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Abstract: Polytetrafluoroethylene (PTFE) is a potential candidate for the fabrication of flexible
electronics devices and electronics with applications in various extreme environments, mainly due to
its outstanding chemical and physical properties. However, to date, the utilization of PTFE in printing
trials has been limited due to the material’s low surface tension and wettability, which do not ensure
good adhesion of the printing ink at the level of the substrate. Within this paper, successful printing
of PTFE is realized after pre-treating the surface of the substrate with the help of dielectric barrier
discharge non-thermal plasma. The efficiency of the pre-treatment is demonstrated with respect to
both silver- and carbon-based inks that are commercially available, and finally, the long-lasting pre-
treatment effect is demonstrated for periods of time spanning from minutes to days. The experimental
results are practically paving the way toward large-scale utilization of PTFE as substrate in fabricating
printed electronics in harsh working environments. After 3 s of plasma treatment of the foil, the
WCA decreased from approximately 103◦ to approximately 70◦. The resolution of the printed lines of
carbon ink was not time dependent and was unmodified, even if the printing was realized within
1 min from the time of applying the pre-treatment or 10 days later. The evaluation of the surface
tension (σ) measured with Arcotest Ink Pink showed an increase in σ up to 40 < σ < 42 mN/m for
treated Teflon foil and from σ < 30 mN/m corresponding to the untreated substrate. The difference in
resolution was distinguishable when increasing the width of the printed lines from 500 µm to 750 µm,
but when increasing the width from 750 µm to 1000 µm, the difference was minimal.

Keywords: polytetrafluoroethylene (PTFE); plasma pre-treatment; functional printing

1. Introduction

Organic flexible electronics emerged as high potential devices that are to reshape the
world of electronics due to their easy integration potential in any sector, from health [1]
to industry [2], agriculture [3], energy harvesting [4], automotive [5], and even the space
industry [6]. These types of devices are developed at the level of bendable substrates
(e.g., polymers and/or paper) on top of which one or multiple layers of functional printed
materials are patterned via printing techniques (e.g., screen printing, ink-jet, flexography,
gravure) [7]. Despite being cost-efficient from a manufacturing viewpoint, flexible electron-
ics have the disadvantage of being developed on very economical polymeric substrates
(e.g., polyesters) [8], materials that are susceptible to rapid degradation when operating
in extreme or harsh working conditions (e.g., high temperature) [9]. To address this dis-
advantage, fluoropolymers were considered potential candidates for developing flexible
electronics for operating within severe working environments. Fluoropolymers are a cat-
egory of high-performance technical polymers with superior mechanical, chemical, and
thermal properties. These encompass materials such as polytetrafluoroethylene (PTFE or
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commercially known as TeflonTM), fluorothermoplastics, and fluoroelastomers because of
their strong C-F bonds and weak polarity [10]. However, despite their outstanding proper-
ties, fluoropolymers do not exhibit convenient properties for being directly printed because
of their wettability, low surface tension, and contact angle, which are crucial parameters in
ensuring the optimal transfer and solidification of liquid inks or pastes at the surface of the
printing substrate. The issue is common in the case of flat printing techniques, but also in
the case of roll-to-roll ones, and should be addressed.

Of all fluoropolymers, polytetrafluoroethylene (PTFE) is perhaps the most well known
due to its excellent chemical resistance and very good behavior in extreme working environ-
ments. Commonly, PTFE is used as an electrical insulator in applications requiring stable
properties at high temperatures due to its very good dielectric properties [11]. Electrical
circuits printed on PTFE can have a multitude of applications, especially given the thermal
resistance of the foil and the very good dielectric rigidity of the polymer material. Applica-
tions can be imagined, beginning with temperature microsensors and thermochemical or
printed thermoresistors. However, when PTFE is considered as a potential candidate for
flexible electronics, common printing problems encountered in the case of fluoropolymers
should not be neglected because of the polymer’s low surface tension, wettability, and large
water contact angle (WCA). In order to address these technological problems, a series of
solutions has been proposed within the literature. Chemical treatment techniques were
first employed to improve the surface properties of PTFE and make it suitable for printing
applications [12].

