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Abstract: In automobiles, lock parts are matched with inserts, and this is a crucial quality standard 

for the dimensional accuracy of the molding. This study employed moldflow analysis to explore 

the influence of various injection molding process parameters on the warpage deformation. De-

formation of the plastic part is caused by the nonuniform product temperature distribution in the 

manufacturing process. Furthermore, improper parameter design leads to substantial warpage and 

deformation. The Taguchi robust design method and gray correlation analysis were used to opti-

mize the process parameters. Multiobjective quality analysis was performed for achieving a uni-

form temperature distribution and reducing the warpage deformation to obtain the optimal injec-

tion molding process parameters. Subsequently, three water cooling system designs—original 

cooling, U-shaped cooling, and conformal cooling—were tested to modify the temperature distri-

bution and reduce the warpage. Taguchi gray correlation analysis revealed that the main influ-

encing parameter was the mold temperature followed by the holding pressure. Moreover, the 

results indicated that the conformal cooling system improved the average temperature distribu-

tion. 

Keywords: injection molding; Taguchi Method; gray relational analysis; warpage; temperature 

distribution; conformal cooling 

 

1. Introduction 

With developments in the plastics industry, injection molding has become the most 

widely used technique for molding plastic, with most plastic products manufactured 

using this approach. This technique affords excellent dimensional accuracy, stability, and 

surface accuracy. The main factor influencing the quality of injection-molded products is 

the selection of the process parameters. The product quality varies with different process 

settings and conditions. Therefore, the selection and setting of suitable process parame-

ters is crucial in injection molding. The process parameters for mold production are typ-

ically established through trial-and-error or heuristic rules. This approach hampers 

quality improvement. Therefore, in this study, we adopted a systematic modeling ap-

proach to perform the single- and multiobjective quality optimization of the process pa-

rameters used in injection molding. 

Technological developments have resulted in the introduction of computer-aided 

design and computer-aided engineering (CAE) simulation methods to assist developers 

in analyzing and predicting problems relating to injection molding and production. 
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These technologies help to reduce the number of trials required and to maximize product 

quality. In this study, we performed a moldflow analysis (Moldex3D) using CAE. In 

CAE, the finite element method (FEM) is generally used to simulate the various material 

conditions in the mold cavity during plastic injection molding. The simulation results can 

serve as a reference for establishing the injection molding parameters and model design, 

thereby stimulating product development and reducing production and mold design 

costs [1]. Currently, plastic injection molding is widely used in the manufacturing of au-

tomotive parts and components such as bumpers, lights, dashboards, and connectors. In 

particular, auto lock parts are structurally complex and require high fitting accuracy. 

Finished lock parts often exhibit warpage deformation, volume shrinkage, and suture 

flaws [2]. Therefore, the selection and setting of the process parameters are vital. 

Rosaa et al. [3] advocated the wide use of experimental design for optimizing the 

molding parameters and thereby improving product quality. The Taguchi method can be 

effectively used to reduce the number of tests required, thereby enhancing the test effi-

ciency. Gu et al. [4] applied the Taguchi robust design method to analyze the injection 

molding process of recycled plastic (specifically, polypropylene). Their findings vali-

dated that optimizing the process parameters effectively improved the mechanical per-

formance. Wang et al. [5] applied the Taguchi robust design method to examine the ef-

fects of plastic valves on the optimization of the process parameter design. The results of 

an FEM CAE analysis indicated that the mold temperature was the primary factor in-

fluencing molding. Marinset al. [6] applied the Taguchi method and conducted an anal-

ysis of variance (ANOVA) to examine the flaws of injection molding and to evaluate the 

effects of various injection molding parameters on warpage and shrinkage. They found 

that the holding time and holding pressure were the key factors influencing warpage and 

bending. Chen and Huang [7] integrated the analytic hierarchy process and Taguchi 

method to investigate injection molding warpage. They used the Taguchi design data to 

analyze four factors—injection pressure, holding pressure, holding time, and mold tem-

perature—and they determined the optimal parameter combination to minimize warpage. 

