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Abstract: The integration of additive manufacturing (3D printing) in the biomedical sector required
material to portray a holistic characteristic in terms of printability, biocompatibility, degradability, and
mechanical properties. This research aims to evaluate the 3D printability and mechanical properties
of polyhydroxybutyrate (PHB) as additives in the urethane dimethacrylate (UDMA) based resin and
its potential for medical applications. The printability of the PHB/UDMA resin blends was limited
to 11 wt.% as it reached the maximum viscosity value at 2188 cP. Two-way analysis of variance
(ANOVA) was also conducted to assess the significant effect of the varied PHB (wt.%) incorporation
within UDMA resin, and the aging duration of 3D printed PHB/UDMA on mechanical properties in
terms of tensile and impact properties. Meanwhile, the increasing crystallinity index (CI) of X-ray
diffraction (XRD) in the 3D printed PHB/UDMA as the PHB loading increased, indicating that there
is a strong correlation with the lower tensile and impact strength. FESEM images also proved that the
agglomerations that occurred within the UDMA matrix had affected the mechanical performance of
3D printed PHB/UDMA. Nonetheless, the thermal stability of the 3D printed PHB/UDMA had only
a slight deviation from the 3D printed UDMA since it had better thermal processability.

Keywords: additive manufacturing; 3D printing; polyhydroxybutyrate; mechanical properties;
medical application

1. Introduction

In recent decades, a wide range of biopolymers has stimulated researchers’ interest to
explore and utilize their benefits to create a sustainable material for the sake of environ-
mental issues. Polyhydroxyalkanoates (PHA) are those among biopolymers that can act as
an alternative to the synthetic polymers derived from petrochemicals [1]. PHA are biopoly-
mers that are naturally derived and accumulated by different families of microorganisms
such as Azotobacter, Bacillus and Pseudomonas [2–4]. PHA are classified according to their
basic structural chain length: short chain length (consists of 3–5 carbons), medium chain
length (6–14 carbons) and lastly long chain length (consists of more than 15 carbons) [5].
Polyhydroxybutyrate (PHB) falls under short chain length in the PHA family and is also
the most common form of PHA [6].
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Polyhydroxybutyrate (PHB) is a microbial aliphatic polyester created through the de-
privation of nitrogen, phosphorus, or oxygen in the availability of excess carbon sources [7].
Highly crystallized PHB due to its stereo-chemical regularity of the structure contributed
towards its excellent mechanical properties; high elasticity of modulus ranging between
3 to 3.5 GPa and tensile strength of 20–40 MPa [8]. In addition, its water-insoluble prop-
erty differentiates it from most other currently available biodegradable plastics that have
undergone hydrolytic degradation [9]. Indeed, the mechanical properties of this polymer
are comparable to those of petroleum-based polypropylene [10]. Nevertheless, mass pro-
duction of PHB products has been limited to myriad challenges due to its narrow thermal
processing window [11]. Thermal degradation could occur when PHB is exposed to a
higher temperatures during the manufacturing process [12]. The utilization of this polymer
has become potential in biomedical applications due to its biocompatibility and biodegrad-
ability [13]. The manufacturing of such biomedical applications can be done via additive
manufacturing (AM) technology. At the moment, AM technology (better known as 3D
printing) has been applied in functional biomaterials for tissue engineering, fabrication of
anatomical and pharmacological models, and production of medical instruments [14–16].

AM technology is a process of depositing materials by layering to construct a three-
dimensional (3D) object by using a computer-aided design (CAD) file where novel cus-
tomization can be utilized [17]. It has become one of the key components that have been
highlighted in the Industrial Revolution 4.0 (IR4.0), as it is considered the future of the
manufacturing sector [18]. The process of additive manufacturing has been categorized into
six types: vat-photopolymerization, material extrusion, powder bed fusion, material jetting,
directed energy deposition, and sheet lamination [19–21]. Each of these categories has its
own type of materials, advantages and drawbacks that should be given greater attention so
they can be fully utilized according to the proposed applications. The commonly used bio-
materials for AM are polymers and composites due to their diversity and high compatibility
with different types of AM processes. The polymer materials are usually used in the form
of solutions for vat-photopolymerization, thermoplastic filaments for material extrusion
and powder beads for powder-bed fusion. Most leading polymers used for 3D printable
biomaterials are polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), polyurethane
(PU) and polycaprolactone (PCL) [22–24]. However, the choices for biocompatible materials
in AM technology are still limited. Thus, studies towards broadening those choices of
materials could be a great advancement in the medical sector by integrating AM technology.
Hence, the selection of AM technique and its materials are crucial to ensure the products
complement the specifications needed for the applications.

