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Abstract: In this study, we prepared three benzo[ghi]perylenetriimide (BPTI) conjugated molecules
as electron-transporting surface-modifying layers for polymer solar cells (PSCs). These three BPTI
derivatives differed in the nature of their terminal functionalities, featuring butylamine (C3NH2),
propylammonium iodide (C3NH3I), and butyldimethylamine (C3DMA) units, respectively. We
evaluated the optoelectronic properties of PTB7-Th: PC71BM blends modified with these interfacial
layers, as well as the performance of resulting PSCs. We used UV–Vis spectroscopy, atomic force
microscopy, surface energy analysis, ultraviolet photoelectron spectroscopy, and photoelectric flow
measurements to examine the phenomena behind the changes in the optoelectronic behavior of these
blend films. The presence of a BPTI derivative changed the energy band alignment at the ZnO–
active layer interface, leading to the ZnO film behaving more efficiently as an electron-extraction
electrode. Modifying the ZnO surface with the BPTI-C3NH3I derivative resulted in a best power
conversion efficiency (PCE) of 10.2 ± 0.53% for the PTB7-Th:PC71BM PSC (cf. PCE of the control
device of 9.1 ± 0.13%). In addition, modification of a PM6:Y6:PCBM PSC with the BPTI-C3NH3I
derivative increased its PCE from 15.6 ± 0.25% to 16.5 ± 0.18%. Thus, BPTI derivatives appear to
have potential as IFLs when developing high-performance PSCs, and might also be applicable in
other optoelectronic devices.

Keywords: benzo[ghi]perylenetriimide; interface modification layer; polymer solar cells; green
energy

1. Introduction

Because of their high flexibility, high stretchability, excellent mechanical properties,
light weight, low cost, and amenability to large-area roll-to-roll fast solution manufacturing,
polymer solar cells (PSCs) have attracted a great deal of attention in the past decade [1–4].
Because PSCs can be constructed on flexible and stretchable substrates, they can be inte-
grated with curved subjects for the preparation of wearable electronics. The rapid progress
of PSCs has relied mostly on the development of suitable conjugated polymers and small
molecules [5–8]. Controlling the nano-phase segregation of their bulk-heterojunction (BHJ)
morphologies and the molecular packing of their blend films has also led to optimization
of the power conversion efficiencies (PCEs) of PSCs to greater than 19% [9–16]. Typically,
a PSC is constructed with layers of an electrode, an electron transporting layer (ETL),
an active layer, a hole transporting layer (HTL), and an electrode. Simply embedding
an additional layer between the interfaces of the active layer can alter the morphology
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of the blend film and the efficiency of its carriers’ extraction, thereby further improv-
ing the performance of such PSCs [17–24]. Poly [4,8-bis(5-(2-ethylhexyl)thien-2-yl)benzo
[1,2-b;4,5-b′]dithiophene-2,6-diyl–alt–(4-(2-ethylhexyl)-3-fluorothieno [3,4-b]thiophene)-2-
carboxylate-2-6-diyl] (PTB7-Th or PCE10) and [6,6]-phenyl-C71-butyric acid methyl ester
(PC71BM) are currently the most highly developed materials used as PSC active layers.
Incorporating an interface modification layer (IFL) to improve the carrier extraction ef-
ficiency in PSCs is a method that is readily applicable to most systems and suitable for
fast-manufacturing processing. An excess or unbalanced amount of holes or electrons accu-
mulating in the active layer will significantly affect the short-circuit current density (JSC)
and fill factor (FF) of the corresponding device. To enhance the extraction of such carriers,
embedding an IFL can help to decrease the degree of interfacial charge recombination, as
well as the interfacial resistance, surface roughness, and number of surface defects. Previ-
ous studies have revealed great success when employing perylene-3,4,9,10-tetracarboxylic
acid diimides (PDIs) and their derivatives in PSC applications [25–28]. These materials
have strong electron-accepting properties and facilitate efficient charge transport. The
use of benzo[ghi]perylenetriimide (BPTI) as the IFL of a perovskite solar cell attracted our
attention for its similar application in PSCs [28].