Chang et al. [8] adopted gray relational analysis combined with a fuzzy method to 

optimize the process parameters for manufacturing cellphone cases. The results of a finite 

element analysis indicated that the mold temperature and holding pressure were the 

main factors influencing the volume shrinkage and temperature distribution. Lin and 

Chen [9] applied the Taguchi method and gray relational analysis to analyze the multi-

objective optimization of injection-molded plastic lenses. Their simulation results con-

firmed that the joint optimization process yielded an effective improvement in the qual-

ity of the injection-molded lens. Sreedharan et al. [10] used gray relational analysis to 

achieve multiobjective optimization for multistage sequential plastic injection molding. 

Their experimental results indicated that the optimal settings produced the expected re-

sponses. 

Ahn [11] examined different processes for producing conformal cooling channel 

molds and analyzed the thermal transfer of various conformal cooling channels. Juan et 

al. [12] compared the cooling channels of thin-walled products produced automatically 

and manually using software. Cooling channels that were manually designed based on 

the product shape exhibited significantly less warpage. Wang et al. [13] examined the 

incorporation of a cooling channel design within a complex automotive part. Subse-

quently, they analyzed and tested the modified cooling channel design. They found that 

a uniform mold temperature distribution was achieved and that the surface accuracy of 

the plastic part was enhanced. 

In this study, we examined an auto lock part production line. Warpage deformation 

was a major problem in the production process, causing misalignment and inaccurate 

assembly. We combined CAE software with a smart modeling process to address this 

problem. First, we conducted a CAE moldflow analysis and adopted the Taguchi robust 

design method to identify a suitable parameter combination to optimize individual sin-

gle-quality factors and to examine the warpage deformation volume and average tem-



Polymers 2022, 14, 644 3 of 22 
 

 

perature. Subsequently, we examined the Taguchi experiment data and conducted a gray 

relational analysis to identify the optimal parameter combination for the multiobjective 

quality process. Next, we compared the warpage deformation volume and the average 

temperature of the modified process with those of the original process. Finally, we in-

corporated the optimal parameter combinations for the multiobjective quality process 

into several cooling channel system designs—original cooling, square cooling and con-

formal cooling—for comparison and analysis. 

2. Experimental 

2.1. Construction of Auto Lock Spare Parts 

Figure 1 displays the shape of the auto lock parts examined in this study. The orig-

inal design had a four-cavity configuration. The diameter and height of Part A were 58 

mm and 39.20 mm, respectively, and those of Part B were 54.95 and 18.11 mm, respec-

tively. The mold material was NAK80. The injection molding process was simulated us-

ing polyamide (PA66). This material exhibits excellent tensile strength, impact resistance, 

self-lubrication, and abrasion resistance. Owing to its excellent mechanical and thermal 

resistance, favorable barrier properties, and recyclability [14], PA66 is widely used in 

automotive parts and components. Table 1 lists the basic characteristics of PA66. Mold-

ex3D was adopted as the CAE software in this study, and the Moldex3D/Solid module 

and Moldex3D-Mesh module were adopted as the primary and secondary analysis tools, 

respectively. The mesh comprised 750,000 cells and approximately 700,000 nodes (Figure 

2). The original cooling (square) system was used in the two experimental stages of 

Taguchi robust design process and gray relational analysis. 

Table 1. PA66 Material Characteristics. 

Mechanical Properties PA66 

Density 1.14 (g/cc) 

Poisson’s ratio 0.3 

Modulus E 2 × 1010 (dyne/cm2) 

CLTE 7.5 × 10−5 (1/K) 

Fiber Weight Percentage 33 (%) 

Percentage 275–305 °C 

Melt Temperature 1.14 (g/cc) 

 

Figure 1. Photograph of a Car Lock Part. (A) Part A with the diameter and height 58 mm and 39.20 

mm and (B) Part B with the diameter and height 54.95 and 18.11 mm. 
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Figure 2. Mesh Figure of a Car Lock Part. 

