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Abstract: In this study, an artificial neural network (ANN) is used for the prediction of tensile strength
of nano titanium dioxide (TiO2) coated cotton. The coating process was performed by ultraviolet
(UV) radiations. Later on, a backpropagation ANN algorithm trained with Bayesian regularization
was applied to predict the tensile strength. For a comparative study, ANN results were compared
with traditional methods including multiple linear regression (MLR) and polynomial regression
analysis (PRA). The input conditions for the experiment were dosage of TiO2, UV irradiation time
and temperature of the system. Simulation results elucidated that ANN model provides high
performance accuracy than MLR and PRA. In addition, statistical analysis was also performed to
check the significance of this study. The results show a strong correlation between predicted and
measured tensile strength of nano TiO2-coated cotton with small error values.

Keywords: artificial neural network; tensile strength; titanium dioxide nanoparticles

1. Introduction

The widespread applications and versatile properties of composite materials make them
powerful in materials science. TiO2 in nano forms (nanorods, nanoparticles, nanosheets,
nanowires, nanoflowers) have shown its potential in various industries including textiles
as a coating material. The properties that make TiO2 unique are chemical stability, photo-
catalytic activity and non-toxicity [1]. In recent years, researchers have coated nano TiO2 on
textile substrates to make functional textiles [2,3]. In an experimental study, Noman et al.
synthesized and coated TiO2 nanoparticles on cotton fabric by UV light and investigated
the tensile behaviour and stabilization of nanoparticles in real conditions [4]. However, as
well as we know, there is no such study available in which theoretical evaluation of tensile
strength and stabilization of nanoparticles coated cotton were performed, and a comparison
of ANN, MLR and PRA was drawn for better efficiency. Therefore, in this work, a predic-
tion model (based on a comparative study of ANN, MLR and PRA) is designed via machine
learning methods for theoretical evaluation of tensile strength as well as the stabilization of
nano TiO2 on cotton fabric. The designed model works in the following manner i.e., corre-
lates the actual response with the process variables, evaluates the predicted response and
indicates the better approach. ANN models are the widely used machine learning tools for
prediction and classification of real-world applications e.g., textile processes [5,6], computer
vision [7], materials engineering [8,9] and biomedical engineering [10–12]. ANN has great
potential for prediction from input variables, especially when an unknown mathematical
relationship exists between input and output variables [13–15].

Tensile strength is an important indicator for the mechanical performance of fibrous
materials. Lu et al. applied ANN and MLR models based on acoustic emission detection to
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predict the breaking strength of wool fiber [16]. The results showed that there is a strong
correlation between actual and predicted values of wool strength in terms of coefficient of
determination under both ANN and MLR models. However, ANN model provided higher
accuracy and less error than MLR. Gayatri et al. employed ANN to predict the tensile
strength of hybrid composites that made of carbon fiber, epoxy resin and glass fiber [17].
Experimental results showed that ANN was able to predict the tensile strength parameters
with high accuracy as compared to MLR. Mishra predicted the yarn strength utilization
during the fabrication of cotton fabric using ANN model [18]. The experimental work
showed that there was an increase in the percentage of yarn strength utilization with an
increase in yarn number in both directions, however, a decrease in float length and crimp
percentage was also observed. In another study, Malik et al. used the back propagation
ANN model to predict the tensile properties of uneven and even yarns extracted from
polyester-cotton blend [19]. The results showed that ANN was able to predict the tensile
properties with lower error values. Altarazi et al. used ANN, stochastic gradient descent
(SGD), k-nearest neighbors (kNN), logistic regression (LoR), random forest (RF), regression
analysis, decision tree (DT), support vector machine (SVM) and AdaBoost (AB) algorithms
to classify and predict tensile strength of polymeric films of different compositions [20].
Testing results showed that the best prediction accuracy was obtained with SVM algorithm
and all used algorithms provided an excellent classification for sorting films into non-
conforming ad conforming parts. Erbil et al. applied ANN and MLR algorithms to predict
tensile strength of ternary blended open-end rotor yarns [21]. They used stepwise MLR and
ANN models, trained with Levenberg–Marquardt backpropagation function. The results
showed that ANN model outperformed MLR in the prediction accuracy of elongation at
break and breaking strength. Breuer et al. used ANN to predict the short fiber composite
properties using RVE database [22]. The prediction of the elastic properties of short fiber
reinforced plastics by ANN has been compared with additional finite element results.
ANN was able to predicted the stiffness of short fiber reinforced plastics. Wang et al.
implemented ANN to predicted the tensile strength of ultrafine glass fiber felts [23]. The
tensile strength was modelled based on the mean diameter of fibers, resin content and bulk
density. The results demonstrated that ANN model provides excellent prediction accuracy
with fewer errors. In another experimental study, Liu et al. used ANN model to predict the
tensile behavior of hybrid fiber reinforced concrete (HFRC) consists of slag power and fly
ash [24]. Simulation results revealed that ANN model provides better prediction accuracy
compared to other classic method (Equation-based model) in terms of tensile strength,
tensile stress-strain curve and strain corresponding to tensile strength.