Accordingly, in this study, we prepared BPTI derivatives presenting various functional
groups—butyldimethylamine (C3DMA), butylamine (C3NH2), and propylammonium
iodide (C3NH3I)—and tested them as IFLs within PSCs (Figure 1). We embedded these BPTI
derivatives between the ZnO layer and the active layer. We found that the BPTI derivatives
modified the surface properties of the ETL (i.e., ZnO) and altered the growth of the active
layer. The N atoms of the BPTI derivatives formed hydrogen bonds with the materials in the
active layer, thereby facilitating electron transport and inhibiting carrier recombination at
the interface. The I– ion of the C3NH3I unit appeared to have the effect of eliminating charge
accumulation (i.e., hole blocking) and promoting the PSC performance. The presence of the
C3DMA units decreased the hydrophilicity of the ZnO layer, thereby altering the surface
energy of the substrate and changing the blend morphology. We studied the effects of
these IFLs on the morphologies and optoelectronic properties of PTB7-Th/PC71BM and
PM6:Y6:PC71BM active layers, as well as the performance of PSCs incorporating them.
We observed an enhancement in performance for the PSC containing embedded BPTI-
C3NH3I. The best PSC performance of the BPTI-C3NH3I–modified PM6:Y6:PCBM featured
a PCE of 16.5 ± 0.18%; in comparison, the corresponding control device provided a PCE of
15.6 ± 0.25%. Our results suggest that judicious selection of the IFL can be used to optimize
the optoelectronic properties of PSCs, providing a potential pathway for further increases
in performance.
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Figure 1. Chemical structures of the materials tested as interfacial layers. (a) BPTI-C3NH2; (b) BPTI-

C3NH3I; (c) BPTI-C3DMA. 
Figure 1. Chemical structures of the materials tested as interfacial layers. (a) BPTI-C3NH2; (b) BPTI-
C3NH3I; (c) BPTI-C3DMA.
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2. Results and Discussion

We synthesized the three BPTI derivatives according to previously reported proce-
dures [29]. Details of the synthesis and characterization of the BPTI derivatives are available
in the Supporting Information. Figures S1 and S2 present the 1H and 13C NMR spectra
of the BPTI derivatives, supporting their successful synthesis. Figure S3 displays the
MALDI-TOF mass spectra of BPTI-C3NH2 and BPTI-C3DMA, confirming their purity.
Figure 2 provides the UV–Vis absorption spectra of the BPTI derivatives and the UV–Vis
transmittance spectra of indium tin oxide (ITO)/ZnO/BPTI substrates. Figure S4 pro-
vides the UV–Vis absorption spectra of the BPTI derivatives as solutions in CHCl3 and
in the form of glass/BPTI substrates. As indicated in Figure 2a, the absorptions of the
BPTI films were located mainly in the UV region and at wavelengths between 400 and
520 nm. The absorptions of the solid films were slightly red shifted when compared with
those in solution status (Figure S4a). The absorptions of the thin films were similar on
the different substrates, suggesting that the nature of the substrate had only a minimal
effect. The absorption spectra of these three BPTI derivatives were similar, and consistent
with that of the parent BPTI. Changing the end functionality affected the solubility of the
BPTI derivatives and led to changes in their absorption intensities. Next, we deposited the
ZnO layer onto the ITO substrate through sol–gel processing of a solution of Zn(OAc)2 in
2-methoxyethanol. The resulting ZnO film (thickness: ca. 40 nm) was annealed at 170 ◦C
for 20 min in air prior to deposition of layers of the BPTI derivatives. Solutions of the BPTI
derivatives were prepared in CHCl3 (CF) at the optimized concentration (0.5 mg mL−1)
These solutions were deposited on top of the ZnO layers through spin-coating (2000 rpm)
in air and then solvent-annealed with CF to induce alignment through self-assembly. The
resulting samples were dried (100 ◦C, 5 min) in a glove box prior to the deposition of the
active layer. Figure 2b presents the transmittance (T%) of these samples. The embedding of
the BPTI derivatives decreased the values of T% of samples slightly at wavelengths in the
region from 400 to 520 nm, which was consistent with absorption of the BPTI derivatives.
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Figure 2. (a) UV–Vis absorption spectra of the BPTI films and (b) UV–Vis transmittance spectra of
the ITO/ZnO/BPTI samples.