2.2. Simulation and Analysis of Original Process Parameters and Comparison of Plastic Products 

To clarify the status of auto lock parts, we adopted the process parameters provided 

by the manufacturer as the original ones (Table 2). These were then imported into the 

CAE software for simulation and analysis. To ensure that the simulations conformed to 

real-world conditions, we measured the warpage of the product using the Tesa Mi-

cro-Hite 3D 4.5.4 coordinate measuring machine with a measurement accuracy of 0.001 

mm. Subsequently, we cross-validated the CAE simulation results. Twelve points on the 

lock part were measured (Figure 3). We then compared the Z-axis warpage value of the 

actual measurements and that of the simulation results (Table 3). The results indicated 

that the simulation results were highly similar to the actual measurements. The total av-

erage comparison error was within 1.16%. The trend chart illustrated in Figure 4 vali-

dated that the simulation results were consistent with actual production conditions. 

Table 2. Original Process Parameters. 

Factors Level 

A. Injection Time (s) 1 

B. Material Temp. (°C) 245 

C. Mold Temp.(°C) 65 

D. Injection Press. (MPa) 120 

E. Packing Press. (MPa) 130 

Table 3. Comparison of Actual and Simulation Measurements of Z-axis Warpage Deformation. 

Point Actual Measurement (mm) Simulation (mm) Error (%) 

1 0.50 0.54 1.08 

2 −0.52 −0.62 1.19 

3 0.39 0.44 1.13 

4 0.59 0.48 0.81 

5 −0.24 −0.26 1.08 

6 0.55 0.42 0.76 

7 0.48 0.50 1.04 

8 −0.44 −0.61 1.34 

9 0.23 0.49 2.13 

10 0.46 0.47 1.02 

11 −0.19 −0.26 1.37 

12 0.43 0.42 0.98 

AVG   1.16 
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Figure 3. Schematic of Locations of Measurement Points for Car Lock Part. 

 

Figure 4. Comparison of Actual and Simulated Measurement Points. 

2.3. Taguchi Robust Design Process and Gray Relational Analysis 

We divided the experimental framework into three parts. In the first part, the 

Taguchi robust design method was used to examine the warpage and average tempera-

ture of the auto lock part and to derive a single-objective optimization design. In the 

second part, gray relational analysis was conducted. In the third part, the performance of 

the multicharacteristic optimal parameter combinations in various cooling systems and 

the effects of these combinations on the warpage and average temperature were com-

pared. Figure 5 presents the overall experimental procedure. 
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Figure 5. Overall Flowchart of Experiment. 

2.4. Taguchi Robust Design Process 

We selected an L16(45) orthogonal array for testing. We performed moldflow simu-

lations (Moldex3D) based on the parameter combinations on the orthogonal array and 

determined the optimal parameters for the injection molding of the auto lock parts on the 

basis of the signal-to noise (S/N) ratios. The S/N ratios were also used as the ANOVA 

data to validate the experiment and to determine the factor contribution. Table 4 lists the 

parameters and levels for the Taguchi robust design method. The warpage and average 

temperature of the auto lock parts were adopted as the optimal single-objective parame-

ters. The total warpage and average temperature of the auto lock parts were adopted as 

the optimal performance characteristics. A low performance characteristic value is pre-

ferred. Therefore, the quality setting was defined as a static smaller-the-better character-

istic. 

Taguchi methods are the most widely applied robust design methods in the plan-

ning of process parameters [15,16]. The optimization of the injection molded parameters 

was considered a static problem with smaller-the-better S/N ratios, and it is expressed as: 
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S N⁄ = −10log�� �
1
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�

���

� (1)

where n is the number of instances observed in each experimental combination, and �� is 

the ith datum in the experimental combination. 

Table 4. Control Factors and Levels. 

Control Factors 
Level 

1 2 3 4 

A. Injection Time (s) 0.6 0.8 1.0 1.2 

B. Material Temp. (°C) 245 255 265 275 

C. Mold Temp.(°C) 65 75 85 95 

D. Injection Press. (MPa) 120 125 130 135 

E. Packing Press. (MPa) 130 135 140 145 

2.5. Taguchi Gray Relational Analysis Method 

In real-world manufacturing, single-objective quality characteristics cannot satisfy 

process demands; only multiobjective quality characteristics can. Therefore, the optimi-

zation analysis of multiobjective quality parameters was required to achieve the objec-

tives of this study. The Taguchi gray relational analysis method is a multiobjective opti-

mization analysis method. It can accurately improve the quality of multiobjective char-

acteristics [17–19]. The S/N ratios obtained using the Taguchi method must be normal-

ized. Therefore, we selected a suitable gray relation molding equation to determine the 

gray relation coefficients. We also calculated the average values to determine the degree 

of gray relation among the coefficients. The S/N ratio of each single-quality characteristic 

was normalized using gray correlation generation, as expressed in Equation (2). The 

normalized values were between 0 and 1. The normalized data were then incorporated 

into a gray relational analysis to calculate the gray relational coefficient, as expressed in 

Equation (3). The mean value of a gray relational coefficient represents a gray relation. 

