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Abstract: Copolymerization of diallylamine (DAA) and itaconic acid (IA) was synthesized using
benzoyl peroxide as a free radical initiator, in dioxane as the solvent. The composition of the
copolymer was determined by the nitrogen content using Edx. The solubility of the copolymer was
also investigated. The water solubility of the synthesized copolymer depends on the comonomers’
ratio. The structure of the copolymer was confirmed by 13C-NMR spectroscopy. To increase the water
insolubility of the copolymers, and keep their hydrophilicity, the copolymer was allowed to react
with chitosan to form a superabsorbent polymeric material (SP). The structure of the synthesized
superabsorbent was confirmed using 13C-NMR spectroscopy. The thermal property of the (SP) was
also investigated by TGA. The investigation of the chitosan-based superabsorbent, as water-retaining
agents, was studied. The results revealed that the superabsorbent polymers exhibited a good swelling
ability and salt tolerance.

Keywords: free radical polymerization; superabsorbent; water-retaining agent; thermal properties

1. Introduction

Water is considered an essential need for living creatures, humans, animals, and
plants. It is also important for various activities such as agriculture, especially in countries
exhibiting a desert nature [1–3]. Superabsorbent polymers (SA) are hydrophilic polymers,
that can absorb and retain water for short time but do not dissolve in water [4–6]. The
(SA) polymers are widely used in various applications, such as agriculture, industry,
drug delivery, and personal care [7–9]. In agriculture, the (SA) was used to reduce the
frequency of irrigation, as it improves soil water retaining which enhances the plant survival
rates, especially in the desert [10–14]. As an environmental requirement, naturally based
superabsorbents are always used, such as starch, cellulose, proteins, and chitosan [15–18].

Chitosan is one of the most abundant natural polymers. It is used in various ap-
plications because of its compatibility, degradability, and nontoxicity [19]. Despite these
advantages, chitosan suffers from low thermal stability at high temperatures. Additionally,
the high percentage of hydrogen bonding limits its adjustment to various applications
without modification [20,21]. Chitosan was known to undergo graft copolymerization with
vinyl monomers, such as acrylic acid, acrylamide, and acrylonitrile [22–24].

Diallylamine (DAA) is known to undergo copolymerization by free radical mechanism,
forming pyrrolidine rings [25]. The pyrrolidine ring is considered a proton adsorption site.
Itaconic acid exhibits two carboxylic groups and an ethene bond, which enable it to undergo
both copolymerization and polycondensation. IA and its producing special hydrogels for
water decontamination, targeted drug delivery as well as smart nanohydrogels in food
applications, coatings, and elastomers [26].
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In the present work, copolymerization of DAA and IA with chitosan will be syn-
thetized to produce a superabsorbent chitosan base polymeric material for the performance
of hydrogels.

2. Experimental Section
2.1. Materials

Chitosan (CS), degree of acetylation 80%, average molecular weight 50,000, was
purchased from Sigma-Aldrich. Itaconic acid, sodium bisulfite, and benzoyl peroxide were
obtained from Loba Chemie. Potassium persulphate was obtained from Winlab limited.
Ethanol, acetic acid, and DAA were obtained from Sigma-Aldrich.

All chemical reagents are of analytical grade.

2.2. Copolymerization of Diallylamine and Itaconic Acid

Various in-feed concentrations of the two comonomers were allowed to undergo
free-radical copolymerization, in dioxane, using 0.02 M benzoyl peroxide as the initiator.
The reaction was carried out under a nitrogen atmosphere for certain intervals of time, at
60 ◦C, in an ultrasonic bath of power 300 watts. The copolymer was filtered with diethyl
ether and then washed with ethanol using Soxhlet system to remove any homopolymer.
The copolymer was dried, weighted, and the found composition of the copolymer was
determined by deducing the nitrogen content of the prepared copolymer.