Currently stereolithography (SLA), which falls under the vat-photopolymerization
technique in AM processes, can produce parts with high dimensional accuracy with very
intricate details [25]. Thus, it is the most favorable method used in the medical field, such
as in surgical tools, temporary replacement medical devices, and fracture-bone casts [26]. It
uses a single laser to cure light-sensitive polymer (photopolymer) directed at a particular
point, building up layer upon layer contained in a vat/tank. SLA comprises three main
components: the printer, material, and CAD file [27]. Any adjustment of these components
will give a different outcome to the mechanical properties of 3D structures, especially on
the materials side, and particularly the photopolymer resin.

The SLA process is a 3D printing technique based on the principle of resin photo-
polymerization. Photopolymer resin comprises monomers, oligomers, and photo-initiators.
During the photo-polymerization process, the laser will activate the photo-initiators to
release free radicals, which will then induce cross-linking reactions between the function-
alized monomers and oligomers to create a solidified structure [28]. Several commonly
used monomers are bisphenol A-glycidyl dimethacrylate (Bis-GMA), bisphenol A ethoxy-
lated dimethacrylate (Bis-EMA), urethane dimethacrylate (UDMA) and triethylene glycol
dimethacrylate (TEGDMA) [29]. Since the after-products of degradation of Bis-GMA and
Bis-EMA generate bisphenol A (BPA), which has been proven to have an estrogenic ef-
fect on human health, UDMA has been developed with BPA-free formulation [30]. The
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polymerization rate in UDMA resin was the highest, even though TEGDMA obtained the
highest degree of double bond conversion (DC). The resulting more-robust polymer net-
work exhibited the highest flexural strength compared to TEGDMA. The better mechanical
properties presented by UDMA were probably attributed to the cross-linking of stronger
hydrogen bonding and less cyclization [31].

UDMA resin could be utilized for medical application purposes by integrating with
SLA. SLA demonstrates greater versatility and has the highest fabrication resolution,
which is crucial in medical applications [32]. In addition, its customizability to create a
custom-fitted design to maintain the fracture bone alignment according to the patients has
captivated many researchers to explore the potential of this technology to be embedded in
the medical applications [33]. Studies have proven that 3D printed casts could minimize
interference, reduce the risk of pressure-related complications and improve ventilation [34].
However, the idea of this research only focused on the material itself.

In treating fractured-bone patients, it is crucial to encase partially, or in a surrounding
rigid form called a cast. The immobilized limbs are usually encased by a rigid structure for
long periods, often for as long as six weeks or more. However, due to prolonged pressure
and poor ventilation of conventional casts, patients have a high tendency toward irritation
and muscle fatigue [35]. Moreover, by employing 3D printing technology, the idea to create
customized casts for patients that are properly fitted and have a vented structure could
be an effective alternative to tackle these problems. To our concern, the integration of
biopolymer PHB in the UDMA resin by utilizing 3D printing techniques for casting has
not been explored yet. This research aims to study the 3D printability and mechanical
properties of PHB/UDMA resin blends and their potential in medical applications as
casting for fractured-bone patients.

2. Materials and Methods
2.1. Materials

Polyhyroxybutyrate (PHB) powder was obtained from Biomer Incorporation (Krailing,
Germany), referenced P309, and used as received. Urethane dimethacrylate (UDMA)
based resin was purchased from Formlabs Incorporation (Formlabs, Somerville, MA, USA).
Isopropanol (IPA) used for cleaning the residual after printing the sample was obtained
from Sigma Aldrich (Burlington, MA, USA).

2.2. Preparation of PHB/UDMA Resin Blends

Four compositions of weight ratio of polyhydroxybutyrate (PHB): 0, 3, 7, 11 wt.% were
incorporated within the urethane dimethacrylate (UDMA) based resin as shown in Table 1.
The PHB powder was put inside the vacuum oven for 24 h to remove any moisture. Then,
PHB powder and UDMA resin were weighed by using analytical balance according to the
weight percentage of compositions that had been decided. They were stirred and stored in
the amber veils to prevent any light exposure. The mixture solution was stirred using a
magnetic stirrer (WiseStir MSH-20D, Witeg, Germany) at a lower rotation per minute (rpm)
at 300 rpm to discard any possibilities for bubble formation. The solutions were left for 24 h
under stirring to achieve a homogenous mixture of all components. The resulting mixture
was then cooled to room temperature for about ten minutes prior printing.

Table 1. Sample compositions of PHB/UDMA resin blends.

Samples Name
Composition of Samples

PHB (wt.%) PHB (g) UDMA (g)

Pure UDMA 0 0.00 15.00
3 wt.% PHB/UDMA 3 0.47 15.00
7 wt.% PHB/UDMA 7 1.13 15.00

11 wt.% PHB/UDMA 11 1.86 15.00
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2.3. 3D Printing Design