Gray relations were calculated using Equation (4) and sorted in descending order. 

��
∗(�) =

��
(�)

(�)������� �[��
(�)

(�)]

������ ����
(�)

(�)�������� �[��
(�)

(�)]
, (2)

where ��
∗(�)  represents the gray relational values, and ������ ����

(�)(�)�  and 

������ �[��
(�)(�)] respectively represent the largest and smallest values in the ��

∗(�) se-

quence. 

� ���(�), ��(�)� =
∆�����∆���

∆��(�)��∆���
, (3)

where � ���(�), ��(�)� represents the gray relational coefficients, ∆��(�) represents the 

sequence differences between corresponding positions in sequence ��(�) and subse-

quence ��(�), and � represents the identification coefficient (generally, 0.5). 

R���, ��� =
�

�
∑ �(��(�), ��

�
��� (�)). (4)

2.6. Comparison and Analysis of Different Cooling Channel Systems 

A nonuniform mold temperature distribution causes thermal stress, leading to 

warpage deformation. Ineffective cooling channel designs not only increase the molding 

time but also cause uneven cooling, resulting in plastic warpage deformation. In this 

study, we examined three cooling configurations: original cooling, U-shaped cooling, 

and conformal cooling, as illustrated in Figure 6. To effectively remove heat, the 

U-shaped cooling channel design features three cooling channels that are placed above 



Polymers 2022, 14, 644 8 of 22 
 

 

and below the product. In the conformal cooling channel design, cooling channels are 

placed according to the shape of the auto lock parts, which effectively increases the 

cooling efficiency [20–23]. The channels surrounded the outer boundaries of the lock 

parts and were concentrated in regions with slow heat dissipation to enhance cooling ef-

ficiency. Table 5 presents a basic comparison of the three cooling channel systems. We 

observed whether conformal cooling improved the auto lock parts and the effects of 

conformal cooling on the temperature distribution and warpage of the parts. 

 

(a) Original cooling 

 

(b) U-shaped cooling 
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(c) Conformal cooling 

Figure 6. Cooling Configurations. 

Table 5. Comparison of Different Water Cooling Systems. 

Type 
Number of Water 

Inlets 

Number of Water 

Outlet 
Reynolds Number Cooling Liquid 

Inlet Water 

Temperature 

Original Cooling 2 2 6570 Oil 65 °C 

U-shaped Cooling 6 6 6570 Oil 65 °C 

Conformal Cooling 11 11 6570 Oil 65 °C 

3. Experimental Results 

The experimental results are presented in four parts: optimization of process pa-

rameters for warpage deformation volume, optimization of process parameters for tem-

perature distribution, optimal multiobjective quality parameter combination, and com-

parison and analysis of different cooling channel system designs. 

3.1. Optimal Process Parameters for Total Warpage Deformation Volume 

We tested the 16 process parameter combinations in the orthogonal array and ex-

amined the warpage deformation volume results to obtain the S/N ratios (Table 6). A to-

tal warpage response table for the process parameters at different levels is presented in 

Table 7. The test results indicated that the optimal process parameter combination was 

A1B2C2D1E4, where A1 is injection time (0.6 s), B2 is material temperature (255 °C), C2 is 

mold temperature (75 °C), D1 is injection pressure (120 MPa), and E4 is holding pressure 

(145 MPa). The optimal total warpage value was 0.61 mm, representing a 0.29-mm in-

crease compared with the original process (Table 8). The total warpage deformation re-

sults simulated using the original and optimal process parameters are indicated in Figure 

7a,b, respectively. Factor contribution was determined on the basis of the ANOVA results 

in Table 9. In descending order of contribution, the factors were holding pressure 

(51.96%), material temperature (22.68%), injection time (14.92%), and mold temperature 

(7.31%). 
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Table 6. S/N Ratios of Total Warpage. 

