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Abstract: New developments require innovative ecofriendly materials defined by their biocompatibil-
ity, biodegradability, and versatility. For that reason, the scientific society is focused on biopolymers
such as chitosan, which is the second most abundant in the world after cellulose. These new materials
should show good properties in terms of sustainability, circularity, and energy consumption during
industrial applications. The idea is to replace traditional raw materials with new ecofriendly materials
which contribute to keeping a high production rate but also reducing its environmental impact and
the costs. The chitosan shows interesting and unique properties, thus it can be used for different
purposes which contributes to the design and development of sustainable novel materials. This
helps in promoting sustainability through the use of chitosan and diverse materials based on it. For
example, it is a good sustainable alternative for food packaging or it can be used for sustainable
agriculture. The chitosan can also reduce the pollution of other industrial processes such as paper
production. This mini review collects some of the most important advances for the sustainable use of
chitosan for promoting circular economy. Hence, the present review focuses on different aspects of
chitosan from its synthesis to multiple applications.

Keywords: chitosan; sustainable development; circular economy; biopolymers

1. Introduction: Necessity of Alternative Materials for a Circular Economy

The new regulations promoted by numerous governments are trying to take care
of the environment by protecting actions and behaviors to develop a new sustainable
economy. Some of the most important goals of these laws are aimed at the reduction
of the excessive consumption of non-renewable raw materials, especially those derived
from natural sources. The extraction and cleaning of raw materials are responsible for soil
degradation, biodiversity loss, water shortages, and global warming. The use of residues as
raw materials is a new concept derived from the circular economy which could definitely
contribute to the reduction of the huge amounts of trash accumulated in landfills. The
concept of a circular material means that a new product can be obtained from the old one
which is acting as a raw material. The new product will exhibit the same properties and
qualities as the previous one, i.e., materials will remain in a continuous cycle of life. In
general, a huge amount of this waste is composed of plastics whose versatility and wide
range of properties makes it difficult to get a competitive alternative in terms of costs.
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Some biopolymers being investigated by scientists and industry are biodegradable, and
specifically, obtained from agricultural and food processing waste. Chitosan is one of the
most studied biopolymers due to its biocompatibility, biodegradability, adhesivity, and
bioactivity. Chitosan is the second most abundant biopolymer in the world after cellulose;
this arouses researchers’ interest in fabricated novel and sustainable materials based on it.
On the other hand, its low cost also makes it a good choice of material [1]. The chitosan
is used in a wide range of applications and industries, related to agriculture, pharmacy,
medicine, food, or textile among others [2–6]. Nonetheless, new developments involve
biomedicine, biotechnology, wastewater treatment, catalysis, packaging, or bioimaging
which are essential for a new sustainable era where chitosan can provide versatility, recycla-
bility, and low cost. The nature and properties of chitosan lend themselves to sustainability
criteria, due to its biodegradability, bioactivity, or the obtaining method, but there are
also some specific applications related to sustainability where the chitosan can play an
important role, in terms of efficiency, yield, and cost. Probably, the most important appli-
cations of chitosan in this field are associated with wastewater treatment, absorption of
pollutants, or their uses as a chelation agent, an antiviral agent, or a substitute material in
the paper industry [7]. Some of these recent advances involve chitosan for the preparation
of composites or functionalized materials, such as aerogels based on chitosan and soot.

Chitosan biopolymer can be functionalized by several function groups. Functional-
ization can be grafting, addition, coupling, crosslinking, etc. [8]. These were tested for
the adsorption of dyes and other pollutants, such as naphthalene, showing interesting
results [9]. The combination of chitosan with other materials such as collagen can also
increase the range of its features [10]; for instance, the preparation of tailored scaffolds
which allows adapting their properties to clinical demand [10].

The preparation of nanoparticles or nanocomposites also contributes to the circu-
lar economy, as a lower amount of raw materials is necessary for developing a specific
application-based sustainable materials. Nanocomposites with magnesium show great
activity against different pathogens developed in many plants, such as Acidovorax oryzae
and Rhizoctonia solani which both are rice pathogens [11]. A greater surface area can be
obtained through the production of thin films reducing the amount of raw materials and
consequently the volume of waste after use, but keeping the same properties of the origi-
nal films. Some of these developments can be carried out using chitosan, specifically for
the food packaging [12]. This mini review collects some of the most relevant points that
chitosan can offer for sustainable development. The new trends in science are focused on
green chemistry and the circular economy; this manuscript collects brief goals, methods,
and applications which are essential for understanding the importance of chitosan for
new generations.

1.1. Chitosan as a Renewable Material
1.1.1. Chitosan as a Biomaterial

Chitosan is obtained through the deacetylation of chitin, which is one of the most
abundant biomaterials after cellulose. This one is a polysaccharide which can be found
in crustaceans, insects, or fungi (Table 1) [13]. Chitin is considered a linear long-chain
homopolymer which is composed of N-acetyl glucosamine, and can develop three poly-
morphic forms known as α-, β-, and γ-chitin [14].

Commercial chitosan (Figure 1) is composed of D-glucosamine and N-acetyl glu-
cosamine and is produced by the partial deacetylation of chitin. This reaction carries out
the change of acetamido groups into amino groups. There are three kinds of this biopoly-
mer depending on its molecular weight: low molecular weight, high molecular weight,
and oligochitosans [15].
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Table 1. Some of the main chitin sources and percentages [13].

Source Percentage (%)

Shrimps 30–40%

Squids 20–40%

Krill 20–30%

Crabs 15–30%

Fungi 10–25%

Insects 5–25%

Oysters 3–6%

Clams 3–6%
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Figure 1. Chemical structure of chitosan.

