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Abstract: This physical and mechanical properties of a table tennis blade made from sorghum bagasse
particleboard (TTBSB-particleboard) bonded maleic acid adhesive was investigated under pressing
temperature and time variations. The TTBSB-particleboard was produced via a two-stage process
in this study. A pressing temperature of 170–200 ◦C was used to prepare the first stage for 10 min.
Following this, the second stage of the TTBSB-particleboard was produced with a different pressing
time of 5–20 min. The TTBSB-particleboard had a specified target density of 0.6 g/cm3 and a size
of 30 cm × 30 cm × 0.6 cm, respectively. For references concerning the tested quality of TTBSB-
particleboard, the JIS A 5908-2003 standard has been used. For comparison, the commercial blades of
Yuguan Wooden 1011 and Donic Original Carbo Speed were tested under the same conditions. The
quality of the TTBSB-particleboard was successfully enhanced by increasing the pressing temperature
(170 to 200 ◦C) and time (5 to 20 min). As a result, the pressing condition of 200 ◦C and 20 min
were effective in this study. The TTBSB-particleboard in this study has a greater weight than the
commercial blades of Yuguan and Donic. However, the TTBSB-particleboard in this study had a ball
rebound comparable to that of the Donic blade.

Keywords: maleic acid; particleboard; pressing temperature and time; sorghum bagasse; table
tennis blade

1. Introduction

The blade is an essential component in table tennis. The main ingredients for making
the blade consist of wood (plywood) and synthetic fibers. The woods commonly used
as blades are kiri (Paulownia tomentosa), balsa (Ochroma pyramidale), ayous (Triplochiton
scleroxylon), hinoki (Chamaecyparis obtuse), koto (Pterygota macrocarpa), and limba (Terminalia
superba) [1]. Arifin et al. [1] reported that wood as a raw material for the blade has
drawbacks. Namely, it is expensive compared to natural fibers, more challenging to
produce, and more difficult to dry. In addition, the availability of wood as a raw material
is decreasing due to deforestation. The MoEF reports that the size of deforestation in
Indonesia from 2018 to 2019 was 0.46 million ha [2]. Making wood-based composites using
natural fibers has been developed as one of the solutions to deforestation.

Natural fibers, such as kenaf, hemp, and sisal, can be used as a substitute for wood to
manufacture table tennis blades. Arifin et al. [1] reported natural fibers, such as kenaf, hemp,
and sisal, as a substitute for wood in manufacturing wood-based composite products, such

Polymers 2023, 15, 166. https://doi.org/10.3390/polym15010166 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15010166
https://doi.org/10.3390/polym15010166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-3574-2824
https://orcid.org/0000-0002-2212-4501
https://orcid.org/0000-0001-8367-0349
https://orcid.org/0000-0001-5216-6246
https://orcid.org/0000-0001-7860-3125
https://doi.org/10.3390/polym15010166
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15010166?type=check_update&version=2


Polymers 2023, 15, 166 2 of 10

as table tennis blades. This research showed that kenaf fiber is the best fiber substitute for
wood in table tennis blades based on energy absorption, its lighter weight, shear strength,
Young’s modulus, and hardness. Amin et al. [3] also reported that kenaf fiber can replace
wood as the primary material in manufacturing table tennis blades.

Sorghum is another natural fiber source that has the potential to be used as a raw
material for the production of blades. The sorghum harvest period is relatively short,
around 3–4 months [4]. The stalks of sorghum plants have an average height of 1–3.4 m [4].
In addition, according to Pabendon et al. [5], the average bagasse of sorghum stalks is
23.06 tons/ha, while the average bagasse of sorghum bagasse is 4.89 tons/ha. Sorghum
bagasse can be used as raw material for particleboard [6–13]. Particleboard made from
sorghum bagasse has good physical and mechanical properties. According to the findings
of Kusumah et al. [11,14] studies, the optimum conditions for producing sorghum bagasse
particleboard with citric acid adhesive were at a 20% adhesive and a pressing tempera-
ture of 200 ◦C for 10 min. Sorghum bagasse particleboard under these conditions had a
modulus of elasticity, internal bonding, and thickness swelling that met the standard JIS A
5908:2003 type 18. In addition, these qualities were comparable to particleboard made using
phenol–formaldehyde (PF) and polymeric 4,4-methylene diphenyl diisocyanate (pMDI).