No. Warpage (mm) S/N 

1 0.69 3.27 

2 0.65 3.80 

3 0.64 3.82 

4 0.65 3.72 

5 0.63 4.00 

6 0.64 3.83 

7 0.67 3.48 

8 0.73 2.79 

9 0.71 2.92 

10 0.71 3.01 

11 0.63 3.95 

12 0.69 3.25 

13 0.74 2.70 

14 0.62 4.08 

15 0.70 3.09 

16 0.71 3.02 

Table 7. Total Warpage Deformation Response. 

Factor A B C D E 

Level 1 3.65 3.22 3.52 3.51 3.04 

Level 2 3.53 3.68 3.54 3.31 3.30 

Level 3 3.28 3.59 3.40 3.46 3.40 

Level 4 3.22 3.20 3.23 3.39 3.94 

Effect 0.43 0.49 0.31 0.21 0.90 

Rank 3 2 4 5 1 

Optimal parameters A1 B2 C2 D1 E4 

Table 8. Confirmation of Total Warpage Deformation. 

No. Factor Warpage (mm) 

Original Process Parameters  0.90 

Orthogonal Array Worst (No.13) A4B1C4D3E2 0.74 

Orthogonal Array Best (No.14) A4B2C3D4E1 0.62 

Optimization A1B2C2D1E4 0.61 

Table 9. Variance Analysis of Total Warpage Deformation. 

Factor DOF Seq SS MS Contribution 

A 3 0.49 0.16 14.92(%) 

B 3 0.75 0.25 22.68(%) 

C 3 0.24 0.08 7.31(%) 

D   Pooled  

E 3 1.17 0.57 51.96(%) 

Error 3 0.10 0.03 3.13(%) 

Total 15 3.29  100(%) 
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(a) Original process 

 

(b) Optimization 

Figure 7. Total Warpage. 

3.2. Optimal Process Parameters for Average Temperature Difference 

We tested the 16 process parameter combinations in the orthogonal array and ex-

amined the average temperature difference results to obtain the S/N ratios (Table 10). 

Table 11 presents the average temperature difference response for the process parameters 

at different levels. The test results indicated that the optimal process parameter combi-

nation was A1B1C1D2E1, where A1 is injection time (0.6 s), B1 is material temperature 

(250 °C), C1 is mold temperature (65 °C), D2 is injection pressure (125 MPa), and E1 is 

holding pressure (130 MPa). Therefore, this parameter combination was the optimal pa-

rameter for the average temperature difference in injection molding, and it reduced the 

average temperature difference by 6.84 °C compared with the original process parame-

ters (Table 12). The postfill average temperature difference results simulated using the 

original and optimal process parameters are displayed in Figure 8a,b, respectively. The 
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factor contribution was determined according to the ANOVA results in Table 13. In de-

scending order of contribution, the factors were mold temperature (64.70%), injection 

pressure (14.75%), material temperature (8.34%), and injection time (6.23%). 

Table 10. S/N Ratios of Average Temperature Difference. 

No. Average Temperature Difference (°C) S/N 

1 9.19 −19.27 

2 11.28 −21.05 

3 14.36 −23.14 

4 16.74 −24.48 

5 11.73 −21.39 

6 14.12 −22.99 

7 21.35 −26.59 

8 12.33 −21.82 

9 15.41 −23.75 

10 16.66 −24.43 

11 10.27 −20.23 

12 11.42 −21.15 

13 14.04 −22.95 

14 14.00 −22.92 

15 13.29 −22.47 

16 11.52 −21.23 

Table 11. Average Temperature Difference Response. 

Factor A B C D E 

Level 1 −21.98 −21.84 −20.93 −22.48 −22.00 

Level 2 −23.2 −22.85 −21.51 −21.51 −23.15 

Level 3 −22.39 −23.11 −22.91 −22.55 −22.56 

Level 4 −22.39 −23.17 −24.61 −23.42 −22.25 

Effect 1.21 1.27 3.68 1.91 1.16 

Rank 4 3 1 2 5 

Optimal parameters A1 B1 C1 D2 E1 

Table 12. Average Temperature Difference Validation Test. 