2.3. Synthesis of the Superabsorbent Polymers

Synthesis of the superabsorbent polymer was carried out in two-neck round-bottom
flask. A pure (2 g) chitosan was dissolved in 100 mL of 1% acetic acid solution. Proper
concentrations of initiators (0.01 M, 0.015 M, 0.02 M) of Sodium bisulfite and potassium
persulfate were added at temperatures (30 ◦C, 40 ◦C, 50 ◦C, 60 ◦C), in ultrasonic bath of
300 watts, under nitrogen atmosphere. After 15 min the comonomers were successively
added. The reaction was carried out for a given interval of time (1–6 h). The Soxhlet extraction
system was used to remove the homopolymers. After drying, the graft copolymer was
weighted and the graft percentage (G%) was calculated according to the following equation:

G% =
w− wo

wo
× 100

wo = original weight of chitosan, w = weight of the graft copolymer.

2.4. Spectroscopic Analysis

The structure of the copolymer and the superabsorbent polymer was confirmed using
solid-state NMR Bruker Avance III spectrometer, operating at 400 MHz.

2.5. SEM and Energy Dispersive Spectrometer (EDS)

A VEGA 3 TESCAN scanning electron microscope (Tescan, Czech Republic) with a
detector of secondary electron (SE). In addition, detector and energy-dispersive spectrom-
eter (EDS) were used to determine the nitrogen content of the copolymer formed. The
analysis was carried out at voltage of 15 KeV with a working distance of 10 mm between
the specimen and the detector.

2.6. Swelling Measurements

The superabsorbent powder (0.05 g) was dispersed in distilled water (500 mL) for 4 h,
at room temperature to reach the swelling equilibrium. The residual water was removed
by filtration using a 100 mesh stainless steel screen until water ceased to drip.

The water absorbency was calculated according to the following Equation (1)
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Q =
(m1 −m0)

m0
(1)

where Q is the water absorbency (w/w), m0 is the weight of the dry superabsorbent polymer,
and m1 is the swollen superabsorbent polymer.

2.7. Swelling in Salt Solutions

The absorbency of the superabsorbent polymer was evaluated in variable NaCl solu-
tions (from 0.1 to 1.0 w/w%), using the above method described for the swelling measure-
ments in distilled water.

2.8. Water Retention of the Superabsorbent Polymers

The water retention of the superabsorbent polymer (SA) was tested using the
following method.

A specific amount of (SA) was allowed to swell to saturation in distilled water. The
superabsorbent polymers were filtered using a 100 mesh screen and placed in Petri dishes,
at room temperature. The weight of SA was determined after regular time intervals. The
process was continued until saturation (no change in weight) was detected.

The water retention was obtained by applying the following equation:

water retention(%) =
(wt− wd)
(wi− wd)

× 100 (2)

where, wt is the weight of SA, at time (t), wd is the weight of the dry superabsorbent
polymer, and wi is the initial weight of swollen superabsorbent polymer.

3. Results and Discussion
3.1. Copolymerization of DAA and IA

The composition of the copolymer was determined according to the nitrogen content,
as the nitrogen atom is a direct confirmation of the DAA moieties present in the synthetized
copolymer (Table 1).

Table 1. Water solubility of various synthesized (DAA-IA) copolymers.

Sample No.
In-Feed Composition (M) Found Composition

Water Solubility
(DAA, IA) (DAA, IA)

1 (0.8, 0.2) (0.95, 0.05) Insoluble

2 (0.6, 0.4) (0.85, 0.15) Insoluble

3 (0.5, 0.5) (0.8, 0.2) soluble

4 (0.4, 0.9) (0.7, 0.3) Soluble

The structure of the copolymer formed in sample 2 was confirmed using 13C-NMR
(Figure 1).

