polyethylene obtained with S-C1-a/b, S-C2-a/b (Entries 2, 3, 6, 7 in Table 2,
Entries 10, 14 in Table 3).

The polyethylenes are determined by differential scanning calorimetry (DSC). The
melting temperature (Tm) and crystallinity data of the polyethylenes are summarized
in Tables 2 and 3. The DSC curves are in the Figures S3–S6 of the Supporting Material.
Compared with the polyethylene obtained by the homogeneous catalyst C1 [40], which
has low or even no melting point, the polyethylenes obtained by the supported catalysts
S-C1-a/b have higher melting points and are above 110 ◦C, due to the inhibition of the
support to the chain walking reaction during the polymerization process. Following the
same trend as other reported α-diimine nickel(II) catalysts, the melting point of the obtained
polyethylenes decreased with the increased polymerization temperature (Figure 5). This is
due to the acceleration of chain growth and chain walking at higher temperatures, resulting
in the formation of more branches that hinder the crystallization of the polymer. No
significant influence of different silica gel on the melting point of resultant polyethylene
under the same polymerization condition for the S-C1-a/b catalytic systems. At 70 ◦C
polymerization temperature, the melting point of polyethylene obtained by S-C1-a is 114 ◦C,
and that of polyethylene obtained by S-C1-b is 113 ◦C.

However, it is found that the melting points of polyethylene obtained by S-C2-a/b
catalysts are close to those of homogeneous catalyst except the sample of Entry 8 in Table 3.
We initially thought that although catalyst C2 was loaded on the support, these active
sites leached from the silica support during the polymerization process. The large steric
hindrance of the 2,6-dibenzhydryl substituents and the low relative proportion of the
hydroxyl group with the large molecular weight of the catalyst further affect the reaction
between the hydroxyl group of the catalyst and the modified silica gel to form a covalent
bond, which makes the catalyst leaching off during the polymerization process. For the
polymer of Entry 8 in Table 3, the two melting points behavior shows that the prepared
polyethylene was a mixture of two chain populations with different chain structures, that
is, there are two types of active centers in the polymerization system: those leached from
the silica gel during polymerization and those kept fixed on the surface of the support.
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Figure 5. DSC curves of polyethylene obtained with S-C1-a/b, S-C2-a (Entries 1, 2, 3, 7 in Table 2, 
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Figure 5. DSC curves of polyethylene obtained with S-C1-a/b, S-C2-a (Entries 1, 2, 3, 7 in Table 2,
Entry 8 in Table 3).

The difference in melting point is mainly determined by the chain structure of the
polymer, and the chain structures of the polymers were further characterized by the high-
temperature 13C NMR spectroscopy. As shown in Figure 6, Table 2 and Figures S7–S9 of
the Supporting Material being interpreted according to the literature [42], the polyethylene
obtained by S-C1-a at 50 ◦C possessed 67/1000C branches, including methyl (64.4%), ethyl
(16.7%), propyl (3.1%), butyl (2.7%), amyl (2.9%) and LCB (10.2%), while the polyethy-
lene obtained by homogeneous catalyst C1 had high branching density, which is close
to 100 branches/1000C [40]. Compared with the homogeneous catalyst, the branching
numbers of the polyethylenes obtained by the supported catalysts S-C1-a/b is significantly
lower. This may be due to the steric hindrance from the support, which hinders the “chain
walking” rate significantly. Thus, the polyethylenes obtained by silica supported catalysts
S-C1-a/b display higher melting temperatures. The branching degree of polyethylene
obtained by S-C2-b catalyst is 63/1000C, which is close to that of the polyethylene catalyzed
by homogeneous catalyst due to the leaching of the α-diimine catalyst C2 from the silica
support catalyst. This result is consistent with the result of melting point.
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As shown in Figure 6, when the temperature increased from 50 ◦C to 70 ◦C, the branch-
ing degree of polyethylene prepared using the catalyst S-C1-a increased from 67/1000C to
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78/1000C while the resonances of methyl branch chain increased. Meanwhile, other branch
chains decreased as the temperature increased. At the same polymerization temperature of
70 ◦C, although the branching density of polyethylenes obtained from S-C1-b (82/1000C)
is slightly higher than that of S-C1-a, the resonances of other branch chains except methyl
chain increased significantly. This phenomenon may be related to the difference of the
support type, specific surface area and nickel content of the two supported catalysts, which
greatly affects the mechanism of chain walking.