The design of the 3D printing model was constructed in CAD software (Blender,
Amsterdam, The Netherlands). A dog-bone shape (63.5 mm × 9.53 mm × 3.2 mm) was used
to evaluate the tensile properties according to ASTM D638 (Type V), whilst a rectangular
shape with V-notched (63.5 mm × 12.7 mm × 3.2 mm) was used for impact properties
according to ASTM D256. Then, a circle shape (diameter = 10 mm; thickness = 1.5 mm)
was used for Fourier transform infrared (FTIR) (Thermo Fisher Scientific, Waltham, MA,
USA), field emission scanning electron microscopy (FESEM) (Jeol JSM-IT800 Schottky
IT800, Tokyo, Japan) and thermogravimetric analysis (TGA) (TGA/DSC 3+ Mettler Toledo,
Columbus, OH, USA); meanwhile, a rectangular shape (19.5 mm × 19.5 mm × 0.5 mm)
was used in X-ray diffraction (XRD) analysis (Rigaku Miniflex 600, Tokyo, Japan). The
completed design was then rendered and exported into a standard triangulated language
(STL) file. Photon S Slicer was used to convert the STL file into a readable file for the SLA
3D printer (Anycubic Photon S, Shenzhen, China) prior to printing.

2.4. 3D Printing of PHB/UDMA Resin Blends

Triplicate samples were printed for each composition by one-time printing using an
SLA 3D Printer with an exposure time of 60 s. The samples were cleaned with isopropanol
(IPA) to remove any residual resin that had not fully cured on the surface of the samples.
The samples were then cured for 60 m at 60 ◦C in an ultraviolet (UV) cure machine (Form
Cure, Formlabs, Somerville, MA, USA). A total of 24 samples for each tensile and impact
test were printed. The samples were then aged in a desiccator for a day (12 samples) and
30 days (12 samples) to evaluate the mechanical properties of 3D printed PHB/UDMA. All
other analyses (FTIR, FESEM, XRD, TGA) were performed after a day of aging in desiccator.
The overview process flow is shown in Figure 1.

Figure 1. The overview process flow of fabrication of 3D printed PHB/UDMA for characterization.

2.5. Viscosity Measurement for Pure UDMA and PHB/UDMA Resin Blends

The viscosity of the pure UDMA resin and PHB/UDMA resin blends were measured
by using a rheometer (DVNext Rheometer, AMETEK Brookfield, Middleborough, MA,
USA). The spindle used was RV-04 set at 50 rotations per minute (rpm). All the measure-
ments were taken at room temperature.
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2.6. Tensile Test

Tensile tests were performed using the dog-bone samples based on Type V of ASTM
D638 (63.5 mm × 9.53 mm × 3.2 mm) using a universal testing machine (Instron 5566,
Instron Corporation, Norwood, MA, USA) with a crosshead speed of 5 mm/min and
equipped with 10 kN load cell. The tests were conducted at ambient temperature and 50%
of relative humidity until the failure of the samples and the stress-strain curve was obtained.

2.7. Impact Test

Impact tests were measured using a rectangular shape with a V-notch according to
ASTM D256 (63.5 mm × 12.7 mm × 3.2 mm) by using an Impact Test with Notcher (Instron
Ceast 9050, Instron Corporation, Norwood, MA, USA) with nominal impact energy at 11 J
and impact velocities of 3.5 m/s.

2.8. Fourier Transform Infrared (FTIR)

Fourier Transform Infrared (FTIR) spectrum test was performed to obtain specific
information about chemical bonds and molecular structure of PHB powder, UDMA resin,
3D printed UDMA, and 3D printed PHB/UDMA blends composites. An FTIR spectrometer
(Nicolet iS50, Thermo Fisher Scientific, Waltham, MA, USA) was used to analyze the
changes in spectra within a range of 400 cm−1–4000 cm−1. The degree of double bond
conversion (DC %) was obtained for each compositions by using Equation (1) [36]:

DC (%) =

[
1 −

(
(1638 cm−1/1608 cm−1)polymer

(1638 cm−1/1608 cm−1)monomer

)]
× 100 (1)

2.9. Field-Emission Scanning Electron Microscopy (FESEM)

The morphology of 3D printed UDMA and PHB/UDMA blends surface were studied
using Field Emission Scanning Electron Microscopy (Jeol JSM-IT800 Schottky IT800, Tokyo,
Japan). The observation and microphotographs for all compositions of 3D printed samples
were taken at 1K resolution.

2.10. X-ray Diffraction (XRD)

The structural characterization of the PHB powder, 3D printed UDMA and PHB/UDMA
were performed by an X-ray diffraction instrument (Rigaku Miniflex 600, Tokyo, Japan). The
X-Ray diffractometer was regulated at 40 kV and 15 mA, with CuKα radiation (λ = 0.154 nm).
The scattering angle was set from 2.5◦ to 30◦ whilst the step duration was set at 10◦ s−1.
All the peaks were observed and identified in concordance with the International Center
for Diffraction Data (ICDD). The crystallinity index for each composition of 3D printed
samples was obtained using OriginPro (OriginLab Corporation, Northampton, MA, USA)
according to the Equation (2):

Crystallinity Index (%) =
Area of all the crystalline peaks

Area of all the crystalline and amorphous peaks
× 100 (2)

2.11. Thermogravimetric Analysis (TGA)

Thermal stability of PHB powder, 3D printed UDMA and 3D printed PHB/UDMA
were studied using a thermogravimetric analyzer by observing the weight loss of the sam-
ples upon heating (TGA/DSC 3+ Mettler Toledo, Columbus, OH, USA). The measurements
were conducted in a nitrogen, N2 atmosphere at a constant flow rate of 20 mL/min, the
heating scan rate of 20 ◦C/min, and the temperature was elevated from 25 ◦C until 700 ◦C.