Another organic acid that can be used as an adhesive is maleic acid. Maleic acid
was obtained by removing water from malic acid [15]. Sejati et al. [16] reported that
maleic acid has a lower melting point, so maleic acid is more reactive than malic acid
and citric acid, resulting in higher dimensional stability, strength, and durability in wood
modification. According to a prior study, sorghum bagasse particleboard bonded with
maleic acid adhesive performed well and met the requirements of JIS A 5908-2003 type
8 [17]. These characteristics are comparable to the citric acid-bonded particleboard and
offer greater resistance to termites and decay than phenol–formaldehyde adhesives.

Sutiawan et al. [18] investigated the maleic acid content and particle size on a ta-
ble tennis blade made from sorghum bagasse particleboard (TTBSB-particleboard). The
performance of TTBSB-particleboard improved with an increasing maleic acid content of
15 wt%. The powder particle class (4–20 mesh) provided higher dimensional stability, inter-
nal bonds, and smoother TTBSB-particleboard than the coarse particle class (4–10 mesh)
due to the more significant contact area among the powder particle class. However, the
mixed particle class (4–20 mesh) has an optimal modulus of elasticity and rupture of the
TTBSB-particleboard. Therefore, the maleic acid content of 15 wt% and mixed particle class
resulted in optimum physical and mechanical properties for the TTBSB-particleboard [18].

The parameters of pressing temperature and time play an essential role in determining
the rate of curing of the adhesive [19]. Muruganandam et al. [20] stated that the temperature
and time of the press depend on the type of raw material used and the product produced.
In addition, the hot-pressing process is important in manufacturing boards because of
the energy expenditures required and the impact of pressing time on productivity [20].
Therefore, in this study, the effect of pressing temperature and time on the quality of table
tennis blade sorghum bagasse particleboard (TTBSB-particleboard) was examined and
compared with the commercial table tennis blade. The quality of the TTBSB-particleboard
was determined at effective pressing temperatures and times. The novel idea from this
research is to manufacture a new table tennis blade made from sorghum bagasse as the
main material to replace wood.

2. Material and Methods
2.1. Materials

Sorghum bagasse (Sorghum bicolor) from a garden at the National Research and Innova-
tion Agency (BRIN) was utilized, referring to [18]. Pure maleic acid (MA) was bought from
the Telagasakti Skautama Company (Jakarta, Indonesia). In addition, the commercial blade
of a Donic Original Carbo Speed (Berlin, Germany) and Yuguan Wooden 1011 (Beijing,
China) were bought from Asta Sport Company (Jakarta, Indonesia).
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2.2. Sample Preparation

In accordance with earlier articles, a chipper and a knife-ring flaker machine were
used to create the sorghum bagasse particles [18]. Sorghum bagasse particles were sieved
according to optimum conditions per a previous study at 4–20 mesh (mixed particle size
class) [18]. After that, the material was dried at 60 ◦C until the moisture content was at 5%.
According to previous research, MA and water were set at 44 wt% in water [17].

2.3. Manufacture of TTBSB-Particleboards

A table tennis blade made from sorghum bagasse particleboard (TTBSB-particleboard)
was produced via a two-stage method in this study. The first stage was prepared at different
pressing times of 170–200 ◦C for 10 min. The influence of pressing temperature was
evaluated to obtain the optimum pressing temperature for TTBSB-particleboard production.
Then, another stage of TTBSB-particleboard was manufactured for a different pressing
time at 5–20 min. Table 1 presents the stage production of the TTBSB-particleboard in
this study. The TTBSB-particleboard had a specified target density of 0.6 g/cm3 and a
size of 30 cm × 30 cm × 0.6 cm, respectively. Before pressing, the moisture content was
decreased by a 12 h oven treatment at 80 ◦C [11]. The pressing pressure was set at 5 MPa
for producing TTBSB-particleboard, according to [11].

Table 1. Conditions of manufacture for TTBSB-particleboard.