1.1.2. General Features and Properties of Chitosan

The main properties which can contribute to a sustainable development that are exhib-
ited by the chitosan are non-toxicity, biodegradability, and biocompatibility. Nevertheless,
there are other interesting properties and characteristics which explain its versatility which
can be deduced from Table 2.
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Table 2. General properties of chitosan [16,17].

Property Conditions Use References

Solubility Dilute acids (pH < 6). Insoluble in organic
solvents and water Water treatment [18,19]

Activity Antibacterial, antifungal mucoadhesive
analgesic, and hemostatic properties [20–22]

Degradation Depends on molecular weight and
deacetylation degree [18,23]

Biocompatibility Physiological medium Biomedical applications [7,24]

Chelating properties Capability to bind and adsorb diverse ions The removal of heavy metals and dyes
from wastewater [25,26]

Biodegradability Biodegradable to normal body constituents [24,27,28]

Hemostatic Stop a hemorrhage [29,30]

Catalyst Accelerates the formation of osteoblast [31]

Fungicide Stopping the development of fungi [32,33]

Spermicidal Reduce the mobility of spermatozoa [34]

Anticholesteremic Reducing agent cholesterol [35,36]

Anticancer Inhibiting the development of cancer cells [37]

Conductivity Ionic conductivity [38,39]

Flocculating agent Interactions with negatively
charged molecules Water treatment [40]

Thickener Increase the viscosity [41]

Polyelectrolytes Acidic medium [42]

Adsorption Separation and filtration [43–45]

Clarifying agent Immobilization of enzymes [46]

From the presentation of Table 2, it can be deduced that chitosan is a sustainable
material as it is biodegradable and non-toxicity [47]. Another important reason for using
chitosan is the presence of a large number of hydroxyl and amino groups in its structure
which are suitable for chemical modifications [48]. This fact and the wide versatility of
chitosan makes this material especially interesting for the preparation of suspensions,
composites, functionalized materials, or (nano)hybrids for diverse eco-friendly purposes
and applications. The interesting polymorphic behavior exhibited by the chitosan [49],
together with the molar mass and degree of deacetylation, mainly defines its mechanical
properties. The molar mass will also play an important role for other properties such as
degradation degree or antibacterial activity as these are strongly affected by the changes in
molar mass.

On the other hand, the degree of deacetylation is associated with the content of ac-
etamide groups of polymeric chains. These groups will strongly affect the final features and
properties of the chitosan, in particular its capacity to be biodegradable and its immunolog-
ical activity. The deacetylation degree is defined between 50 and 99%, its content depends
on the preparation methods. The deacetylation degree must be higher than 50% for the
chitosan; below that value, it is considered chitin [18]. Some of the most important uses
of chitosan are associated with biomedical applications. Nevertheless, new developments
related to chitosan focus on agriculture, food packaging, textiles, or environmental applica-
tions [50]. The solubility of the chitosan depends on the medium being used to dissolve it; in
acid mixtures with water, it is soluble, but it is insoluble in common organic solvents [51,52].
The reason for its solubility can be explained due to the presence of amino groups that
transforms chitosan into a base, whose protonation produces a polyelectrolyte [53]. The



Polymers 2022, 14, 1475 5 of 27

presence of different functional groups is responsible for the reactivity and the flexibility of
this polycationic polymer [54]. Chitosan biofilms show a semi-crystalline behavior, together
with high hydrophobicity and little flexibility [55].

1.1.3. Chitosan as an Ecofriendly Biopolymer and Its Applications

Chitosan is considered a natural biopolymer; it has received remarkable attention
from the scientific community due to the fact that it can be easily biodegraded. Its residues
are not toxic and can be easily eliminated and biodegraded by nature [7]. One of the
most important problems associated with the raw materials is that these are limited, but
chitosan is the most abundant biopolymer after cellulose. Furthermore, chitosan exhibits a
great biocompatibility, limited by its low solubility which can be solved through chemical
modifications and hydrolysis. Chitosan is a bioactive material which can be modulated and
used in many applications [56]. Some of these applications are associated with biomedical
purposes such as drug delivery systems, scaffolds, or membranes. Nevertheless, there are
other important uses such as in the textile industry, wastewater treatments, agriculture,
food, packaging, personal care, and biotechnology, among others. The adsorbent properties
of chitosan are very useful for removing different heavy metal ions accumulated in water
and derived from industrial processes such as Pb2+, Hg2+, and Cu2+, among others [57].
These can be accumulated inside the body and produce numerous diseases [58]. Chitosan
can contribute to the agriculture by improving the harvest and productivity, being an
ecofriendly material. It is used as a coating for seeds, enhancing the properties of the
plants and the obtained products in terms of shelf life. This use as fertilizer is especially
useful for plant protection as it can stimulate the plant defense, but it can also act as an
antibacterial and antimicrobial agent [59]. Thus, chitosan acts as a plant growth-promoting
agent and plant protector [60]. For that reason, it is considered a pesticide by several
countries. The antioxidant properties of chitosan, together with its antimicrobial features,
are suitable for the production of films for food packaging. The preparation of hybrid
materials with chitosan allows modifying the permeability of those films depending on
the requirements [2]. The chitosan can also be used as a food additive, dietary fiber, and
functional ingredient [61,62].