2.12. Statistical Analysis

Statistical analysis of tensile properties (Young’s modulus, tensile stress and tensile
strain) and impact strength values were performed through the Statistical Package for
the Social Sciences (SPSS v.21) (IBM Corporation, Armonk, NY, USA). As the data were
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found to be consistent with a normal distribution (p > 0.05), the data were then analyzed
using two-way analysis of variance (ANOVA) to study the interaction between the varied
composition of PHB (wt.%) incorporation within UDMA resin and the aging duration of
3D printed PHB/UDMA towards mechanical properties.

3. Results and Discussion
3.1. The Effect Parameters on 3D Printing

The viscosity of the resin plays a crucial role to the 3D printability of the structure.
However, commercialized resins have their specific viscosity. Since PHB powder has been
incorporated into the UDMA resin, its viscosity (PHB/UDMA resin blend) had increased
with the increase in PHB content (Appendix A, Figure A1). Higher concentrations of PHB
tend to form aggregates in the resin, significantly increasing their viscosity [37]. Pure
UDMA resin has a viscosity at 1120 cP at room temperature. The PHB/UDMA resin blends
contained with 11 wt.% of PHB reached a value of 2188 cP. It was the maximum viscosity of
the PHB/UDMA resin blend that has been successfully printed. The 13 wt.% PHB/UDMA
resin blends were unable to be printed due to their high viscosity, which was 3016 cP.

It is observed that the limitation of printability was approximately 2300 cP. Upon
exceeding the limitation, the PHB/UDMA blend solution become very viscous, which then
restricted the flow of the mixtur solution into the center of the vat/tank. Due to this factor,
the amount of resin flowing is insufficient for the material to be printed. Figure 2 shows
the condition of 13 wt.% PHB/UDMA resin blends in the vat of 3D printer before and
after printing.

Figure 2. 13 wt.% of PHB/UDMA resin blends: (a) Before printing; (b) After printing.

The exposure time of UDMA resin towards ultraviolet light also influenced the 3D
printed structure. Commercialized resins have their own specific exposure rate time setting.
As PHB powder was added to the resin, it also disrupted the actual exposure time setting.
After optimization, the optimal parameters for the setting were obtained (Appendix A,
Table A1).

3.2. Tensile Properties

According to the Shapiro–Wilk test, the data of tensile properties are normally dis-
tributed since all the compositions of 3D printed PHB/UDMA showed a significant value
of p > 0.05. Two-way ANOVA statistical analyses were executed to study the significance of
the composition of PHB (wt.%) incorporated within UDMA resin, and the aging duration
of varied 3D printed PHB/UDMA towards tensile properties. The effect of the composition
of PHB (wt.%) incorporation within UDMA resin, effect of aging duration and effect of
the interaction between both of them, were denoted as A, B and A × B, respectively. The
interaction effects of those variables on Young’s modulus, tensile stress and tensile strain
were examined independently. The results of two-way ANOVA are given in Table 2. F and
p values are crucial to establish null hypotheses. If the F-value shown in Table 2 is greater
than the F-value determined by the critical F-value by using F-table, null hypotheses are



Polymers 2022, 14, 4518 7 of 20

rejected [38,39]. The validity of the null hypotheses is determined by the p-value. For
example, in this study when the effect of the composition of PHB (wt.%) incorporation
within UDMA resin on Young’s modulus was investigated, degrees of freedom (DF) in the
numerator was obtained as 3, whilst the DF for the denominator was 8. By using F table,
critical value was determined as 4.27. The F-value observed in Table 2 (=7.34) is larger than
the critical F value (=4.07) at α = 0.05. In this case, null hypotheses can be rejected.

Table 2. Two-way ANOVA results of varied 3D printed PHB/UDMA towards tensile properties.

Two-Way ANOVA
Young’s Modulus Tensile Stress Tensile Strain

A B A × B A B A × B A B A × B

DF 3 1 3 3 1 3 3 1 3
SS 0.183 193.04 0.089 699.88 129.18 65.74 32.74 678.83 17.50
MS 0.061 193.04 0.030 233.29 129.18 21.91 10.91 678.83 5.84

F-value 7.34 23,277.33 3.57 44.16 24.45 4.15 15.02 934.19 8.03
p-value 0.003 0.000 0.038 0.000 0.000 0.024 0.000 0.000 0.002

After implementing the same procedure on duration aging of varied 3D printed
PHB/UDMA as well as the interaction between both of them, F and p-value of these two
independent variables towards tensile properties (Young’s modulus, tensile stress and
tensile strain) were determined. Data given in Table 2 indicate that the composition of PHB
(wt.%) incorporation within UDMA resin, the aging duration and the interaction between
both of them have significant effects on Young’s modulus, tensile stress and tensile strain.