No. Factor Average Temperature Difference (°C) 

Original process parameters  14.43 

Orthogonal Array Worst (No.7) A2B3C4D2E1 21.35 

Orthogonal Array Best (No.1) A1B1C1D1E1 9.19 

Optimization A1B1C1D2E1 7.59 

Table 13. Variance Analysis of Average Temperature Difference. 

Factor DOF Seq SS MS Contribution 

A 3 3.10 1.03 6.23(%) 

B 3 4.15 1.38 8.34(%) 

C 3 32.21 10.74 64.70(%) 

D 3 7.35 2.45 14.75(%) 

E   Pooled  

Error 3 2.98 0.99 5.98(%) 

Total 15 49.79  100(%) 
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(a) Original process 

 

(b) Optimization 

Figure 8. Average Temperature Distribution. 

3.3. Multiobjective Optimization Parameters 

To identify the optimal parameters for multiobjective quality characteristics that 

meet industrial requirements, we combined the gray relational analysis method with the 

Taguchi robust design method. First, the S/N ratios for the 16 parameter combinations 

for warpage and average temperature difference in the Taguchi orthogonal array were 

incorporated into Equation (2) to calculate their gray relations and normalize the data. 

The S/N ratios were converted into a value between 0 and 1 (Table 14). The normalized 

S/N ratios for the quality characteristics were then incorporated into Equation (3) to cal-

culate the gray relational coefficients at an identification coefficient of 0.5. Finally, the 

coefficients were incorporated into Equation (4) to determine the gray relation degrees. 

The degrees were ordered in descending order (Table 15). 

The gray relation degrees were consolidated into a response table using various 

factor levels (Table 16), indicating the changes in the different factors at specific levels. 

The factor response table and diagram reveal that the optimal process parameter com-

bination for analyzing the multiobjective quality characteristics in the injection molding 

of auto lock parts was A1B2C1D1E4, where A1 is injection time (0.6 s), B2 is material 
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temperature (260 °C), C1 is mold temperature (65 °C), D1 is injection pressure (120 MPa), 

and E4 is holding pressure (140 MPa). Because this combination differed from all the 

other ones in the orthogonal array, it had to be validated and compared with the original 

process parameter combinations and the single-objective (warpage and average temper-

ature difference) parameter combinations (Table 17). The multiobjective optimization 

warpage value was 0.62 mm. The warpage results simulated using the original process 

parameter are presented in Figure 7a, and those simulated using the multiobjective op-

timization are shown in Figure 9a. The average temperature difference obtained using 

the multiobjective optimization was 10.16 °C. Compared with the single-objective opti-

mization (warpage 0.61 mm and average temperature difference 7.59 °C, the multiobjec-

tive optimization must consider the two-objective optimization characteristics and thus 

lose some quality characteristics. We compared the results with the two single-objective 

optimal quality characteristics. We noted a 1.6% loss in warpage quality and a 5.2% loss 

in average temperature difference quality. The average temperature difference obtained 

by optimization using the original process parameters is shown in Figure 8a, and that 

obtained by the multiobjective optimization is shown in Figure 9b. The test results indi-

cated that the parameters obtained using the multiobjective optimization substantially 

improved the warpage and average temperature difference. However, the multiobjective 

optimal parameters covered multiple quality characteristics. 

 

(a) Warpage with multiobjective optimization 

 

(b) Average temperature difference with multiobjective optimization 

Figure 9. Warpage and Average Temperature Difference with Multiobjective Optimization. 
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Figure 10 presents a comparison of the temperature interval values. The figure 

shows that the main postfill average temperature range (220–240 °C) of the original pro-

cess accounted for 57.15%, followed by the 260–240 °C range (16.32%), and the 200–220 

°C range (15.67%). A significant difference was observed between the main temperature 

interval (220–240 °C) and the other two intervals. For the optimized process using the 

multiobjective optimization parameters, the main postfill average temperature range 

was 260–240 °C, which accounted for 53.21%, followed by 240–220 °C (32.07%). These 

two intervals collectively accounted for 85.28%. The temperature distribution variance of 

the optimized process was smaller than that of the other processes, and it reduced the 

likelihood of uneven cooling rates caused by large temperature fluctuations and mini-

mized obvious injection flaws at the bonding sites due to warpage deformation. 