Stages Pressing Temperature (◦C) Pressing Time (min)

Stage 1

170 10
180 10
190 10
200 10

Stage 2

200 5
200 10
200 15
200 20

2.4. Evaluation of the Properties of TTBSB-Particleboards

The JIS A 5908:2003 and D 1037:1999 standards were used for testing the physical
and mechanical characteristics of the TTBSB-particleboard with some modifications [21,22].
The parameters of physical properties tested consisted of density, moisture content (MC),
water absorption (WA), and thickness swelling (TS), and the mechanical properties tested
consisted of modulus of elasticity (MOE), modulus of rupture (MOR), internal bonding
(IB), surface roughness (SR), and hardness (H).

The samples used for the density test were 5 × 5 × 0.6 cm3 in terms of length, width,
and thickness, respectively. Comparing the mass and volume of TTBSB-particleboards
revealed the density determination. The MC test was conducted using a sample of the
size 5 × 5 × 0.6 cm3. Following a 24 h drying period in an oven set to 105 ◦C, the
MC test was determined using the initial and final masses. The WA and TS of the TTBSB-
particleboard were determined using a 24 h immersion test with a 5 × 5 × 0.6 cm3 specimen.
The MOE and MOR were determined using the universal testing machine (UTM AGX,
Shimadzu, Japan) with dimensions, spans, and loading speeds of 15 × 3 × 0.6 cm3, 9 cm,
and 10 mm/min, respectively. The same size for TS and WA was utilized for testing the IB
of the TTBSB-particleboard.

Using a portable tester (SJ-210, Mitutoyo, Japan), the 50 × 50 × 6 mm3 specimens
were examined to measure the surface roughness (average roughness/Ra) of the TTBSB-
particleboard [23]. The specimens were put through a hardness test after evaluating the
surface roughness. In addition, the hardness was assessed using the ball test at a speed
of 6 mm/min with a projected area of 100 mm2. Hardness is measured by the stress at
which the ball penetrates to a depth of half its diameter. Six replications were used for the
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TTBSB-particleboard experiment testing. Using the universal testing machine (UTM AGX,
Shimadzu, Japan), the hardness was investigated according to the standard ASTM D143.

In addition, weight and ball rebound were tested in this study. Weight and all TTBSB-
particleboards were tested in previous studies [24]. Here, the TTBSB-particleboard weight
was measured using a digital scale. Meanwhile, TTBSB-particleboard is too high to allow
for measuring the height of the first ball to be applied at 90 cm. For comparison, the
commercial blade of the Donic Original Carbo Speed (Germany) and Yuguan Wooden 1011
(China) was tested under the same conditions (Figure 1).
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Figure 1. TTBSB-particleboard prepared at 200 ◦C for 20 min, TTBSB-Particleboard (A), Donic blade
(B), and Yuguan blade (C).

2.5. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

A universal attenuated total reflectance (UATR) accessory on a Fourier transform
infrared (FTIR) instrument (Spectrum Two, PerkinElmer, USA) was employed to determine
changes in the functional groups, and it was used in absorbance mode. The FTIR spectra at
4 cm−1 were recorded in the spectral region 4000 to 400 cm−1. The spectra were corrected
for baseline using PerkinElmer software (Ver. 10.5.3, Perkin Elmer Inc., Hopkinton, MA,
USA) [19].

2.6. X-ray Diffraction (XRD) Analysis

The crystallinity of the sorghum bagasse and TTBSB-particleboard were determined
using X-ray diffraction. The PerkinElmer XD-2 (4000, PerkinElmer, USA) was used to
acquire the X-ray diffraction data for this study. At a scan rate of 2◦/min, data on X-ray
scattering were collected over a 10◦ to 60◦ 2θ range [25].

2.7. Statistical Analysis

A simple, utterly randomized design with one factor from each stage was evaluated
using an analysis of variance (ANOVA). Then, Duncan’s multiple range test was performed
to statistically analyze the difference in TTBSB-particleboard properties at α < 0.05.

3. Result and Discussion
3.1. Pressing Temperature

The water absorption (WA) and thickness swelling (TS) of TTBSB-particleboard manu-
factured at different pressing temperatures are presented in Table 2. In this investigation,
a considerable drop in temperature of up to 200 ◦C was discovered on the WA and TS
of TTBSB-particleboard. The TS of TTBSB-particleboard met the requirement (12%), thus,
following the JIS A 5908 standard. The result showed that the TTBSB-particleboard manu-
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factured in this study had good dimensional stability. Kusumah et al. [11] reported that
the cross-linking between organic acid-based adhesives and sorghum bagasse particles at
temperatures above 200 ◦C might form faster than at temperatures below 180 ◦C. Therefore,
the hypothesized results showed improved cross-linking in the TTBSB-particleboard.