The results revealed that the DAA cyclo-polymerized to form pyrrolidine rings [25],
while the IA formed a condensation product with the pyrrolidine -NH group. Moreover,
the presence of the ethylenic carbons accounted for the low composition of IA in the
synthetized copolymers (Table 2).
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3.2. Synthesis of the Superabsorbent Polymer

Although IA comonomer exhibits two carboxylic groups, which enable it to absorb
either water or salty water, it also increases its water solubility. To profit from the advantage
of the presence of carboxylic groups and overcome the water solubility, graft copolymer of
both comonomers with chitosan (CS) occurred using redox polymerization.

3.2.1. Effect of Various Parameters on the Percentage of Graft

The following equation was used to calculate the grafting percentage

G =
W −W0

W0
× 100 (3)

To synthetize insoluble superabsorbent, the comonomers concentrations to the chi-
tosan were kept (CS = 2 g, [DAA] = 0.4 M, [IA] = 0.15 M).

Effect of Time

The effect of various intervals of time on the grafting copolymerization of comonomers
onto CS is listed in Table 3. The results revealed that the percentage of the graft increased
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gradually with time. This might be attributed to the increase in the chain length of the
grafting branches until it reached a maximum value. Afterward, the increase in the reaction
time led to a steady state for the G%, due to the consumption of monomer units in the
formation of branches.

Table 3. Effect of time on the graft percentage.

Grafting Time (h) Grafting (%)
(CS = 2 g, [DAA] = 0.4 M, [IA] = 0.15 M, [I] = 0.02 M, T = 60 ◦C)

0 0

1 13.7

2 25.85

3 38.85

4 38.75

5 38.5

6 38.45

Effect of Temperature

To investigate the effect of reaction temperature on the graft copolymerization reaction,
the temperature was increased from room temperature to 60 ◦C. The maximum percentage
of the graft was achieved at 40 ◦C. Afterward, a gradual decrease in the percentage of
the graft was observed with the increase in temperature, which could be attributed to the
achievement of ceiling temperature of the polymeric branches as shown in Table 4.

Table 4. Effect of temperature on the graft percentage.

Temperature (◦C) Grafting (%)
(CS = 2 g, [DAA] = 0.4 M, [IA] = 0.15 M, [I] = 0.02 M, Grafting Time = 3 h)

25 0

30 33.85

40 72.05

50 51.45

60 38.75

Effect of Initiators Concentration

The effect of initiator concentration on the percentage of graft onto Chitosan is listed in
Table 5. A gradual increase in G% was observed with the increase in initiator concentration
from 0.015 M to 0.02 M. Afterward, a decrease in the G% was observed by increasing the
initiator concentration, which could be ascribed to the increase in the probability of chain
transfer to initiator reactions.

Table 5. Effect of initiator concentration on the percentage of graft.

Concentration of Initiators (M)
Grafting (%)

(CS = 2 g, [DAA] = 0.4 M, [IA] = 0.15 M, Grafting time = 3 h,
T = 40 ◦C)

0.015 60.65

0.02 72.05

0.025 49.65

Thus, the optimum conditions for the synthesis of the superabsorbent were (CS = 2 g,
[DAA] = 0.4 M, [IA] = 0.15 M, [I] = 0.02 M, and T = 40 ◦C).
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3.2.1.4. 13C-NMR Spectroscopic Analyses

The CS-g-(DAA-IA) 13C-NMR spectrum confirmed the structure of the superabsorbent
polymer (Figure 2). The results showed the condensation of the IA carboxylic group with

an amino group of chitosan (
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Another confirmation of the modification of chitosan is the surface morphology of the
superabsorbent as compared to parent chitosan (Figure 3).
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Figure 3. SEM Morphology of the superabsorbent (b) as compared to unmodified chitosan (a).

Figure 3b shows the branches built as extra layers on the top of the main chitosan
chains. In addition, the chitosan shows smooth morphology, while the superabsorbent
showed a rough surface due to the branches formed by the pyrrolidine moieties. The
surface roughness is known to enhance the water permeability [27].