Figure 3 shows the comparison result of Young’s modulus for varied 3D printed
PHB/UDMA. Young’s modulus is defined as the ratio between stress and strain at the
elastic stage of the tensile measurement or better known as the stiffness of a material. As
expected, a slight improvement of Young’s modulus could be observed at higher wt.% of
PHB powder (particles) incorporation within UDMA resin (polymer matrix). The 11 wt.%
PHB/UDMA had achieved 6.6 GPa of Young’s modulus, an increment of 5% compared to
the 3D printed pure UDMA. Many studies proved that the addition of micro/nanoparticles
have significant improvement. In most particulate-polymer composites, hard particles have
much stiffer values rather than the matrix. As PHB powder is a semi-crystalline polymer, its
Young’s modulus crystallinity mostly contributed towards the enhancement of the stiffness
of the 3D printed PHB/UDMA.

Figure 3. Comparative results of Young’s modulus of varied 3D printed PHB/UDMA after a day
and a month of aging.
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Figure 4 shows the comparative results of tensile stress of varied 3D printed PHB/UDMA,
where 3D printed PHB/UDMA exhibited lower tensile stress than 3D printed pure UDMA.
The tensile stress of particulate-polymer composites are highly influenced by three factors,
which are: particle size of filler, particle/matrix interfacial adhesion and particle load-
ing [40]. In these findings, PHB powder acts as filler particles. As PHB powder increased, it
would have detached from the UDMA matrix due to the weak interfacial adhesion between
them. Hence, stress transfer between PHB particles and UDMA matrix became inefficient
due to the poor bonding between them. Therefore, tensile stress reduction occurred by
adding the PHB powder. Moreover, the filler particles tend to agglomerate resulting in
random stress distribution. Consequently, the main crack was initiated due to the inevitably
large size of voids that formed, thus decreasing the tensile stress [41]. It is reported that,
as the agglomeration of filler-particle increased, the distribution of applied stress became
irregular and thereby initiated local stress concentrations. Hence, the cracks will be formed
around the stressed region of the filler–matrix interface [42].

Figure 4. Comparative results of tensile stress of varied 3D printed PHB/UDMA after a day and a
month of aging.

Even though the incorporation of PHB powder weakened the UDMA, it seems that
the PHB could retain the tensile strength after a month of aging in the desiccator at room
temperature. After a month of aging, the 3D printed UDMA had decreased to almost 10%
of its tensile strength. However, the incorporation of PHB within the UDMA matrix seemed
to successfully retain its tensile strength as the 3D printed of 11 wt.% PHB/UDMA only
showed a decrease of below 2% from its tensile strength.

Figure 5 shows that the comparative tensile strain values of varied 3D printed PHB/UDMA.
The strain decreases steadily with the increase in PHB powder incorporation. The lowest
tensile strain recorded at 11 wt.% PHB/UDMA at 1.44%, meanwhile for the 3D printed
pure UDMA it recorded the highest strain at a value of 2.30%. The reduction in strain was
mainly attributed to the lack of deformability of rigid interphase between PHB powder
and the UDMA resin. Many studies have reported that the lower strain in filled polymer
composites was due to the deformation of the filler being much lower than the polymer
matrix. Hence, the filler restricted the polymer matrix to deform more than the overall
deformation of the composites [43].
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Figure 5. Comparative results of tensile strain of varied 3D printed PHB/UDMA after a day and a
month of aging.

3.3. Impact Strength

The Shapiro–Wilk test did not show evidence of non-normality towards the impact
strength for all the varied 3D printed PHB/UDMA. Thus, two-way ANOVA was con-
ducted to observe the significant effect of the composition of PHB (wt.%) incorporated
within UDMA resin and the aging duration of varied 3D printed PHB/UDMA towards
impact strength. Two-way ANOVA results of impact strength of the varied 3D printed
PHB/UDMA are shown in Table 3. The composition of PHB (wt.%) has significant effect
towards impact strength where p < 0.05 (=0.001), however there were not statistical differ-
ences for the aging duration of varied 3D printed PHB/UDMA where p > 0.05 (=0.191).
Thus, there were also not statistically significant differences for the interaction between
those two independent variables towards impact strength.

Table 3. Two-way ANOVA results of impact strength of the varied 3D printed PHB/UDMA.