We used atomic force microscopy (AFM) and contact angle measurements to study
the surficial properties of the ITO/ZnO samples in the absence and presence of the BPTI
derivatives. Figure S5 displays their tapping-mode AFM images. The root mean square
(RMS) surface roughnesses of the unmodified ZnO film and those modified with BPTI-
C3NH2, BPTI-C3NH3I, and BPTI-C3DMA were 14.4, 11.2, 9.4, and 11.3 nm, respectively.
Thus, the BPTI-modified ZnO films had the smoother surfaces. A smooth interface between
an active layer and an ETL can be beneficial to electron extraction; previous reports have
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revealed that the hydrophobicity or hydrophilicity of a substrate can greatly affect the
blend morphology and device performance [30–32]. We performed the contact angle
measurements using distilled H2O and diiodomethane (CH2I2, DIM) as probe liquids.
We employed the Wu model to calculate the surface energies (γtotal) of the ZnO surfaces
and, thereby, investigate the effects of the BPTI derivatives. The value of γtotal is equal
to the sum of the dispersive (γdispersive) and polar (γpolar) components, which we could
determine [33]. Table 1 reveals that the water contact angles (θwater) of the ZnO, ZnO/BPTI-
C3NH2, ZnO/BPTI-C3NH3I, and ZnO/BPTI-C3DMA samples were 40.45, 54.65, 60.60, and
46.76◦, respectively. Thus, the values of θwater increased after modifying the ZnO film with
the BPTI derivative, implying an increase in the hydrophobicity of the respective surface.
The values θDIM of the ZnO, ZnO/BPTI-C3NH2, ZnO/BPTI-C3NH3I, and ZnO/BPTI-
C3DMA samples were 26.91, 24.67, 26.95, and 20.74◦, respectively. Thus, the presence of
BPTI-C3DMA significantly increased the lipophilicity of the substrate, due to the presence
of the DMA structure on the side chain. The surface energies (γtotal) of the ZnO, ZnO/BPTI-
C3NH2, ZnO/BPTI-C3NH3I, and ZnO/BPTI-C3DMA samples were 71.77, 65.48, 61.93, and
70.32 mN m−1, respectively. To double-check the data, we used the Owens–Wendt–Rabel–
Kaelble (OWRK) model to calculate the surface energies of the various samples. Table 1
reveals that the results were similar, with the same trends in the changes in the surface
energies of the respective samples. The orientation of a small molecule–based IFL can
be adjusted through solvent vapor annealing (SA), with the optimized surface properties
of the IFL directly affecting the performance of corresponding devices [34]. Because of
the similar chemical structures of the three IFLs, we evaluated the effect only of MeOH
(polar protic solvent) on BPTI-C3NH3I, which has high polarity due to its ammonium
iodide functionality. Table S1 presents the contact angles and surface energies of the IFLs
prepared with and without SA. We observed a higher value of θwater and a lower value of
θDIM for the sample after SA with CF, suggesting that the ammonium iodide groups were
embedded at the bottom of the film. After treatment with MeOH, the sample had a lower
value of θwater with a higher value of θDIM, implying that the ammonium iodide units were
distributed mainly on the surface of the IFL. These variations in surface orientation led to
different surface energies for the CF- and MeOH-treated samples (60.73 and 62.91 mN m−1,
respectively). These changes in the contact angles and surface energies would affect the
wetting properties of solutions of the active layers. The miscibility of donor and acceptor
moieties, a characteristic that can be evaluated from the surface energy, is a major factor that
can affect the blend morphology [35–37]. Previous reports have indicated that the surface
energy of a substrate can alter the phase separation morphology of the active layer [33],
with the driving force possibly being a large difference in surface energy (or miscibility)
between the two components [38]. Thus, we examined the effect of changes in the surface
energies of the substrates upon the variations in their blend film morphologies.

Table 1. Contact angles and surface energies of the samples.