Recently, ANN has shown its effectiveness in the prediction of not only tensile strength
but many other parameters including dye removal efficiency and functional properties
of composites [25–28]. ANN has the advantages of high nonlinearity resolution, self-
learning and mapping capability between input and output variables without introducing
a mathematical model between nonlinear data. Therefore, investigating the accuracy of
ANN model for tensile strength prediction and draw a performance comparison of ANN
with MLR and PRA using statistical analysis provides significant values to this study.

2. Material and Methods
2.1. Material and Experimental Design

Plain weave cotton fabric with 115 g·m−2 fabric mass was used as received from
industry. Total 15 samples were prepared and the experimental design under different
dosage of TiO2, temperature and UV irradiation time is presented in Table 1.
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Table 1. The input variables for experimental design.

Sample TiO2 Dosage [g·L−1] Temperature [◦C] UV Irradiation Time
[min]

1 6 70 80
2 4 30 120
3 6 45 80
4 6 45 15
5 8 30 40
6 4 60 40
7 4 30 40
8 8 60 40
9 6 20 80
10 2 45 80
11 8 60 120
12 8 30 120
13 10 45 80
14 6 45 150
15 4 60 120

2.2. Artificial Neural Network

ANN models have been extensively used for the prediction of functional behavior
of fibrous materials. The configuration of a back-propagation ANN has been adopted
in this work as presented in Figure 1. This configuration is composed of input layers,
hidden layers and output layers. In the present case, the amount of titanium tetrachloride,
temperature and UV irradiation time were selected as input variables, whereas, TiO2 NPs
coated amount and tensile strength were chosen as output variables.

Amount of 

titanium 

tetrachloride

Temperature

UV irradiation 

time

Nano TiO2 coated amount 

after UV treatment

Tensile strength after UV 

treatment

Input Layer Output Layer
Hidden Layers

Figure 1. ANN model for the prediction of nano TiO2 coated cotton and tensile strength of coated
cotton after UV treatment.

Generally, ANN method are used to develop models for non-linear problems to
predict output dependent variables y = [y1, · · · , yt] using independent input variables
x = [x1, · · · , xl ] from their training values [29,30]. The obtained results significantly depend
on weights w = [w1, · · · , wl ]. The input variables follow a forward path where each input
is multiplied by its corresponding synaptic weight and summed up. The relationship
between input layer and output layer of ANN model can be expressed by the following
equation [30]:

y = ϕ

(
∑

j
wj ∗ xj + b

)
(1)

where, y indicates the target (output). ϕ is the activation function and the most common is
sigmoid activation function. xi indicates the selected ith input. wi indicates the ith weight.
b represents a constant bias added to the weighted sum. Training of any ANN model
is the most important step. The purpose of this training is to optimized the output by
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minimizing the error between actual and predicted output. After every iteration k, the
predicted outputs are compared with the actual outputs by computing the error according
to Mean Absolute Percentage Error (MAPE) method as shown below [31]:

MAPE =
1
N

ΣN
i=1Σn

j=1

∣∣∣∣∣yij − ŷij

yij

∣∣∣∣∣ where i = 1, · · · , N j = 1, · · · , n. (2)

Here, n is the number of output nodes and N represents the number of training
samples. Figure 2 shows the flowchart of ANN model that describes the main steps for
prediction process. ANN models and their training process are thoroughly explained in
literature [32–34].