Two-Way ANOVA
Impact Strength

A B A × B

DF 3 1 3
SS 6.400 0.435 0.441
MS 2.133 0.435 0.147

F-value 9.134 1.861 0.630
p-value 0.001 0.191 0.606

Figure 6 shows the comparative impact strength values of varied 3D printed PHB/UDMA.
The impact strength of 3D printed PHB/UDMA was lower compared to the 3D printed pure
UDMA. The agglomeration of filler induced random stress distribution, initiating cracks at
a certain region within the composites. Moreover, as the PHB content was increased, the
molecular chain of the amorphous phase within the UDMA matrix was restricted. Hence,
the decrease in the impact strength was expected as the PHB loading increased.
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Figure 6. Impact strength of varied 3D printed PHB/UDMA.

The agglomeration of PHB particles which were acting as filler within the UDMA ma-
trix caused the reduction in impact strength as the PHB contents increased. In composites,
the agglomeration is a region that could act as a foreign body. When there were increments
of agglomerates at higher PHB loading, PHB became obstacles that restricted the mobility
of the UDMA molecular chain which later induced failure under stress. An increase in
filler loading does not eventually strengthen the composites. In a certain case, it could
weaken the materials, since more defects were created as the filler fractions become higher.
Moreover, it is important to elucidate that brittleness of the composites was attributed to the
resistance of PHB agglomerations against UDMA deformation. As a result, the propagation
of cracks became much faster due to the lack of plastic deformation and failure to absorb
energy [44]. Thus, the impact strength of the particulate composite is highly affected by the
filler volume fraction.

In addition, the impact strength of the composite is also mainly attributed to its
particle size, adhesion to the matrix, and the uniformity of their distribution in the polymer
composite [45]. The addition of natural fillers to the polymer matrix increased the brittleness
as portrayed by the impact test.

3.4. Fourier Transform Infrared Spectroscopy (FTIR)

For PHB powder, the peaks observed agreed with those found in previous studies. The
ester carbonyl group peak is located at 1729 cm−1 and corresponds to the C=O stretching
modes in the molecular chain. Adsorption band at the C–H group (ester bonding) can be
found at 1279 cm−1. Meanwhile, C–O stretching (ester bonding) depicted a series of bands
from 1163 cm−1 until 1210 cm−1. The bending modes of methyl group appeared at 2969
and 2927 cm−1 whilst a peak at 1377 cm−1 depicted its symmetric bending. The asymmetric
bending of –CH3 and –CH2 is located at 1452 cm−1. Lastly, a weak band of absorbance
peak depicted at 3434 cm−1 corresponds to the hydroxyl group. The molecular structure of
PHB and infrared spectrum of PHB powder are shown in Figures 7a and 8a, respectively.
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Figure 7. The molecular structure: (a) PHB and (b) UDMA.

Figure 8. Infrared spectra of: (a) PHB powder; (b) UDMA resin; 3D printed UDMA and 3D printed
PHB/UDMA.
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The chemical nomenclature of UDMA is 1,6-bis-(metalocriloxi-2-etoxicarbolamino)-
2,4,4-trimethylexane. It contains an aliphatic core and two urethane links. The sharp
absorbance peak at 1709 cm−1 corresponds to the C=O stretching whilst the C=C stretching
mode is depicted at 1637 cm−1. Meanwhile, a wider peak showed between 3200 cm−1

and 3400 cm−1 concordant with the N-H stretching mode, whilst the bending of N-H was
located at 1634 cm−1. Lastly, the C-H stretching mode is located in the range of 2800 cm−1

and 3000 cm−1. The molecular structure of UDMA is shown in Figure 7b, meanwhile
Figure 8b shows the infrared spectra for UDMA resin and varied 3D printed PHB/UDMA.

The structure-property of the dimethacrylate polymer network can be elucidated
further by determining the degree of double bond conversion (DC). The peak located at
1637 cm−1 and 816 cm−1 corresponds to the stretching modes of the vinyl group and the
twisting of the carbon–carbon double bond, respectively. The intensity of these peaks
showed the amount of the vinyl double bonds that remained after the samples were cured
with the light. Even though both peaks have been utilized for the determination of the
acrylates and methacrylates polymerization, the absorption peak depicted at 1637 cm−1

has been selected as the bond is stronger than the latter one, and due to that, it is the most
commonly used.

In poly(dimethacrylate), the DC could not achieve at full capacity [46]. The char-
acterization of polymer network by DC that resulted below 50% is invalid in practical
applications due to the sol fraction formation [29]. The degree of DC in 3D printed UDMA
is much higher than that of 3D printed PHB/UDMA shown in Table 4. However, only
3 wt.% PHB/UDMA obtained 51.17% of DC. For 7 and 11 wt.% of PHB loading, the
minimum degree of double bond conversion has surpassed the minimum value for the
clinical application. A previous study reported that the recommendation for the clinical
application should be at least 55% of DC in the polymer network [47]. The detachment of
the uncured resin, or better known as leaching, could trigger inflammation in the tissues
and significantly affect towards organism [48].

Table 4. Peak heights and resulting DC (%) for 3D printed UDMA and PHB/UDMA.