2. Sustainable Production
2.1. Chitin Extraction

The extraction of chitin is necessary for the production of chitosan such as it was
previously explained. A huge amount of chitin is obtained from crustaceans, but there are
multiple advances in its production through insects or fungi and bacteria, thus avoiding the
use of animal derivatives [63]. In general, the extraction requires several steps starting with
the removal of mineral salts and proteins (Figure 2). It is commonly carried out chemically,
using acids and bases, which is not a sustainable process. These processes can destroy some
properties of chitosan, reducing its versatility. Currently, there are multiple advances in
natural deep eutectic solvents which could replace the hazardous solvents and preserve
the features of chitin. There is another option based on the use of microorganisms for
the extraction of chitin known as a biological method [64]. In general, these methods are
especially indicated for the treatment of fungi and bacteria whilst chemical processes are
related to the treatment of crustaceans. After removing the minerals and proteins, chitin
requires a depigmentation process which is generally performed using oxidizing agents.
The use of the enzymes could be a feasible way for removing the proteins, which can reduce
the degree of depolymerization in comparison with traditional methods. That chitin also
showed a better solubility in water probably due to a lower crystallinity of the product [65].
The specific use of the trypsin also induces the depigmentation, reducing the steps involved
in the extraction of chitin [66]. There is a lot of ground to cover in terms of sustainability
around processes for the extraction of chitin associated with environmental pollution, loss
of chitin properties, and costs. One of the main consequences of this extraction is the
polluted wastewater, which needs to be treated.
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2.2. Chitosan Production

The production of chitosan requires the deacetylation of chitin; this process can be
modulated through concentration, temperature, and time [7]. Scheme 1 shows the changes
produced in chitin after being transformed into chitosan.
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Scheme 1. Deacetylation of chitin.

The traditional method to obtain chitosan from chitin was reported in 1980, which
promotes a high deacetylation due to rapid reaction rates at reduced temperatures [67].
There are different ways to carry out the deacetylation such as alkali treatment, the use
of enzymes, or a steam explosion [16,68,69]. The degree of deacetylation will define the
spectra of properties of the chitosan in terms of features such as solubility, viscosity, or
biodegradability, etc. [70]. There are numerous alternatives where the energy consumption
can be reduced, contributing to a green chemistry. Those methods explore the use of
microwaves and ultrasonic waves in the deacetylation process. The use of ultrasonic
waves leads to enhancing the reactivity of the deacetylation process [71]. Some of the new
approaches are displayed in Table 3, showing some of the most interesting advances related
to the sustainable production of chitosan.
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Table 3. New methods for the production of chitosan.

Treatment Disadvantages Advantages Reference

Trypsin (crustaceans) Only for
deproteination step

Depigmentation of
treated material [66]

Streptomyces griseus
(crustaceans)

Only for
deproteinization Better solubility [65]

Bacillus mojavensis A21
or

Balistes capriscus
(crustaceans)

Deproteinization
requires NaOH Optimized process [72]

Rhizopus oryzae
(fungi) Fermentation

Cheap, low energy
consumption, and

soft conditions
[73]

2.3. Circularity in the Chitosan Production

The traditional methods can also be adapted, at least partially, trying to get a sus-
tainable production of chitosan. For that purpose, it is necessary to reduce the energy
consumption by reusing the hazardous reagents. The recovery of sodium hydroxide used
in the extraction of chitosan was reported in studies. The sodium hydroxide is part of
wastewater and could be treated using ultrafiltration and nanofiltration membranes recov-
ering the sodium hydroxide for a new cycle of life [74,75]. The reuse of sodium hydroxide
can contribute to a decrease the environmental pollution and reducing the cost of the
process, i.e., a lower amount of sodium hydroxide will be required. There were also reports
for the preparation of chitosan at ambient temperature, following the general procedure of
demineralization, deproteinization, and decolorization [76]. This fact could also be quite
interesting, due to the reduced energy consumption. Thus, involving circularity in the
production of chitosan can be very beneficial and economically better.

3. Applications of Chitosan for Sustainable Development

Chitosan can contribute to sustainable development through its applications and
uses. This review tries to expose some of the most important applications related to the
contribution of chitosan to a circular economy and sustainability. Figure 3 depicts the
diversified application of chitosan.
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3.1. Sustainable Use of Chitosan for Food Packaging and in Agriculture

Many biopolymers are being implemented in different coating materials due to their
excellent properties in terms of degradability and compatibility; these biopolymers include
gums, starch, proteins cellulose, lipids, and their derivatives [77–83]. In this sense, chi-
tosan is a promising material for that purpose due to several reasons associated with its
biocompatibility and abundance [84,85]. The use of the chitosan in films can also provide
other superiorities because of its antibacterial and antioxidant properties [86–89]. In gen-
eral, chitosan is used in combination with other polymers due to some of its drawbacks
associated with its low mechanical properties. Another important problem associated with