θwater (◦) θDIM (◦) γpolar
(mN m−1)

γdispersive
(mN m−1)

γtotal
(mN m−1)

ZnO a 40.45 26.91 26.19 45.58 71.77
ZnO/BPTI-C3NH2

a 54.65 24.67 19.11 46.37 65.48
ZnO/BPTI-C3NH3I a 60.60 26.95 16.36 45.57 61.93
ZnO/BPTI-C3DMA a 46.76 20.74 22.71 47.61 70.32

ZnO b - - 20.87 45.45 66.32
ZnO/BPTI-C3NH2

b - - 12.95 46.27 59.22
ZnO/BPTI-C3NH3I b - - 10.19 45.43 55.62
ZnO/BPTI-C3DMA b - - 16.65 47.56 64.21

a Calculated using the Wu model. b Calculated using the OWRK model.

We employed devices with the structure ITO/ZnO/IFL/PTB7-Th:PC71BM/MoO3/Ag
[Figure 3a] to obtain J–V curves, using an AM 1.5G solar simulator (Peccll PEC-L11, Yoko-
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hama, Japan) operated at an illuminating power of 100 mW cm−2. Figure 3b and Table 2
summarize the performance data. The control ZnO PSC provided a PCE of 9.1 ± 0.13%,
comparable with those of PTB7-Th devices reported previously in the literature. First, we
determined the performance of the BPTI-containing devices that had not been subjected
to post-solvent treatment. The PCEs of these devices increased slightly relative to that
of the control device. After CF-treatment, the PCEs of the devices incorporating BPTI-
C3NH2, BPTI-C3NH3I, and BPTI-C3DMA all increased significantly, reaching 9.6 ± 0.31%,
9.9 ± 0.11%, and 9.3 ± 0.26%, respectively. The improved performance of these devices,
relative to the control PSC, was due to significant increases in their FFs. Because of the
polarity of the ammonium iodide unit of BPTI-C3NH3I, we also treated its sample with
methanol (MeOH), a solvent of higher polarity, leading to a further improvement in perfor-
mance, with the best BPTI-C3NH3I–containing PSC device providing a PCE of 10.2 ± 0.53%.
The improvements in the values of JSC and FF confirmed that these IFLs had the effect
of passivating ZnO defects [39,40]. Figure 3c displays the external quantum efficiency
(EQE) spectra of the PSCs incorporating ZnO and BPTI-C3NH3I-modified ZnO; the pho-
toresponses were consistent with those of the PTB7-Th-based PSCs. From the EQE spectra
and the solar flux, we calculated the values of EQE–JSC of the PSCs incorporating ZnO and
the BPTI-C3NH3I-modified ZnO to be 15.2 and 15.6 mA cm−2, respectively. The mismatch
arose from various factors, including the measurement conditions at the solar simulator not
being the same as those during the EQE measurements [41]. We performed time-resolved
photoluminescence (TRPL) measurements to calculate the effective carrier lifetimes in
the blend films and, thereby, determine the phenomena governing their performance.
Figure S6 displays the TRPL spectra; Table S2 summarizes the respective parameters. The
values of τavg of the blend films on the unmodified and BPTI-C3NH2-, BPTI-C3NH3I-, and
BPTI-C3DMA-modified ZnO were 1.202, 1.743, 1.997, and 1.648 ns, respectively. Thus, the
carrier lifetimes in the blends increased in the presence of the BPTI derivatives. This finding
confirmed that carrier transport was improved when incorporating these IF layers.
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Table 2. J–V properties of the PSC devices.

Sample Solvent Annealing
(SA)

JSC
(mA cm–2)

VOC
(V)

FF
(%)

PCE
(%)

PCEBest
(%)