Determine neural 

network structure

Initialize the weights and  

thresholds

Training and testing the 

neural network

Evaluation the prediction by 

using MAPE

Plot the predicted results

Check termination 

criterion

No

Yes

ANN
Begin

Import data

End

Figure 2. The flowchart of ANN model.

3. Results and Discussion
3.1. Structural Analysis

The morphology and topography of uncoated and nano TiO2-coated cotton fabrics
were investigated by UHR-SEM (ultrahigh-resolution scanning electron microscopy by
Zeiss Ultra Plus, Carl Zeiss Meditec AG, Jena, Germany) analysis as illustrated in Figure 3.
Figure 3a shows a smooth and clean surface of untreated cotton whereas Figure 3b shows a
huge cluster of nano TiO2 incorporated on cotton as a homogeneous layer.

Mag=10.00 kX
1 𝝁𝒎

(a) (b)

Mag=10.00 kX
1 𝝁𝒎

Figure 3. SEM images of cotton fabric: (a) untreated sample; (b) Nano TiO2-coated sample.
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3.2. Analysis of the Proposed ANN Model

We used ANN model to predict nano TiO2 coated amount and tensile strength of
cotton after UV treatment. After several trials, we found that the best prediction results for
both outputs were obtained by ANN model one input layer, two hidden layers and one
output layer, where the number of both hidden layers nodes is 12. In the ANN model, the
best choice of a transfer function ensures the best accuracy of predicted results. Therefore,
we adopted the use of tansig function type in this work. The training process in the
proposed ANN model was based on the use of Bayesian regularization backpropagation
algorithm (trainbr). The proposed back-propagation ANN model is presented in Figure 4.
For used database, 85% of the data was devoted for training process whereas remaining 15%
was designed for testing process. The parameters of training the network are illustrated in
Table 2.

Figure 4. Experimental architecture of the proposed backpropagation ANN model.

Table 2. Parameters of training network.

Parameters Settings

Transfer function of hidden layers tansig, tansig
Transfer function of output layer tansig

Training function trainbr
Performance goal 0.00001

Input node 3
Output node 2

Number of hidden nodes 12, 12
Epochs 1000

To confirm the accuracy of proposed ANN model, the obtained results were compared
with MLR and PRA. The prediction results of all outputs under ANN, MLR and PRA
models are illustrated in Figure 5. The absolute prediction errors (|y− ŷ|) for both outputs
under ANN, MLR and PRA are presented in Figure 6. Figure 6a clearly shows that PRA
has the higher errors values for the prediction of nano TiO2 compared to ANN and MLR,
especially in values numbers 8 and 11. We also observed that ANN provides slightly
better results than MLR, except for the first predicted value where MLR has an error burst.
Figure 6b illustrates that ANN outperforms both MLR and PRA for the prediction of
tensile strength.
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Figure 5. (a) The actual and the predicted values of nano TiO2 coated amount after UV treatment
under ANN, MLR and PRA. (b) The actual and the predicted values of tensile strength of cotton after
UV treatment under ANN, MLR and PRA.

We evaluated the accuracy and performance of ANN, MLR and PRA models through
several methods including mean squared error (MSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), root mean squared error (RMSE) and coefficient of deter-
mination R2. All these methods are thoroughly explained in the previous literature [14,15].
The computed prediction errors values by MAE, MSE, RMSE, MAPE and coefficient of
determination R2 for both outputs under ANN, MLR and PRA models are presented in
Table 3. It is revealed from these results that ANN provides excellent prediction accuracy
and lower prediction error as compared to MLR and PRA for both outputs.

Table 3. Errors of ANN, MLR and PRA.