Polymers 2022, 14, 1475 8 of 27

chitosan is related to its water sensitivity [90]. The preparation of blends can diminish these
problems, thus obtaining films with a wide range of properties. The miscibility problems
between the mixtures of polymers can reduce the spectra of possibilities, but in general,
the preparation of these films is easy and cheap. The preparation of these systems could
be a good alternative regarding traditional films based on oil derivatives [91]. Table 3
displays some of the most promising blends of chitosan, based on the mixtures with other
biopolymers. There are other mixtures with synthetic polymer of chitosan that are not
included in this review, as those do not fit the sustainability criteria of the present review.
Numerous composites of chitosan have been fabricated with graphene, carbon nanotubes,
activated carbon, and metal nanoparticles [92–95]. One study suggests that poly(L-lactic
acid)-ZnO multilayered with cationic chitosan and anionic β-cyclodextrin can be used as a
promising material in applications for the active packaging of food [96]. A novel bilayer
food packing film of Ag-Metal−organic framework loaded p-coumaric acid modified chi-
tosan (P-CS/Ag@MOF) or chitosan nanoparticles (P-CSNPs/Ag@MOF) and polyvinyl
alcohol/starch (PVA/ST) was fabricated. The bilayer composite film revealed a relatively
smooth surface and higher tensile strength (27.67 MPa). The P-CS/Ag@MOF bilayer films
displayed better oil resistance and oxidation resistance, and the bilayer film had good UV-
blocking properties and transparency [97]. The diverse blend composites of chitosan have
been developed with various natural antimicrobial compounds and have been applied for
antimicrobial food packaging; such antimicrobial compounds include thyme oil, spirulina,
oregano essential oil, nisin, apple peel polyphenols, bamboo vinegar, cinnamon essential
oil, custard apple leaves, plum peel extract, etc. [98–104]. The antibacterial nanofiber films
were fabricated using gelatin, chitosan, and 3-phenyllactic acid (PLA) by electrospinning.
Under acidic conditions, chitosan and PLA interacted and formed hydrogen bonds, which
decreased the crystallinity of the nanofiber films. The nanofiber film had the best ther-
mal stability, water stability, water vapor permeability, and more effective antibacterial
effects against Salmonella enterica Enteritidis and Staphylococcus aureus, suggesting that the
nanofiber film mat can be used as an active food packaging [105]. Similarly, Wang et al.
discussed various chitosan and gelatin edible films, their synthesis strategies including
casting, electrospinning, and thermoplastic method, and their properties in their review,
thus highlighting importance of chitosan-based food packing films [106]. In Argentina,
chitosan is produced from the waste of the shrimp industry; the synthesized chitosan has
similar physicochemical properties to those of analytical grade chitosan. The chitosan
coatings applied to processed lettuce at harvest increased nutritional quality and reduced
microbiological contaminants in minimal processed lettuce [107]. Panda et al. fabricated
ferulic acid-modified water-soluble chitosan and poly(γ-glutamic acid) polyelectrolyte
multilayers films. These film surfaces possessed a reduced amount of protein adsorption;
thus, these can be used as a potential good biomaterial for biomedical purposes to intensify
the bio-active surface [108], thus prompting the concept of circularity and sustainability.
Tables 4 and 5 show the effects of some films over the food due to the use of chitosan which
could modify its properties.



Polymers 2022, 14, 1475 9 of 27

Table 4. Selection of blends of chitosan with other biopolymers for food packaging.

Biopolymer Chitosan Characteristics Reference

Pectin (2% w/v) 2% w/v Good mechanical properties.
Antimicrobial activity. [109,110]

Carboxymethyl cellulose
(1–2% w/v) 1% w/v

Better mechanical properties
and permeability.
Antioxidant and

antimicrobial activity.

[111–113]

Gum arabic (1.5% w/v) 1.5% w/v High elasticity. Antioxidant
and antimicrobial activity. [114,115]

Cassava starch (3% w/v) 0.5% w/v Antibacterial activity. [116]

Corn starch (5% w/v) (1, 2, 3, and 4% w/v)
Higher tensile strength and

elasticity. Lower
permeability.

[117]

Rice starch (2% w/v) Better barrier properties. [118]

Table 5. Effects of films based on chitosan over food.

Blend Food Effects References

Chitosan-glycerol film
(Good mechanical and

barrier properties.
Stability)

Strawberry Better preservation effect than the
commercially available PE films. [119]

Gelatin/chitosan film with nanocarriers
(FeIII-HMOF-5)

(Good results in mechanical properties
and permeability)

Apple cubes
High content of nanocarriers allows the

preservation of apple cubes during
5 days.

[120]

Chitosan films (modified with mango
leaf extract)

(Higher hydrophobicity and
tensile strength)

Cashew nuts High oxidation resistance. [121]

Chitosan/gelatin film with silver
nanoparticles

(Better hydrophobicity and
antibacterial properties)

Red grapes Antimicrobial properties and high
oxidation resistance. [122]

Polyurethane/chitosan/nano ZnO
composite film (Better mechanical

properties, low permeability)
Carrot Better shelf life than polyethylene film [19]

Pullulan/chitosan film (good barrier
to O2) Papayas Maintained the physiological and

nutritional attributes. High shelf life. [123]

Chitosan-TiO2 nanocomposite film
(Better tensile strength and barrier

properties)
Tomatoes Delay the ripening process and extend

the storage life. [124]

Cellulose/chitosan/polypyrrole film Cherry tomatoes Possess good antioxidant, antibacterial,
and barrier properties [125]

Baicalin-liposomes loaded polyvinyl
alcohol-chitosan electrospinning

nanofibrous films
Mushrooms

Possessed effective antibacterial
properties, non-cytotoxicity, and

preservation performance
[126]

Active packaging films based on
chitosan and sardinella protein isolate Shrimps Good antioxidant and

antibacterial activities [127]
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Table 5. Cont.

Blend Food Effects References

ε-polylysine/chitosan nanofibers Chicken
Inhibiting Salmonella typhimurium

and Salmonella
enteritidis on chicken

[128]

Chitosan films embedded with Apricot
(Prunus armeniaca) oil Bread Better antioxidant, mechanical, and

antimicrobial properties [129]

Zein active film containing chitosan
nanoparticle encapsulated with

pomegranate peel extract
Pork

Addition of chitosan nanoparticle can
increase the thermal stability of zein

active film
Film can inhibit the growth of Listeria

monocytogenes on pork

[130]

Mahua oil-based
polyurethane/chitosan/nano ZnO

composite films
Carrot

Excellent anti-bacterial properties
against Gram positive and

Gram-negative bacteria
Increase shelf life of carrot

[131]

Carboxymethyl chitosan
(CMCh)-peptide conjugates Blueberry Extend the shelf-life of blueberry [132]

Chitosan-based biodegradable bags Palmer’s mango Effective in delaying ripening and
preserving the quality [133]

Composite films based on chitosan and
syringic acid Quail eggs Films exhibited higher density, water

solubility, good preservation effect [134]