Table 14. Variance Analysis of Average Temperature Difference. 

No. 
Warpage 

S/N Ratio 

Average Temperature Difference 

S/N Ratio 

1 1.00 0.70 

2 0.86 0.87 

3 0.73 0.88 

4 0.67 0.84 

5 0.83 0.96 

6 0.74 0.89 

7 0.59 0.77 

8 0.80 0.61 

9 0.70 0.63 

10 0.68 0.65 

11 0.91 0.93 

12 0.85 0.71 

13 0.74 0.59 

14 0.75 1.00 

15 0.77 0.67 

16 0.84 0.66 

Table 15. Gray Correlation Degree and Rank. 

NO. Gray Relation Rank 

1 0.85 5 

2 0.86 4 

3 0.81 7 

4 0.76 9 

5 0.90 2 

6 0.82 6 

7 0.68 13 

8 0.71 12 

9 0.67 14 

10 0.66 16 

11 0.93 1 

12 0.78 8 

13 0.67 15 

14 0.87 3 

15 0.72 11 

16 0.75 10 
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Table 16. Multiobjective Response Form. 

Factor A B C D E 

Level 1 0.82 0.77 0.86 0.80 0.73 

Level 2 0.77 0.80 0.81 0.79 0.74 

Level 3 0.76 0.77 0.76 0.78 0.77 

Level 4 0.75 0.75 0.69 0.74 0.86 

Effect 0.07 0.05 0.17 0.06 0.12 

Rank 3 5 1 4 2 

Optimal parameters A1 B2 C1 D1 E4 

Table 17. Multiobjective Optimization Comparison. 

No. Factor Warpage (mm) 
Average Tempera-

ture Difference (°C) 

Original Process Parameters  0.90 14.43 

Warpage Optimization A1B2C2D1E4 0.61  

Average Temperature Difference 

Optimization 
A1B1C1D2E1  7.59 

Multi-Objective Optimization A1B2C1D1E4 0.62 10.16 

 

 

Figure 10. Comparison of Temperature Distribution Intervals. 

3.4. Analysis and Comparison of Different Cooling Channel System Designs 

In this section, we examine the effects of the process parameters obtained using 

multiobjective optimization (discussed in the previous section) on different cooling 

channel systems. We also compare the CAE analysis results of different cooling channel 

designs. The average temperature distribution differences with the original cooling, 

U-shaped cooling, and conformal cooling were 10.16 °C, 7.02 °C, and 5.78 °C, respec-

tively. Figure 11 presents the postfill temperature distribution and their interval ranges 

for the three designs. Figure 12 displays the simulation results. The cooling channels in 

the conformal cooling design followed the shape of the auto lock parts. Therefore, the 

temperature differences were relatively low. Moreover, the temperature interval distri-

bution of the conformal cooling design was the most favorable of the three designs. The 

postfill average temperature intervals of 240–260 °C and 220–240 °C accounted for 

21.14%, 22.41%, and 3.79% in the original, U-shaped, and conformal cooling channel de-

16.32%

53.21%57.15%

32.07%

15.67%
9.97%

0.00%

20.00%

40.00%

60.00%

80.00%

Original process Multiobjective optimization parammeters

260–240℃ 240–220℃ 220–200℃

40.83%

21.14%

22.1%
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signs, respectively (Figure 11). These results confirmed that the conformal cooling chan-

nel design achieved more uniform temperatures and a smaller temperature interval dis-

tribution than the other designs. Therefore, this design reduces the likelihood of uneven 

cooling rates caused by fluctuating temperatures and warpage deformation caused by a 

nonuniform temperature distribution. We subsequently compared the effects of the three 

cooling channel designs on the warpage deformation. Figure 13 displays the three-axis 

displacement and overall displacement of the three cooling channel designs. 