3.3. Thermal Properties of the Superabsorbent

To adjust the synthetized superabsorbent to any application, its thermal behavior
should be examined. Figure 4 shows the TGA curves of various graft copolymers as
compared to that of the native chitosan.
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Figure 4. TGA of various CS-g-(DAA-IA) copolymers (%G: b = 49.1%, c = 60.65%, d = 72.05%) as
compared to CS (a).

The results revealed that the graft copolymerization affected the initial decomposition
temperature (To), the temperature at which the polymer starts to lose part of its polymeric
matrix. This is attributed to the decrease in the matrix crystallinity as a consequence of the
formation of branches onto the chitosan main chains. Despite the decrease in To values, the
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thermal stability of the graft copolymers could be shown by the decrease in weight loss
percentages at high temperatures as compared to the native chitosan, which lost almost half
of its weight at 500 ◦C. Thus, the increase in the percentage of the graft gave the copolymer
its extra thermal stability.

3.4. Water Absorbency Measurements
3.4.1. Effect of the Percentage of Graft

The effect of comonomers contents on the water absorption of the superabsorbent is
shown in Figure 5.
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The results revealed that the increase in the graft percentage led to an increase in the
water absorbency. This is attributed to the increase in the number of carboxylic groups
present in the superabsorbent polymer as itaconic acid moieties.

3.4.2. Swelling in Salt Solutions

The absorbency of the superabsorbent polymer in different salt concentration solutions
is illustrated in Figure 6.
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The superabsorbent polymer swelling in different salt concentration solutions is il-
lustrated in Figure 6. The results revealed that the water absorption capacity decreased
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with the increase in salt concentration. This is attributed to a charge screening effect of
additional cations, causing anion–anion electrostatic repulsion [27].

The absorbency of SA in the salt solution is higher than that of CS. This is attributed to
the basicity of the pyrrolidine ring to attract the protons of carboxylic groups of IA and the
chlorine anion of NaCl to form quaternary ammonium salt.

From the above-mentioned data, the swelling efficiency of the superabsorbent polymer
depends on its chemical structure and the medium.

3.5. Water Retention

The water retention property of SA was investigated. The results are illustrated in
Figure 7.
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Figure 7. Water retention of SA (%G = 60.65) (b) as compared to that of CS (a).

The results revealed that the water retention of SA decreased with time. The superab-
sorbent polymer (%G = 60.65) exhibited higher water retention efficiency as compared to
CS, as it retained up to 50% of water after 40 h. This is attributed to the ability of the SA
polymer to undergo hydrogen bonding with water molecules [28].

4. Conclusions

A novel superabsorbent copolymer was successfully synthesized by the free radical
polymerization of chitosan with diallylamine and itaconic acid comonomers. The reaction
conditions were optimized. The structure of the superabsorbent was confirmed by 13C
NMR. The diallylamine was found to form polymeric branches as pyrrolidine rings while
itaconic acid formed condensation products with the amino group of chitosan and the
-NH group of pyrrolidine rings. The superabsorbent exhibited better thermal stability as
compared to the native chitosan. The results of the effect of comonomers contents on the
water absorption of the superabsorbent revealed that the increase in the graft percentage
led to the increase in the water absorbency. This is attributed to the increase in the number
of carboxylic groups present in the superabsorbent matrix as itaconic acid moieties. The
absorbency of SA in the salt solution is higher than that of CS, this is attributed to the
basicity of the pyrrolidine ring to attract the protons of carboxylic groups of IA moieties
and the chlorine anions of NaCl salts to form quaternary ammonium salt.

The superabsorbent polymer (%G = 60.65) exhibited higher water retention efficiency,
as compared to CS, as it retained up to 50% of water after 40 h. This is attributed to the
ability of the SA polymer to undergo hydrogen bonding with water molecules.

The new superabsorbent is recommended to become an ideal soil water retention agent.
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