Active layer:/PTB7-Th:PC71BM

Without IFL − 0.82 ± 0.01 17.3 ± 0.39 63.7 ± 2.0 9.1 ± 0.13 9.3

BPTI−C3NH2
Without 0.82 ± 0.01 16.81 ± 0.31 67.1 ± 1.20 9.3 ± 0.13 9.4

CF 0.82 ± 0.01 17.1 ± 0.31 67.9 ± 3.47 9.6 ± 0.31 9.9

BPTI−C3NH3I
Without 0.81 ± 0.01 16.7 ± 0.18 68.4 ± 2.42 9.3 ± 0.48 9.4

CF 0.82 ± 0.01 17.1 ± 0.31 70.5 ± 1.20 9.9 ± 0.11 10.0

MeOH 0.82 ± 0.01 17.5 ± 0.84 70.6 ± 0.75 10.2 ± 0.53 10.8

BPTI−C3DMA Without 0.81 ± 0.01 16.61 ± 0.31 68.1 ± 1.20 9.1 ± 0.11 9.2

CF 0.81 ± 0.01 17.2 ± 0.47 67.4 ± 0.66 9.3 ± 0.26 9.6

Active layer: PM6:Y6:PC71BM

Without IFL − 0.88 ± 0.01 24.9 ± 0.39 71.8 ± 1.9 15.6 ± 0.25 15.8

BPTI−C3NH3I MeOH 0.88 ± 0.01 25.6 ± 0.70 73.3 ± 1.7 16.5 ± 0.18 16.8

To understand why embedding the BPTI derivatives significantly improved the FFs of
the devices, we employed ultraviolet photoelectron spectroscopy (UPS) to study whether
or not these IFs changed the work function (WF) of the ETL. We suspected that the various
functional groups (C3NH2, C3NH3I, and C3DMA) of the BPTI derivatives might have
induced interfacial dipoles that could alter the WFs of the electrodes, thereby facilitating
energy level alignment and leading to efficient carrier extraction [42–45]. We calculated
the WFs of the ITO/ZnO, ITO/ZnO/CF_BPTI-C3NH2, ITO/ZnO/MeOH_BPTI-C3NH3I,
and ITO/ZnO/CF_BPTI-C3DMA samples from the cutoff and valence band regions of
the UPS spectra in Figure 4a. A change in surface status would affect the energy level
alignment at the interface between the ETLs and the active layer. Here, we believed that
the N and O atoms in BPTI-C3NH2, BPTI-C3NH3I, and BPTI-C3DMA would serve as
hydrogen bond donors that could interact with the ZnO film to change its WF by forming
net dipoles (from the molecular and surface dipoles) at the interface (Figure 4b) [46]. As
listed in Table 3 The true WF of ITO/ZnO was −3.54 eV (consistent with the value reported
in the literature); after embedding the BPTI-C3NH2, BPTI-C3NH3I, and BPTI-C3DMA
interlayers, it decreased by 0.04, 0.05, and 0.01 eV, respectively, to give WFs of −3.50, −3.49,
and −3.53 eV, respectively [47]. Thus, the WF of the ITO/ZnO substrate increased after
embedding each of the BPTI-based IF layers [45]. Our findings suggest that the surface
status (surface energy, morphology, WF) of the substrate altered the local BHJ morphology
and changed the degree of electron extraction in the cathode. Because this morphology
prevented unfavorable charge recombination at the interface with the ETL, the FFs and PCEs
of the respective devices improved. Determining the possible effects of embedding IF layers
(from variations in electronics properties to variations in morphologies) can be challenging;
our approach will hopefully act as an example that will allow better understanding of the
roles of interfaces within PSC devices.
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Table 3. WFs of ZnO films prepared with and without IFLs, determined using UPS.

ECut off (eV) Φh (eV) WF (eV) HOMO (eV)

ZnO 17.68 3.66 3.54 7.20
ZnO/BPTI-C3NH2 17.72 3.71 3.50 7.21
ZnO/BPTI-C3NH3I 17.73 3.75 3.49 7.24
ZnO/BPTI-C3DMA 17.69 3.64 3.53 7.17