Functional
Properties Methods MAE MSE RMSE MAPE R2

Nano
TiO2-coated
amount after
UV treatment

ANN (training) 2.94 20.18 4.52 0.23 1

ANN (testing) 2.86 20.05 4.47 0.22 0.99
MLR 147.66 2.95× 105 542.85 7.24 0.67
PRA 202.22 8.26× 104 287.41 13.18 0.87

Tensile strength
after UV

treatment
ANN (training) 1.121 3.011 1.730 0.407 0.99

ANN (testing) 1.112 2.978 1.7257 0.2348 1
MLR 6 83.6 9.1433 1.2703 0.90
PRA 6.90 67.73 8.23 1.48 0.92
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Figure 6. (a) Absolute prediction error (|y− ŷ|) of nano TiO2 coated amount after UV treatment under
ANN, MLR and PRA. (b) Absolute prediction error of tensile strength of cotton after UV treatment
under ANN, MLR and PRA.

Figure 7 shows the correlation coefficient R-value between the predicted and the
measured values of nano TiO2 coated amount using ANN during training and testing
processes of all data sets. Figure 8 illustrates the correlation coefficient for MLR and PRA
models. We noticed that the correlation coefficient obtained by ANN (R = 99% during
training and R = 100% during testing) was higher than the correlation coefficient obtained
by MLR (R = 82%) and PRA (R = 93%).
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Figure 7. Correlation coefficient between actual and predicted values of nano TiO2 coated amount
after UV treatment using ANN during (a) training and (b) testing processes.
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Figure 8. Correlation coefficient between actual and predicted values of nano TiO2 coated amount
after UV treatment by using (a) MLR and (b) PRA.

The correlation coefficient between the predicted and the actual values of tensile
strength using ANN model are presented in Figure 9 and MLR and PRA models are
presented in Figure 10. The results revealed that ANN shows higher correlation coefficients
than MLR and PRA (ANN R = 99% during training, R = 100% during testing, MLR
R = 95% and PRA R = 96%) that provides excellent correlation between actual and
predicted values for all used models. However, ANN model showed higher correlation
coefficient values for both outputs that ensures the effectiveness and high prediction
accuracy of ANN model.
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Figure 9. Correlation coefficient between actual and predicted values of tensile strength of cotton
after UV treatment using ANN during (a) training and (b) testing processes.
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Figure 10. Correlation coefficient between actual and predicted values of tensile strength of cotton
after UV treatment by using (a) MLR and (b) PRA.

A statistical analysis (ANOVA test) was conducted to test the statistical significance of
input and output variables [35–38]. The results for both outputs were tested by One-way
ANOVA to check its reliability using ANN, MLR, PRA and experiment values. Table 4
illustrates the results of ANOVA test for both outputs obtained by ANN, MLR, PRA and
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experimental work. We noticed that the proposed ANN model provides lowest p-value for
both outputs that means ANN is more statistically significant as compared to experimental
values, MLR and PRA.

Table 4. Analysis report of experimental and predicted values of nano TiO2 coated amount and
tensile strength under ANN, MLR and PRA models.

Functional
Properties Methods p-Value F-Value

Nano TiO2-coated
amount on cotton
after UV treatment

ANN 0.0012 10.31

MLR 0.0024 9.92
PRA 0.0041 9.17

Experimental 0.0024 9.83

Tensile strength after
UV treatment ANN 0.2163 1.98

MLR 0.3019 1.39
PRA 0.34 1.23

Experimental 0.2525 1.59

4. Conclusions

In this paper, tensile behaviour of TiO2-coated cotton was predicted with ANN, MLR
and PRA models. The proposed ANN model showed much better results than MLR and
PRA models. Simulation results showed that ANN has lower error than MLR and PRA
in term of MAE, MSE, RMSE and MAPE, and has higher prediction accuracy than MLR
and PRA as indicated by coefficient of determination. Therefore, it is revealed that ANN
is more efficient prediction tool as compared to MLR and PRA. In addition, the obtained
results underline that ANN is a suitable modelling approach for the evaluation of tensile
strength of nano TiO2-coated cotton.
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25. Amor, N.; Noman, M.T.; Petrů, M. Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network. Polymers
2021, 13, 3104. [CrossRef] [PubMed]
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