Films based on quaternary ammonium
chitosan, polyvinyl alcohol, and

betalains-rich cactus pears (Opuntia
ficus-indica) extract

Shrimp

Enhanced the UV–vis light barrier,
elongation-at-break, and antioxidant,

antimicrobial and
ammonia-sensitive properties

[135]

Chitosan coating with
vacuum packaging Beef Extend the shelf life of beef

Inhibited S. aureus [136]

Chitosan coatings Lettuce Improve quality and extend shelf-life of
minimally processed lettuce [107]

Chitosan films incorporating litchi peel
extract and titanium dioxide

nanoparticles
Watercored apple

Coating treatment significantly
inhibited respiration rate, weight loss,

and softening
[137]

Polylactic acid/chitosan films Indian white prawn Antimicrobial properties [138]

Chitosan-Gelatin (CHI-Gel) based
edible coating incorporated with
longkong pericarp extract (LPE)

Shrimp

Edible coating as a natural antioxidant,
antimicrobial activity and inhibiting

melanosis, retain the quality and
extend the shelf-life

[139]

Pink pepper residue extracts
incorporated in a chitosan film Salmon fillets Shelf-life of the skinless salmon fillet

could be extended by 28 days [140]

Chitosan film incorporated with citric
acid and glycerol Green chilies

Improved mechanical, thermal, and
antioxidant properties of the film were

and increased shelf life
[141]

The chitosan can act as protector, coating material, stimulator of the growth, nutrient,
fertilizer, or pesticide in agriculture. It was also observed that the use of chitosan can
increase productivity. Furthermore, the use of chitosan could replace some dangerous
chemicals used as compounds of fertilizers in agriculture, protecting soil, aquifers, and
ecosystems [142]. It was reported that excellent antimicrobial activity was observed in
chitosan against many viruses, bacteria, and fungi. Nevertheless, its activity is higher
against fungi than bacteria. In general, the chitosan seems to inactivate the replication of
viruses [143]. Moreover, it is considered a potent elicitor which can induce plant defense
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against diseases [144]. Table 6 shows some of the effects observed of chitosan over some
fruits and vegetables.

Table 6. Effects of chitosan and derivatives over some products.

Material/Use Plant Effects Reference

Chitosan with copper Tomato Plant defense (Enzymatic and
anatomical changes). [145]

Seed-priming with chitosan Cucumber Disease protection and enhanced
plant growth. [146]

Foliar application of chitosan Sweet pepper
Enhancement of the adverse

effects of salinity and improved
the growth and yield.

[147]

Chitosan solution (using a hand sprayer) Dracocephalum kotschyi Increase of antioxidant enzyme. [148]

Chitosan (foliar spray or pre-sowing seed
treatments in Cd-stressed plants) Pea

Improvement in growth,
photosynthetic pigments, and

reduction in oxidative damage.
[149]

Chitosan (protective spray) Mango (Amrapali
and Dashehari) Reduced malformation of mango. [150]

Chitosan nanoparticles Durum wheat Increase the leaf antioxidant pool. [151]

Chitosan oligosaccharide (COS) Tea plant (Camellia sinensis)
Improved the antioxidant enzyme

activities and the content of
chlorophyll and soluble sugar.

[152]

Chitosan nanoemulsion containing
allspice essential oil Maize

Preserved maize samples from
aflatoxin B1 and

lipid peroxidation.
[153]

Chitosan nanoparticles loaded with
garlic essential oil Wheat, oat, and barley

As a seed dressing agent found to
have antifungal activity against

Aspergillus versicolor, A. niger, and
Fusarium oxysporum.

[154]

1.5% chitosan solution treatment Berry
Inhibit postharvest berry
abscission of the ‘Kyoho’

table grapes.
[155]

Preharvest chitosan sprays Muskmelons

Induced suberin polyphenolic
deposition at wound sites during

healing thus promoted wound
healing and reduced
disease development.

[156]

Chitosan film containing Akebia trifoliata
(Thunb.) Koidz. peel

extract/montmorillonite
A. trifoliata fruits Significant effect on the delaying

crack and mature of the fruits. [157]

Chitosan-based nanoencapsulated
Foeniculum vulgare Mill. essential oil Sorghum bicolor

Significantly preserved the
nutritional and sensory

characteristics of S. bicolor seeds.
[158]

Encapsulated peppermint essential oil in
chitosan nanoparticles - Biological efficacy against

stored-grain pest control. [159]

3.2. Sustainable Applications of Chitosan in Purification of Water, Paper-Making, and Green Chemistry

The chitosan is a good flocculant for water treatment, especially indicated for organic
matter, suspended solids, and ions (metals). Furthermore, the deposition rate is stimulated
when chitosan is used [160]. It is used over oil spills as it can preserve the integrity of the oil
mass. Its properties are also indicated for anionic waste where the chitosan can remove the
metal ions of the acid solutions. Some of the most attractive features of chitosan regarding
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other flocculants are associated with its biodegradability and its adsorption and flocculating
ability, which show excellent results with oils [7]. However, there are many other pollutants
where the chitosan shows interesting results as can be observed in Table 7. Chitosan and
its composites demonstrate excellent adsorption properties for diversified environmental
contaminates ranging from organic pollutants to metal ions [47,161–165]. The mechanism
for the adsorption of toxic pollutants by chitosan and its composites involves various types
of interactions such as electrostatic, hydrogen bonding, π-π bonding, etc. The chitosan and
its composites had several hydroxyls and amino and carboxylic groups which are very
helpful for such interactions, thus making it more adsorbent.

Table 7. Examples of pollutants removed by chitosan and derivatives.