Table 2. Properties of TTBSB-particleboards at different pressing temperatures.

Properties
Pressing Temperature (◦C)

170 180 190 200

Water Absorption (WA) (%) 89.67 (7.28) b 81.67 (7.76) b 85.19 (3.48) b 72.03 (6.63) a
Thickness Swelling (TS) (%) 6.13 (2.02) b 4.61 (0.69) a 4.85 (0.61) ab 3.89 (0.58) a

Modulus of Elasticity (MOE) (MPa) 175 (84.33) a 237 (163.97) a 372 (86.78) b 440(64.41) b
Modulus of Rupture (MPa) 1.98 (0.52) a 2.41 (0.42) a 4.31 (0.58) b 4.75 (0.70) b
Internal Bonding (IB) (MPa) 0.03 (0.02) a 0.11 (0.04) b 0.15 (0.04) c 0.16 (0.05) c

Values in parentheses are standard deviations. According to Duncan’s multiple range test, values are followed by
the symbols a and b if the same letter is not statistically different (p > 0.05).

Table 2 shows the MOE and MOR of the TTBSB-particleboard at different pressing
temperatures. With the increase in pressing temperature from 170 to 200 ◦C, the MOE
and MOR of the TTBSB-particleboard were increased. At 200 ◦C pressing temperature,
the maximum average MOE and MOR values of TTBSB-particleboard were 440 MPa and
4.75 MPa, respectively. These values were approximately 2.5 times or more significant than
those obtained with TTBSB-particleboard at 170 ◦C. In terms of MOE and MOR in this
study, the effective pressing temperature was 200 ◦C. As with those previously reported by
Kusumah et al. [14], these phenomena demonstrated that the effective pressing temperature
of particleboard bonded with organic acid-based adhesives, such as citric acid, is 200 ◦C.

The increasing temperature from 170–200 ◦C increased the IB of the TTBSB-particleboard
(Table 2). The TTBSB-particleboard manufactured at 200 ◦C had a threefold higher IB than
TTBSB-particleboard manufactured at 170 ◦C. Furthermore, temperature and adhesive
curing were observed to have a linear correlation [26]. According to the general theory,
the melting point of MA is around 130 ◦C. Therefore, the excellent TTBSB-particleboard
manufactured at 200 ◦C was found due to the MA melting and could have easily created
linkages between sorghum bagasse particles. Additionally, the IB TTBSB-particleboard met
the JIS A 5908 standard (0.15 MPa) requirements at 190 ◦C and 200 ◦C in this study.

3.2. Pressing Time

The TTBSB-particleboard produced under the pressing temperature of 200 ◦C in the
previous study was the optimum TTBSB-particleboard. This was due to good physical and
mechanical properties and, thus, at this stage, we analyzed the effect of pressing time and
compared the TTBSB-particleboard with commercial blades, such as the Yuguan Wooden
1011 (China) and Donic Original Carbo Speed (Germany) (Table 3).

Density is a physical property that affects the quality of table tennis blades [27]. The
average density of TTBSB-particleboard in this study is 0.55–0.57 g/cm3, and is lower than
the Yuguan commercial blade of 0.67 g/cm3, but higher density than the Donic commercial
blade (0.42 g/cm3). Differences in density are due to the composition of the materials
used. The core part of the TTBSB-particleboard is made of particleboard, while the Donic
commercial blade is made of solid wood and a combination of veneer. Manin et al. [24]
stated that in the arrangement of table tennis blades, low-density wood is used as the
blade’s core, while high-density wood is used as the blade’s surface. In addition, the
average moisture content (MC) of TTBSB-particleboard in this study (8.93–11.31%) was
lower than that of the Yuguan commercial blade (10.74%) but higher than that of the Donic
commercial blade (6.53%).
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Table 3. Properties of TTBSB-particleboards at different pressing times.