Composition
Absorbance Peak

Degree of Conversion (%)
1637 1608

Pure UDMA 0.0404 0.0265 63.73
3 wt.% PHB/UDMA 0.0421 0.0207 51.17
7 wt.% PHB/UDMA 0.0505 0.0274 55.68

11 wt.% PHB/UDMA 0.0382 0.0213 56.86

3.5. X-ray Diffraction (XRD)

Figure 9 represents the XRD patterns for PHB powder, 3D printed pure UDMA and
3D printed PHB/UDMA. As was expected, no sharp peak belongs to the 3D printed
UDMA as it is an amorphous solid material. The XRD pattern of PHB powder depicted
a series of crystalline peaks that had been recognized by the Joint Committee on Powder
Diffraction Standards (JCPDS) located at 13.5◦, 16.9◦, and 25.5◦. The unit cell of PHB has an
orthorhombic system crystalline structure. The peaks at the 2θ = 13.5◦, 16.9◦, and 25.5◦ were
also detected in the XRD patterns of 3D printed PHB/UDMA, which were recognized to be
(020), (110), and (130), respectively [49]. This proved that the incorporation of PHB within
the amorphous UDMA resin induced the crystallinity of the 3D printed PHB/UDMA.
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Figure 9. X-ray diffraction patterns of PHB powder, 3D printed UDMA and 3D printed PHB/UDMA.

As the content of filler increases, more crystalline peaks appear in the 3D printed
PHB/UDMA. The hypothesis was proven as there were clear sharp peaks present when the
PHB content increased. The crystallinity index (CI) for the PHB powder was 91.52%, whilst
for the 3 wt.% PHB/UDMA showed about 10.34% of CI. Eventually, 11 wt.% PHB/UDMA
portrayed the highest CI for the 3D printed composites at 34.98%. This result proved that
the brittleness of the 3D printed PHB/UDMA was increased as the sharp peaks that belong
to the PHB became obvious as the PHB contents increased. Table 5 shows the CI for the
varied 3D printed PHB/UDMA.

Table 5. Crystallinity index (CI) for PHB powder and 3D printed PHB/UDMA.

Composition Crystallinity Index (%)

PHB powder 91.52
3 wt.% PHB/UDMA 10.34
7 wt.% PHB/UDMA 26.74
11 wt.% PHB/UDMA 34.98

3.6. Field Emission Scanning Electron Microscopy (FESEM)

FESEM microphotographs of 3D printed pure UDMA and 3D printed PHB/UDMA
are shown in Figure 10. The surface of 3D printed pure UDMA is smooth with a laminar-
like structure, whereas for the 3D printed PHB/UDMA it portrayed irregular microspheres
of approximately 1 µm in size. PHB powder was deposited within the UDMA resin and
shrouded in a bigger region as its content increased. As the PHB loading was increased,
more agglomerations could be observed, and thus it can be correlated with the decrease
of the tensile strength 3D printed by PHB/UDMA. As the PHB contents increased, more
voids or micro-cracks can be seen. This might be contributed to the scarcity of uniform
dispersion between PHB powders and the UDMA resin.
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Figure 10. FESEM microphotographs of 3D printed: (a) UDMA; (b) 3 wt.% PHB/UDMA; (c) 7 wt.%
PHB/UDMA and (d) 11 wt.% PHB/UDMA.

In most particulate composites, the particles of filler are not uniformly distributed.
The composites have local domains where the particles are clustered together [50]. When
the PHB particles agglomerate in clusters, the diameter of its phase increases. Thus, the
effects of aggregations of particles as clusters can be correlated with the decrease in tensile
and impact strength of 3D printed PHB/UDMA. Experimental findings show that there is
a strong correlation between the strength of 3D printed PHB/UDMA and the distribution
fraction of PHB particles. Hence, the results were in good agreement with the clustering
effect of PHB particles that act as fillers towards the mechanical properties.

3.7. Thermogravimetric Analysis (TGA)

It can be observed that 3D printed UDMA exhibited a two-step degradation mecha-
nism. It was expected for the photo-polymerization resin composites to have two or three
mass loss steps during decomposition [51]. For the PHB powder, it was observed that only
a thermal event occurred started at 262 ◦C and up to 326 ◦C with a weight loss at 95.06%.
The maximum peak of degradation rate for PHB powder depicted at 305 ◦C as shown in
Figure 11a.

Figure 11b shows the thermogravimetric analysis (TGA) curves of varied 3D printed
PHB/UDMA, where 3D printed UDMA portrayed two steps of thermal degradation
started at 262 ◦C and completed at 496 ◦C, leaving some solid residue at 6.65%. The first
maximum in the degradation rate occurred at 376 ◦C, whilst the second was at 454 ◦C.
The first degradation involved with the end-chain scission (vinylidene end groups) was
attributed to the termination by disproportionation reaction during polymerization. The
latter degradation was induced by the random scission at abnormal head-to-head linkages.
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Figure 11. The thermal graphs of: (a) TGA and dTGA of PHB powder; (b) TGA curves of 3D printed
PHB/UDMA and (c) dTGA curves of 3D printed PHB/UDMA.