Pollutant Adsorbent Efficiency References

Tetracycline Chitosan/poly (vinyl alcohol)
nanofibers 102 mg/g (maximum adsorption capacity) [166]

Ciprofloxacin Chitosan/biochar hydrogel 36.72 mg/g (uptake capacity) [167]

Tetracycline
Magnetic polymer nanocomposite

was fabricated using chitosan,
diphenyl urea, and formaldehyde

168.24 mg/g (maximum adsorption capacity) [168]

Tetracycline
Nanocomposite of

chitosan/thiobarbituric
acid/malondialdehyde-Fe3O4

215.31 mg/g (highest adsorption capacity) [169]

Antibiotics Chitosan-grafted SiO2/Fe3O4
nanoparticles 100.74 mg/g (theoretical adsorption capacity) [170]

Ketoprofen Chitosan/Zr-MOF (UiO-66)
composite Maximum adsorption capacity of 209.7 mg/g [171]

Tetracycline
Nitrilotriacetic acid modified

magnetic chitosan-based
microspheres

Adsorption capacity of 373.5 mg g−1 [172]

Congo red Chitosan nanoparticles 99.96% [173]

Methylene blue
Chitosan/κ-carrageenan/acid-
activated bentonite composite

membranes

Maximum adsorption capacity for methylene
blue was 18.80 mg/g [174]

Azo dyes Glass beads coated with chitosan Maximum adsorption capacity of the column
packed with GBCC was 108.7 mg g−1. [175]

Methyl orange Chitosan-lysozyme biocomposite Maximum adsorption capacity for MO was
435 mg/g [176]

Methylene blue
Bivinylbenzene cross-linked
chitosan/maleic anhydride

polymer
Adsorption capacity for MB 503 mg/g [177]

Acid orange 7 (AO7,
monovalent), Acid red 13

(AR13, divalent), and Acid red
27 (AR27, trivalent) dyes

Chitosan–magnetite gel
microparticles

Acid Orange 7 (AO7, monovalent), Acid Red
13 (AR13, divalent), and Acid Red 27 (AR27,
trivalent) dyes with maximum adsorption

capacities, Qmax, of 1.71, 1.55, and 1.13
g-dye/g-dry adsorbent, respectively

[178]

Methyl orange dye Fe-loaded chitosan film Maximum adsorption capacity 205 mg g−1 [179]

Methyl orange dye Chitosan/carbon/Fe3O4
Maximum adsorption capacity was

425 mg g−1 [180]

Disperse blue 367 Magnetic/chitosan/graphene
oxide Adsorption capacity of 298.27 mg/g [181]

Reactive orange 16 dye Chitosan tripolyphosphate/TiO2
nanocomposite Adsorption capacity was 618.7 mg/g [182]
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Table 7. Cont.

Pollutant Adsorbent Efficiency References

Acid red 88 Phosphorylated chitosan Adsorption capacity was 230 mg g−1 [183]

Methylene blue
Poly(glycerol

sebacate)/chitosan/graphene oxide
nanocomposites

Adsorption capacity was 129 mg/g [184]

Methylene blue
Magnetic sodium

ferrosilicate/carboxymethyl chitosan
composite

Adsorption capacity was 515.0 mg/g [185]

Malachite green (MG),
reactive red (RR), and

direct yellow (DY) dyes
Chitosan

Adsorption capacities 166 mg/g for dye MG,
1250 mg/g for dye RR and 250 mg/g for

dye DY
[186]

Methyl orange

Chitosan crosslinked with
metal-organic framework

(MOF-199)@aminated graphene oxide
aerogel

Maximum adsorption capacity for methyl
orange 412 mg/g [187]

Reactive orange 16 Chitosan-polyvinyl alcohol/fly ash
(m-Cs-PVA/FA)

Adsorption capacity of m-Cs-PVA/FA for
RO16 dye removal was 123.8 mg/g [188]

Methyl orange and
methylene blue Graphene oxide-chitosan composite Maximum adsorption amounts of MO and

MB were 543.4 and 110.9 mg/g [189]

Phenol, BPA, and 2,4-DCP Chitosan modified nitrogen-doped
porous carbon composite

Maximum adsorption capacity for phenol,
BPA, and 2,4-DCP was 254.45, 675.68, and

892.86 mg g−1
[190]

Sunset
yellow Chitosan Maximum adsorption capacity

1432.98 mg g−1 [191]

Allura red
Luffa-chitosan crosslinked with

glutaraldehyde (LCsG) and
epichlorohydrin (LCsE)

LCsG and LCsE presented maximum
capacities of 89.05 mg/g and 60.91 mg/g. [192]

Brilliant blue Chitosan Maximum adsorption capacity 814.27 mg/g [191]

Tartrazine Chitosan Maximum adsorption capacity 1065.55 mg/g [191]

Acid blue-25
Chitosan/porous carbon composite

modified in 1-allyl-3-methyl
imidazolium bromide ionic liquid

Maximum adsorption capacity 3333.33 mg/g [193]

Morphine, codeine,
ephedrine, amphetamine,

and benzoylecgonine

Magnetic chitosan-graphene
oxide-ionic liquid ternary nanohybrid

Adsorption capacity for morphine, codeine,
ephedrine, amphetamine, and

benzoylecgonine (7.2, 8.4, 9.2, 5.8, and
11.2 mg g−1, respectively)

[194]

Tartrazine Chitosan/polyaniline composite Maximum adsorption capacity of 584.0 mg/g [195]

Acetaminophen Polyaniline with chitosan Adsorption rate of 385.25 mg.g−1 [196]

Anthocyanins Chitosan beads Adsorption capacity was 216 mg g−1 [197]

Tetracycline Zirconium-loaded chitosan modified
by perlite (Zr/Cht/Pt) composites

Maximum adsorption capacity of
104.17 mg/g [198]

Levofloxacin, tetracycline
hydrochloride, and
sulfamethoxazole

Chitosan
Adsorption capacity of levofloxacin,

tetracycline hydrochloride, and
sulfamethoxazole were 26, 22, and 67 mg/g

[199]

17α-ethinylestradiol Graphene oxide, magnetic chitosan,
and organophilic clay composite

Maximum adsorption capacity was
50.5 mg/g [200]

Tartrazine Surfactant-ionic liquid
bi-functionalization of chitosan beads

Adsorption capacity was found to be
45.95 mg/g [201]
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The chitosan also showed good results associated with ions, as it can be observed in
Table 8. These are only some examples of the good results that can be achieved.