The morphology photos of the polymers and the SEM images of catalyst and the
polymers are shown in Figures 7 and 8. The polyethylene obtained by homogeneous
catalyst C1 behaved like a rubber-like cluster (Figure 7e). Figure 7a,d show the free-flowing
PE particles obtained with supported catalyst S-C1-a (or S-C1-b) at 30 ◦C (Entries 1 and 5,
Table 2). The particle morphology of the polymer is obviously better than that obtained
from the homogeneous system. When the polymerization temperature is raised to 50 ◦C,
the polymer is slightly less dispersed and easy to accumulate together. Further increase the
temperature up to 70 ◦C inevitably led to the formation of big shapeless polymer particles,
due to the increase in branching density or part of the active component leaching (Figure 7c).
Under the same polymerization conditions, the viscosity of polyethylene particles prepared
by S-C2-a/b is higher than that of polyethylene particles prepared by S-C1-a/b, which may
be due to the leaching of the α-diimine catalyst from the silica support catalyst caused by
the steric hindrance of C2, and thus the morphology of polymer is very poor.
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Figure 7. Photographs of polyethylenes obtained with ((a), S-C1-a 30 ◦C; (b), S-C1-a 50 ◦C; (c), S-C1-a
70 ◦C; (d), S-C1-b 30 ◦C; (e), homogeneous catalyst C1 30 ◦C).

Furthermore, SEM was used to observe the microscopic morphology of the catalyst
and polymer. In general, when the ethylene contacts the metal center on the support,
polyethylene can be prepared and the resulting polyethylene will cover the support to
replicate the shape of the support. In fact, the morphology control of the polymer particles is
not only caused by the support but also by its fragmentation and the resulting distribution
of active catalyst components. The silica support is filled with irregularly distributed pores,
allowing α-diimine catalysts and monomers to penetrate silica gel to its inner surface.
Therefore, the resulting polyethylene will cause the fragmentation of the support and no
longer maintain the shape of the original catalyst particle. We can see this phenomenon in
Figure 8a. Further magnification shows the accumulation of roughly spherical polymer
subparticles with diameters of ~0.5 µm (Figure 8d).
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Figure 8. (a) SEM image of catalyst S-C1-a; (b) SEM image of 50 µm scale of polyethylene obtained
with S-C1-a; (c) SEM image of 20 µm scale of polyethylene obtained with S-C1-a; (d) SEM image of
5 µm scale of polyethylene obtained with S-C1-a. (Entry 1, Table 2).

4. Conclusions

α-Diimine catalysts with hydroxyethyl phenoxyl group on α-diimine acenaphthequinone-
backbone were supported on two different silica gels by the reaction of hydroxyl groups
on ligand backbone with the activated silica gel. These supported catalysts with AlEt2Cl
cocatalyst afforded significant activity of ethylene polymerization. They had good ther-
mal stability and the catalytic activities still reached 106 g/molNi·h at 70 ◦C and 0.5 MPa
ethylene pressure. The life of the catalyst is prolonged, seeing as the kinetic profile and
the particle morphology of the polymer are obviously better than that obtained from
the homogeneous system. Although the two different supports have little influence on
polymerization activity, they have a great influence on the molecular weight of the ob-
tained polymer due to the pore volume, pore size and nickel-loading rate. The melting
points of polyethylenes obtained by the supported catalysts S-C1-a/b with 2,6-diisopropyl
substituents on N-aryl are all above 110 ◦C. The branching numbers of the polymers ob-
tained by S-C1-a/b are significantly lower than those obtained by the homogenous catalyst.
However, for the supported catalysts S-C2-a/b, the catalyst was leached from the support
during the polymerization process due to the excessive steric hindrance of dibenzhydryl
substituents on the catalyst. Therefore, this kind of catalyst with larger steric hindrance
substituents needs to adopt other methods to improve the supported effect. The further
exploration of the supported catalyst is in progress. In general, the functionalization of the
acenaphthequinone with a terminal hydroxyl groups proved to be a suitable choice for the
synthesis of functionalized α-diimine catalysts. With the variation of N-aryl substituents, a
variety of supported α-diimine catalysts can be easily obtained.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14173684/s1, Figure S1. GPC curves of polyethylene
obtained with S-C1-a/b (Entries 2, 3, 5, 6, 7 in Table 2); Figure S2. GPC curves of polyethylene
obtained with S-C2-a/b (Entries 9, 10, 13, 14 in Table 2); Figure S3. DSC curves of polyethylene
obtained with S-C1-a (Entries 1–3 in Table 2); Figure S4. DSC curves of polyethylene obtained with
S-C1-b (Entries 4–7 in Table 2); Figure S5. DSC curves of polyethylene obtained with S-C2-a (Entries
8–11 in Table 3); Figure S6. DSC curves of polyethylene obtained with S-C2-b (Entries 12–14 in
Table 3); Figure S7. 13C NMR spectra of polyethylenes (Entries 2, 3 in Table 2); Figure S8. 13C NMR
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spectra of polyethylenes (Entries 5, 7 in Table 2); Figure S9. 13C NMR spectra of polyethylenes (Entries
13, 14 in Table 3).
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