As the PHB contents were increased, an additional peak gradually started to appear for
3D printed PHB/UDMA as shown in Figure 11c. Therefore, for the 3D printed PHB/UDMA
it consisted of three steps of thermal degradation. The first peak of maximum degradation
rate for 3D printed PHB/UDMA started to shift to the lower temperature as the PHB
contents increased. They showed at 341 ◦C, 335 ◦C, 327 ◦C for 3, 7 and 11 wt.% PHB/UDMA,
respectively, as shown in Table 6.

Table 6. Thermal events of thermal degradation and their corresponding of weight loss (%).

Sample PHB
Powder

Pure
UDMA

3 wt.%
PHB/UDMA

7 wt.%
PHB/UDMA

11 wt.%
PHB/UDMA

T1 (◦C) 262–326 262–411 298–348 263–342 262–341
T2 (◦C) - 411–496 348–405 342–406 341–405
T3 (◦C) - - 405–510 406–504 405–510

Residual weight 4.95 6.65 9.53 6.47 3.45
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3.8. Application for 3D Printed Casting

The process began with the 3D scanning of the broken arm to obtain the ergonomic
structure. The model patient required to stay still at least 60 s for the scanning to take place.
The speed for the acquisition of the anatomy patient’s hand was nonetheless a fundamental
procedure to maximize the precision and accuracy of the 3D images that would be obtained.
The steadiness of the actual patient would become the biggest challenge; however, it
was noted that this research only focused on the feasibility of its printability, mechanical
properties and its potential for the fractured-bone patient.

The 3D images obtained from the scanning were transposed in the 3D modelling
software (Blender, Amsterdam, The Netherlands). The 3D model file was further refined at
a certain region that could not be fully scanned since the movement of the patients’ hand
disrupted the actual design. After 3D reconstruction and editing of the 3D model file had
finished, the file was then converted into an STL file format that was compatible with the
SLA 3D printer. The optimal support was defined at the vulnerable areas and to the exact
limb size for a snug fit prior to printing.

The 7 wt.% of PHB/UDMA resin blends formulation was selected to print the cast
as it the most recommended based on its mechanical properties, structure, crystallinity
and thermal evaluation concordance with the preceding analysis that had been made. The
printing exposure time was set at 60 s, as that was the optimized setting according to the
previous evaluation to ensure a fine cast could be printed (Appendix A, Table A2). The
weight of the PHB/UDMA resin blends required to 3D print a cast was approximately 50 g.
The cast was further cleaned with the IPA to remove any residue of uncured resin. Then, it
had been cured using a cure machine for about an hour at 60 ◦C.

The traditional casting for fractured-bone patients has caused discomfort to them
as the cast used had poor ventilation and did not fit properly according to the needs of
patients. The 3D printing technology has been integrated to produce a cast with the aim
of creating a cast that comes with the features that can mitigate these issues. Therefore,
a ventilated and lighter 3D printed cast had been successfully manufactured. The flow
processes of the 3D printed cast are shown in Figure 12. The CAD model of the cast is
shown in Figure 13a whilst the 3D printed cast is shown in Figure 13b.

Figure 12. The development of 3D printed cast.

Figure 13. (a) The 3D model of cast; (b) 3D printed cast.
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4. Conclusions

This study focused on the 3D printability and mechanical properties of materials that
could be utilized in medical applications. The chemical reaction that occurs at the double
bonds in acrylates or methacrylate induced by the free radical mechanism performed by
the photo-initiator, will be manifested in terms of 3D structure when exposed to light.
The printable UDMA resin with a composition of up to 11 wt.% of PHB powder loading
was developed for SLA 3D printing. Since PHB did not contain any of those functional
groups, the UDMA-based resin could complement each other since PHB could retain
its mechanical properties over the month. The tensile strength 3D printed at 11 wt.%
PHB/UDMA only decreased by about 2% of its strength after a month of aging. The pure
3D printed UDMA decreased significantly up to almost 10% of its strength after a month
of aging. A 3D printed cast based on 7 wt.% PHB/UDMA resin blend formulation was
successfully developed. The material could be utilized for temporary medical devices such
as casting for the fracture-bone patient.
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Appendix A

Figure A1. Viscosities of pure UDMA resin and PHB/UDMA resin blends at room temperature.
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Table A1. The optimized parameter settings for PHB/UDMA resin blends.

Parameters Value

Layer thickness (mm) 0.05
Normal exposure time (s) 60.00

Off time (s) 1.00
Bottom exposure time (s) 60.00

Bottom layers 8

Table A2. 3D printer setting parameters for 3D printed cast.

Parameters Values

Layer thickness (mm) 0.05
Normal exposure time (s) 60.00

Off time (s) 1.00
Bottom exposure time (s) 60.00

Bottom layers 8
XY resolution (µm) 47

Y axis resolution (µm) 1.25
Layer resolution (µm) 25–100
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