Table 8. Examples of chitosan for removing ions.

Ion Adsorbent Efficiency References

Cr (VI), Cu (II), and Co (II) Polyethylenimine-grafted chitosan
electrospun membrane

138.96, 69.27, and 68.31 mg/g for Cr(VI),
Cu(II), and Co(II), respectively

(maximum adsorption capacities)
[202]

Cu2+ and Cr6+
Zeolitic imidazolate framework-67

modified bacterial cellulose/chitosan
composite aerogel

200.6 mg/g and 152.1 mg/g, for Cu2+

and Cr6+, respectively (adsorption
capacities)

[203]

Cu2+ Monodispersed chitosan
microspheres 75.52 mg/g (adsorption capacity) [204]

Pb2+, Cu2+, and Cd2+
Physically crosslinked

chitosan/sodium alginate/calcium
ion double-network hydrogel

176.50 mg/g, 70.83 mg/g, and
81.25 mg/g for Pb2+, Cu2+, and Cd2+,
respectively (adsorption capacities)

[205]

Cu2+, Pb2+, and Cd2+ Chitosan-coated argillaceous
limestone

64.11 mg/g, 217.4 mg/g, and 52.48 mg/g
for Cu2+, Pb2+ and Cd2, respectively

(maximum adsorption capacities)
[206]

Cr(VI) Terylene carbon-dots modified
chitosan non-woven fabrics

Maximum adsorption capacity was
203 mg/g [207]

Pb2+
Zeolitic imidazolate framework-8
(ZIF-8) on carboxymethyl chitosan

beads

Maximum adsorption capacity of
566.09 mg/g [208]

Cd2+ Cellulose/chitosan composite
spheres loaded with nZVI Maximum adsorption up to 110.3 mg/g [209]

Cu2+ and Ni2+
Tripolyphosphate-crosslinked-

chitosan-modified
montmorillonite

Adsorption capacity for Cu2+ and Ni2+

0.56 and 0.44 mmol/g
[210]

Cr4+ Chitosan-lysozyme biocomposite Maximum adsorption 216 mg g−1 [176]

Pb2+ and Cd2+ Chitosan/Mg-Al-layered double
hydroxide nanocomposite

Maximum capacities were 333.3 mg/g for
Pb2+ and 140.8 mg/g for Cd2+,

respectively.
[211]

Arsenic Silica-stabilized magnetic chitosan
Beads

Maximum adsorption capacity
1.699 mg/g [212]

Cr(III) and Cr(VI)
Iron oxide/carbon

nanotubes/chitosan magnetic
composite film

Maximum adsorption capacity for Cr(III)
of 66.25 mg/g and for Cr(VI) of

449.30 mg/g
[213]

Cu(II) Chitosan-coated magnetic
nanoparticles

Maximum adsorption capacity was
found to be 236.7 mg/g [214]

Cr(VI) Nano-graphene oxide-assisted
hydrotalcite/chitosan biocomposite

Maximum adsorption capacity of
42.64 mg/g [215]

Pb2+ and Hg2+

Schiff base based on porous chitosan-
glutaraldehyde/montmorrilonite

nanoparticles modified with
3-aminopropyl triethoxysilane

Maximum adsorption capacity of Pb2+

and Hg2+ were 32.786 and 30.395 mg/g
[216]

Re(VII) Chitosan-silica composite containing
Mo-imprinted cavities Adsorption capacity of 368.8 mg g−1 [217]

Uranium Chitosan-grafted adenosine
5′-monophosphate foam Adsorption capacity of 311 mg/g [218]
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Table 8. Cont.

Ion Adsorbent Efficiency References

Li+ H4Mn5O12/chitosan Adsorption capacity reached 11.4 mg/g [219]

Fluoride Zirconium (IV)-impregnated
magnetic chitosan graphene oxide Adsorption capacity was 8.84 mg/g [220]

U(VI) Chitosan-based aerogel U(VI) adsorption capacity of 160 mg/g [221]

Au(III) Chitosan functionalized with N,N-(2-
aminoethyl)pyridinedicarboxamide

Maximum adsorption capacity of
659.02 mg/g [222]

Cr(IV) Chitosan composite Adsorption capacity was 18 mg/g [223]

Cu(II) Benzothiazole functionalized chitosan Maximum copper adsorption capacity of
1439.7 mg/g [224]

Cr(IV) Chitosan-crosslinked-poly(alginic
acid)

Maximum adsorption capacity
26.49 mg/g [225]

Pb(II) Ninhydrin-functionalized chitosan Maximum adsorption capacity of 196
mg/g Pb(II) ions [226]

Co2+ and Sr2+ Fibrous chitosan biosorbent
Adsorption capacity of fibrous chitosan
for Co2+ and Sr2+ was 31.3 mg g−1 and

20.0 mg g−1
[227]

Au(III) Benzothiazole-modified chitosan Maximum adsorption capacity of
1072.22 mg/g [228]

Cu(II)

Polyacrylamide-modified kaolin
enhances adsorption of sodium

alginate/carboxymethyl chitosan
hydrogel beads

Adsorption capacity of the adsorbent was
5.5157 mg/g [229]