Properties
Pressing Time (min) Commercial Blade

5 10 15 20 Donic Yuguan

Density (g/cm3) 0.57 (0.02) a 0.57 (0.05) a 0.56 (0.01) a 0.55 (0.01) a 0.42 (0.00) 0.67 (0.22)
Moisture Content (MC) (%) 11.31 (0.18) b 9.90 (1.73) a 9.19 (0.21) a 8.93 (0.10) a 6.53 (0.08) 10.74 (0.27)
Water Absorption (WA) (%) 92.19 (5.28) b 94.75 (5.83) b 89.54 (9.02) ab 81.76 (5.96) a 39.33 (1.84) 68.75 (5.37)
Thickness Swelling (TS) (%) 4.26 (1.52) a 3.75 (0.57) a 3.89 (1.32) a 3.01 (0.25) a 4.93 (0.40) 4.25 (0.83)

Modulus of Elasticity (MOE) (MPa) 611 (163) a 758 (115) ab 783 (210) ab 822 (118) b 2752 (583) 4485 (454)
Modulus of Rupture (MPa) 3.20 (0.88) a 4.90 (0.55) b 4.67 (1.22) b 4.54 (0.63) b 63.79 (2.85) 49.04 (5.60)
Internal Bonding (IB) (MPa) 0.15 (0.04) a 0.15 (0.04) a 0.21 (0.05) b 0.22 (0.04) b 0.98 (0.04) 2.36 (0.09)

Surface Roughness (SR) (µm) 4.86 (0.90) a 5.00 (1.26) a 5.48 (0.92) a 5.39 (0.81) a 0.92 (0.03) 2.10 (0.53)
Hardness (H) (MPa) 29.77 (2.90) a 31.76 (2.37) a 32.30 (1.59) a 31.49 (1.36) a 25.89 (0.28) 38.69 (3.07)

Weight (g) - - - 89.70 85.43 86.73
Ball Rebound (cm) - - - 54.67 (1.52) 58.67 (0.58) 55.67 (1.53)

Values in parentheses are standard deviations. According to Duncan’s multiple range test, values followed are by
symbols a and b if the same letter is not statistically different (p > 0.05).

Another physical property affecting table tennis blades’ quality is dimensional sta-
bility [27]. Dimensional stability can be evaluated by testing water absorption (WA) and
thickness swelling (TS) [21]. The lowest WA and TS values for TTBSB-particleboard in this
study were found at a pressing time of 20 min. The TTBSB-particleboard had a TS value
of 3.01% after 20 min of pressing. These values differed significantly (p < 0.05) from those
obtained during another pressing time. The TTBSB-particleboard has a higher WA than
the Yuguan commercial blade and Donic commercial blade. This is because the density of
particleboard in this study is medium (0.6 g/cm3). Liao et al. [25] reported that the WA
decreased with increasing density, indicating that water penetration into the board was
prevented by higher density. However, the TS of the TTBSB-particleboard in this study
(3.01–4.26%) was comparable compared to the Yuguan commercial blade (4.25%) and the
Donic commercial blade (4.93%).

Modulus of elasticity (MOE) and modulus of rupture (MOR) were the mechanical
properties that affected the quality of table tennis blades. The greater the modulus of
elasticity and rupture of a table tennis blade, the stronger the blade is in response to
deformation and for producing an accurate ball rebound [28]. The pressing time from
5 to 20 min resulted in increasing MOE of the TTBSB-particleboard (p < 0.05). Meanwhile,
for the MOR of TTBSB-particleboard, the value gradually increased from 5 to 15 min and
then decreased slightly at 20 min (p >0.05). Therefore, in terms of MOE and MOR in
this study, an effective pressing time of 20 min was determined. The MOE and MOR of
TTBSB-particleboard in this study were lower than for Yuguan commercial blades and
Donic commercial blades (Table 3). The high MOR of Donic’s commercial blades is due
to carbon fiber with a high density of 1.9 g/cm3 [29]. Sun et al. [29] and Wang et al. [27]
reported that using carbon fiber increased the strength of table tennis blades.

Manin et al. [24] stated that bonding quality is an important component affecting table
tennis blades’ quality. Bonding quality in TTBSB-particleboard can be evaluated using
internal bonding (IB) [21]. The increasing pressing time has resulted in increased IB of
TTBSB-particleboard manufactured at 5–20 min (p < 0.05). The 15 min (0.21 MPa) and
20 min (0.22 MPa) pressing time had a significantly higher IB (p < 0.05), 1.5 times that of
the TTBSB-particleboard after 5 min (0.15 MPa) and 10 min (0.15 MPa). However, the IB
of TTBSB-particleboard after 15 min and 20 min pressing time was similar (p > 0.05). In
this study, the IB of Yuguan and Donic commercial blades was higher than for the TTBSB-
particleboard. This is possibly because commercial blades utilized isocyanate adhesives
and carbon fiber in their components. Sun et al. [29] and Wang et al. [27] reported that
using carbon fiber increased the strength of table tennis blades.