Table 18 lists the effects of the cooling channel designs on warpage deformation 

volume. The results indicated that the total warpage deformation of the conformal, 

U-shaped, and original cooling designs was 0.54 mm, 0.57 mm, and 0.61 mm, respec-

tively, suggesting that the conformal cooling design coupled with parameters obtained 

using multiobjective optimization effectively reduced the warpage deformation volume. 

 

Figure 11. Comparison of Temperature Distribution Intervals. 

Table 18. Comparison of Warpage Deformation of Different Cooling Water Systems. 

Warpage Original Cooling U-Shaped Cooling Conformal Cooling 

Total Warpage (mm) 0.61 0.57 0.54 

X-Axis Warpage (mm) −0.33~0.33 −0.29~0.29 −0.23~0.24 

Y-Axis Warpage (mm) −0.34~0.34 −0.41~0.42 −0.29~0.29 

Z-Axis Warpage (mm) −0.45~0.58 −0.43~0.54 −0.38~0.52 

 

53.21% 53.83%

42.56%

32.07% 31.42% 38.77%

9.97% 9.95% 11.16%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Original cooling U-shaped  cooling Conformal cooling

260–240℃ 240–220℃ 220–200℃

21.14%

22.1%

22.41%

21.47%

3.79%

27.61%
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(a) Original cooling 

 

(b) U-shaped cooling 
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(c) Conformal cooling 

Figure 12. Comparison of Temperature Distributions. 

 

(a) Original cooling 
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(b) U-shaped cooling 

 

(c) Conformal cooling 

Figure 13. Comparison of Total Warpage. 

4. Conclusions 

In this study, we combined the Taguchi robust design method and gray relational 

analysis to assess the effects of various process parameters on the multiobjective opti-

mization of the warpage and average temperature difference. We subsequently incor-

porated the parameters obtained using multiobjective optimization into different cooling 

channel designs and analyzed the differences. The findings were as follows: 

1. The results of the Taguchi robust design tests combined with the optimization 

analyses indicated that the optimal parameter combination for warpage was 

A1B2C2D1E4, where A1 is injection time (0.6 s), B2 is material temperature (255 °C), 

C2 is mold temperature (75 °C), D1 is injection pressure (120 MPa), and E4 is holding 

pressure (145 MPa). The warpage was 0.61 mm; this was 0.29 mm less than that ob-

tained using the original process parameters. The optimal parameter combination 

also enhanced the quality characteristics by 32.22%; 
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2. The results of the Taguchi robust design tests combined with the optimization 

analyses revealed that the optimal parameter combination for average temperature 

difference was A1B1C1D2E1, where A1 is injection time (0.6 s), B1 is material tem-

perature (250 °C), C1 is mold temperature (65 °C), D2 is injection pressure (125 

MPa), and E1 is holding pressure (130 MPa). The average temperature difference 

was 7.59 °C; this was 66.84 °C less than that obtained using the original process pa-

rameters. The optimal parameter combination also enhanced the quality character-

istics by 47.40%; 

3. Regarding the multiobjective optimization parameters obtained using the Taguchi 

gray relational analysis method, we adopted the smaller-the-better quality charac-

teristics of the warpage and average temperature difference. The test results indi-

cated that the multiobjective optimization parameter combination was 

A1B2C1D1E4, where A1 is injection time (0.6 s), B2 is material temperature (260 °C), 

C1 is mold temperature (65 °C), D1 is injection pressure (120 MPa), and E4 is holding 

pressure (140 MPa). The total warpage deformation volume was 0.62 mm, and the 

average temperature difference was 10.16 °C. Compared with the original parameter 

combination, the warpage deformation of the optimal parameter combination was 

0.28 mm smaller, and the average temperature of the optimal parameter combina-

tion was 4.27 °C lower. To account for the multiobjective quality characteristics, we 

compared the results with the two single-objective optimal quality characteristics. 

We noted a 1.6% loss in warpage quality and a 5.2% loss in average temperature 

difference quality; 

4. The results revealed that the warpage in the conformal cooling system was lower 

than the warpage in the other two systems. The conformal cooling system also im-

proved the average temperature difference. The warpage was 0.54 mm, and the av-

erage temperature difference was 5.87 °C. These values are smaller than those of the 

original cooling system; specifically, the warpage and average temperature differ-

ence were reduced by 11.47% and 43.11%, respectively. 
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