Ag(I) Chitosan-coated magnetic silica
core-shell nanoparticles 126.74 mg/g [230]

Cu2+, Fe3+ and Pb2+ Chitosan
Maximum adsorption capacity Cu2+,

Fe3+, and Pb2+ were 462 270 mg/g,
934 mg/g

[199]

Sr2+ Carboxymethyl chitosan gel Maximum adsorption capacity can reach
144.73 mg/g [231]

As(III) MnO2-strengthened WTRs-chitosan
beads Adsorption capacity of 36.911 mg/g [232]

As(III), Cd(II), Cu(II), and
Pb(II)

Chitosan bead-supported MnFe2O4
nanoparticles

As(III), Cd(II), Cu(II), and Pb(II) was
achieved maximum adsorption capacities

of 9.90, 9.73, 43.94, and 11.98 mg/g
[233]

Chitosan can be used for paper manufacture due to its mechanical properties which
can provide better resistance to recycled paper, reducing the consumption of chemical
additives [234]. Table 9 displays the various roles of chitosan in paper production.
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Table 9. Effects of chitosan in paper production.

Material/Use Paper Application Effects Reference

Nanoparticles with chitosan
and starch

Old corrugated
containerboard (OCC)

Increase tensile and burst strength
Decrease tear resistance [235]

Chitosan and cellulose nanofibers Paper recycling
(decolorization) Remove water-based inks [236]

Microparticules with chitosan
and bentonite Paper reinforcement Chitosan is a good dry strength additive [237]

Chitosan as additive Papermaking (aging stability
of paper)

Increase tensile strength.
Decrease the hydrophilicity of paper [238]

Chitosan with zeolite as filler Papermaking Improve the mechanical properties
of paper

Chitosan as additive Paper reinforcement (Kenaf
paper (Hibiscus cannabinus))

Give a good mechanical and dry
strength properties [239]

Graphene ink from the exfoliation of
graphite in pullulan, chitosan,

and alginate
For strain-sensitive paper

Paper-based strain sensor, the
chitosan-graphene has the best resistivity

value and demonstrates the highest
sensitivity towards strain

[240]

The chitosan can also be used as amino-functionalized structures for CO2 capture.
Many industrial processes could reduce their emissions using these systems. Furthermore,
there are many other options where chitosan can be used to reduce the greenhouse gas
emissions [241]. Table 10 displays the chitosan-based materials used for gas capture.

Table 10. Chitosan-based materials used for gas capture.

Adsorbate Adsorbent Effects References

Carbon dioxide Composite with chitosan and clay Adsorption capacity of 344.98 mg/g [242]

Carbon dioxide Arginine-containing
chitosan-graphene oxide aerogels

CO2 gas adsorption was equal to
24.15 wt% (5.48 mmol g−1) [243]

Palladium (II) and platinum (IV) Cross-linked chitosan
340.3 mg/g and 203.9 mg/g for Pd

and Pt, respectively (adsorption
capacity)

[244]

Carbon dioxide (separation) Membrane with carboxymethyl
chitosan and carbon nanotubes

Good CO2 selectivity and
permeability [245]

Carbon dioxide Acetic acid-mediated chitosan 368 mg/g adsorption capacity
Good CO2 Selectivity [246]

Carbon dioxide Chitosan as a porosity agent 280.5 mg/g adsorption capacity [247]

Formaldehyde gas

Chitosan crosslinked with
metal-organic framework

(MOF-199)@aminated graphene
oxide aerogel

197.89 mg/g adsorption capacity [187]

Carbon dioxide Chitosan-grafted multi-walled
carbon nanotubes

CO2 uptake capacity was found to be
significantly higher (1.92 ccg−1) [248]

4. Future Perspectives

It is expected that chitosan uses will increase replacing other traditional materials due
to its interesting properties and functionalities, but also due to it being abundant, it can be
extracted using green chemistry and easily treated as waste. For these reasons, chitosan
is considered a rich renewable resource where some of its shortcomings associated with
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solubility, mechanical properties, and porosity are being addressed due to the potential of
this source.

This article shows some of the most prominent fields where chitosan is an interesting
alternative to other conventional materials, but its properties will be reflected soon in other
many fields due to its versatility and properties. Some of the most promising applications
could be associated with specific areas such as medicine, food packaging, or biotechnology,
among others.

There is a lot of room to grow in terms of the production of chitosan, the current goal
of which is clearly focused on the removal of hazardous solvents and reducing the energy
consumption. On the other hand, chitosan can contribute to sustainability in terms of
recycling and waste management due to its degradability.

5. Conclusions

Chitosan shows an interesting range of properties which make it very useful for
sustainable development due to it being abundant, biodegradable, biocompatible, and
versatile. The production of chitosan is improving in terms of green chemistry, due to the
hazardous chemicals being replaced by eutectic solvents, lower energy consumption has
been achieved, and circularity can be applied to secondary processes. The use of chitosan
in films for food packaging shows better properties than traditional films composed of
polyethylene. The edible food packing with enhanced antimicrobial activity can be de-
veloped using chitosan. Numerous blends of chitosan have been developed with various
essential oils and extracts which are excellent antibacterial and antifungal agents. On
the other hand, the chitosan provides interesting and multiple features for a sustainable
agriculture, such as a protection for the plant and increasing the production. Finally, the
chitosan can contribute to green chemistry in multiple processes such as the paper industry
or the treatment of wastewater, reducing the impact and contributing to the circularity
of industrial processes. The chitosan-based composites, hydrogels, and membranes can
be used for the remediation of diversified pollutants including dyes, antibiotics, phenols,
metal ions, etc. Thus, being a second abundant biopolymer in nature, chitosan can be a
potential sustainable future material.
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