Polymers 2023, 15, 166 7 of 10

Surface roughness and hardness affect the quality of table tennis blades. The surface
roughness and hardness affect the rebound of the table tennis ball [27]. The TTBSB-
particleboard used in this investigation has a 4.86 to 5.48 µm surface roughness and is
higher than the Yuguan commercial blade (2.10 µm) and Donic commercial blade (0.92 µm).
The high surface roughness is because the TTBSB-particleboard has not been sanded. In
addition, the hardness of the TTBSB-particleboard in this study was 29.77–32.30 MPa and
was comparable to the Yuguan commercial blade (38.69 MPa) and the Donic commercial
blade (25.89 MPa).

The TTBSB-particleboard in this study has a greater weight than the commercial blades
of Yuguan and Donic. Iino and Kojima [30] reported that the weight of the blade does not
affect the performance of a table tennis player, but the weight of the blade determines the
type of play of the player. The dominant type of player generally uses heavy blades to
defend. The TTBSB-particleboard in this study had a ball rebound comparable to that of
Donic’s blade, which already had carbon (Table 3). The use of carbon in table tennis blades
can improve the quality of the blade as well as its ball rebound. Sun et al. [29] reported that
carbon has a relatively high price. The use of TTBSB-particleboard certainly has advantages
because, in addition to utilizing a by-product in the form of sorghum bagasse, which is not
used optimally, it also has a good ball rebound.

3.3. FTIR Analysis

Figure 2 illustrates the FTIR spectrum of sorghum and TTBSB-particleboard prepared
at 200 ◦C for 20 min and their scheme reaction. The TTBSB-particleboard has a lower
hydroxyl group (-OH) concentration than sorghum at 3340 cm−1 [31]. These findings
imply that the MA and the -OH group on cellulose molecules interacted to produce ester
bonds. According to these findings, the dimensional stability of the TTBSB-particleboard
was higher. Additionally, the peak of TTBSB-particleboard samples was greater than that
of sorghum at approximately 1725 cm−1. According to Sutiawan et al. [17], the reaction
between the carboxyl group of MA and the hydroxyl group of sorghum produces a specific
spectral peak at 1700 cm−1, which is attributable to a double bond ester.

3.4. XRD Analysis

The X-ray diffraction spectra of sorghum and TTBSB-particleboard are shown in
Figure 3. The crystallinity of sorghum bagasse (26.22%) was higher than TTBSB-particleboard
at 180 ◦C for 10 min (24.27%) and TTBSB-particleboard at 200 ◦C for 20 min (23.48%). The
use of MA for TTBSB-particleboard reduces crystallinity. Fatriasari et al. [32] reported
that MA pre-treatment turns more crystalline fractions, such as cellulose, into amorphous
fractions and lowers the degree of crystallinity. This might be another reason why the MOR
TTBSB-particleboard at 20 min was slightly lower than at 15 min.
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4. Conclusions

The quality of the TTBSB-particleboard was affected by pressing temperature and
time. The quality of the TTBSB-particleboard was successfully enhanced by increasing
the pressing temperature from 170 to 200 ◦C for 10 min. Additionally, when the pressing
time was increased from 5 to 20 min, the quality of the TTBSB-particleboard increased.
As a result, the pressing condition of 200 ◦C and 20 min were effective in this study. The
thickness swelling and hardness of the TTBSB-particleboard in this study were comparable
to the Yuguan commercial blade and the Donic commercial blade. The TTBSB-particleboard
in this study had a greater weight than the commercial blades of Yuguan and Donic.
However, the TTBSB-particleboard in this study had a ball rebound comparable to that of
Donic’s blade, which already contained carbon. The use of TTBSB-particleboard certainly
has advantages because, in addition to utilizing a by-product in the form of sorghum
bagasse, which is not utilized optimally, it also has a good ball rebound.
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