To verify the effect of the interface layer on the ZnO film, we performed photoelectric
flow measurements through a metal–semiconductor–metal (MSM) structure to determine
the dipole direction and degree of charge accumulation. We used the device structure
ITO/ZnO/IFL (CF_BPTI-C3NH2, MeOH_BPTI-C3NH3I, or CF_BPTI-C3DMA)/PC71BM/
MoO3/Ag (here we applied PC71BM as the active layer, instead of PTB7-Th:PC71BM
(Figure 5a)) to measure the photocurrent under an AM1.5 light source and check any de-
viation of the values of VOC to determine whether changes occurred to their dipoles [48].
When we applied a negative bias to the device, the incoming electrons led to an accumula-
tion of charge; when we applied a positive bias voltage, the internal electric fields would
cancel each other, such that the value of VOC would not be 0 V. Here we used the acceptor
PC71BM as the active layer to observe the modifications of the ETL. If a dipole modification
layer were present, more electrons would accumulate at the interface in this device state,
with more positive bias being required to balance the internal electric field. The stronger
the modification, the greater the deviation in the value of VOC. Therefore, by observing
the changes in the values of VOC, we could judge whether the added IFL induced dipole
modification [49]. Figure 5b reveals that the values of VOC of the IFL-containing devices
based on BPTI derivatives underwent significant deviations. Among them, the presence
of BPTI-C3NH3I that had undergone SA with MeOH led to the largest deviation in the
value of VOC; consistent with this finding, its PCE was also the best. In addition, we used
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transient photocurrent (TPC) measurements to investigate the charge extraction processes
in devices prepared with and without an IFL (Figure S7) [14]. The charge extraction times
of the control and BPTI-C3NH3I-modified devices were 0.671 and 0.651 µs, respectively,
suggesting that the charge extraction efficiency of the device was promoted in the presence
of BPTI-C3NH3I, resulting in a higher FF.
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To test whether these BPTI derivatives could also improve the performance of other
devices, we applied the BPTI-C3NH3I derivative in PM6:Y6:PC71BM ternary PSCs. Figure 6
and Table 2 present the results. The values of VOC, JSC, FF, and PCE of the device prepared
without this IFL were 0.88 ± 0.01 V, 24.9 ± 0.39 mA cm−2, 71.8 ± 1.9%, and 15.6 ± 0.25%,
respectively. When the BPTI-C3NH3I interface layer was present in the PM6:Y6:PC71BM
ternary system, these values were 0.88 ± 0.01 V, 25.6 ± 0.70 mA cm−2, 73.3 ± 1.7%, and
16.5 ± 0.18%, respectively. Figure 6b presents the EQE spectra; the values of EQE–JSC of the
PSCs incorporating ZnO and the BPTI-C3NH3I-modified ZnO were 21.5 and 22.0 mA cm−2,
respectively. Thus, this IFL could also improve the efficiency of a non-fullerene-based PSC.
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Figure 6. (a) J–V curves and (b) EQE spectra of PM6:Y6:PCBM−based PSCs.
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3. Conclusions

We have applied materials presenting various functionalities—namely, BPTI-C3NH2,
BPTI-C3NH3I, and BPTI-C3DMA—as IFLs in PSCs. The values of JSC and FF of the devices
were effectively modified after SA of their IFLs, thereby improving their PCEs. The average
values of JSC, VOC, FF, and PCE for the PSC incorporating the MeOH_BPTI-C3NH3I–
modified ZnO and PTB7-Th:PCBM active layer were 17.5 ± 0.84 mA cm−2, 0.82 ± 0.01 V,
70.6 ± 0.75%, and 10.2 ± 0.53%, respectively (cf. a best PCE for the control device of
9.1 ± 0.13%). This enhancement in performance resulted from improvements in the surface
energy, energy level alignment, and carrier lifetimes. For PM6:Y6:PCBM-based ternary
PSCs, the presence of the BPTI derivatives also resulted in efficient modification, with PCEs
as high as 16.5 ± 0.18%, suggesting a universal effect for such BPTI derivatives as IFLs in
PSC applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14204466/s1, Figure S1: (top) 1H and (bottom) 13C NMR
spectra of BPTI-C3NH2 in CDCl3; Figure S2: (top) 1H and (bottom) 13C NMR spectra of BPTI-C3DMA
in CDCl3; Figure S3: MALDI-TOF mass spectra of (top) BPTI-C3NH2 and (bottom) BPTI-C3DMA;
Figure S4: UV–Vis absorption spectra of the BPTI derivatives (a) as solutions in CHCl3 and (b)
in the form of glass/BPTI substrates; Figure S5: Tapping-mode AFM images of the (a) ZnO, (b)
ZnO/BPTI-C3NH2, (c) ZnO/BPTI-C3NH3I, and (d) ZnO/BPTI-C3DMA samples (5 µm × 5 µm);
Figure S6: TRPL spectra of blend films prepared with and without IFLs; Figure S7: Normalized
TPC data for the control and BPTI-C3NH3I-modified devices; Table S1: Contact angles and surface
energies of SA-treated IFLs; Table S2: Carrier lifetime parameters of the blend films.
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