Wettability, which is influenced according to Golub [13] by the distribution of acidic
groups and/or surface dipoles across the interface between the PTFE surface and liquid
(ink), is a property of high importance with respect to the solid–liquid interaction due to its
influence in practical applications in coating, flotation, mass transport, catalysis, chemical
reactions at the solid–liquid interface, agrochemicals, flows in reservoirs, nanofabrication,
batteries, and separation [14]. The chemical solutions proposed previously for improving
wettability demonstrated a series of drawbacks, such as potential high toxicity and being
hazardous to the environment, as well as the appearance modifications it induced [15]. To
address these disadvantages, Lojen employed low-pressure non-equilibrium inductively
coupled RF hydrogen plasma in the H-mode in order to functionalize the surface of PTFE
with polar groups in order to improve the adherence of various inks. On the other hand,
in [16], the increased adhesion of the PTFE surface improved hardness, and was obtained
with the help of heat-assisted plasma treatment at atmospheric pressure.

Atmospheric pressure non-thermal plasma represents a sustainable and eco-friendly
alternative technology for surface treatment compared to other methods, such as chem-
ical treatment, electrochemical processes, or flame treatment [17]. Non-thermal plasma
can be used for polymer surfaces in order to improve their properties, such as adhesion,
surface tension, wettability, and printability [18,19]. Non-thermal plasma treatments have
been applied to various types of polymeric substrates, such as polycarbonate, fluorinated
ethylene propylene, polyimide, polyethylene naphthalate, polyethylene terephthalate, [20],
polypropylene [21], polycarbonate [22], and polytetrafluoroethylene [23]. The results
reported in the above-mentioned paper indicate that plasma treatment can ensure an im-
provement in polymeric surface wettability and increased surface tension. AFM analysis
indicated an increase in the adhesion force and surface roughness, while XPS analyses
indicated an increase in oxygen content in polymeric film surfaces. The most common non-
thermal plasmas used for polymeric film surfaces are corona and dielectric barrier discharge
(DBD). The technologies that use non-thermal plasma are simple and easy to apply in prac-
tice due to the fact that they work in ambient conditions, i.e., temperature and pressure,
so the investments in their implementation in practice are minimal. Non-thermal plasma
represents an ionized gas medium in thermodynamic imbalance. In this ionized medium,
the free electrons produced by an electric discharge have a very high temperature > 5000 K,
while the plasma gas is found at room temperature. The non-thermal character of the
plasma can be determined using different conditions of the evolution of the electric dis-
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charge, either by interposing a dielectric substrate (quartz) between the electrodes, the
electrical discharge with the dielectric barrier (DBD), or by forcing the evolution of the
electric discharge in a gas flow (air), in which case the speed of the gas maintains the
thermodynamic imbalance of the electric discharge. Although corona plasma (an electrical
discharge of a low power point to plan at the wire to plan the configuration) is widely used,
and its effectiveness in surface modification has been proven, it presents the disadvantage
of generating inhomogeneous plasma on relatively reduced areas [24]. To avoid the corona
treatment drawbacks, DBD plasma represents an effective alternative [25].

In line with the above-mentioned problems and manufacturing needs, this paper presents
a series of laboratory experiments demonstrating the effectiveness of DBD non-thermal
plasma pre-treatments for ensuring the improved long-term wettability of PTFE used in
both the screen and ink-jet printing processes of printed or flexible electronics. This paper
focuses on the results obtained when treating the PTFE substrate surface using a planar
DBD reactor operating under atmospheric conditions (pressure, temperature, humidity).

2. Materials and Methods

PTFE substrates, commercially available under the name of DuPont™ Teflon® FEP
(DuPont, Wilmington, DE, USA), were employed in the experiments. The substrates’
thickness was 76 µm, while the dielectric strength was 260 kV/mm for the 0.025 mm film,
which, is mentioned within the technical fiche of the material provided by the manufacturer.

The plasma pre-treatments were performed with the help of an in-house manufactured
non-thermal plasma generator that allows for the generation of an output AC voltage in
the range of 7 kV with a frequency of approximately 21.5 kHz, with the average power
per discharge being 40 W for a 6 mA current. The construction of the non-thermal plasma
generator is presented within our previous work [26].

In the experimental setup presented in Figure 1, the DBD plasma reactor consists
of two electrodes (E1 and E2) connected to a power supply HVPS 0–20 kV/20–70 kHz
(PVM500-2500-Plasma Power Generator, Denver, CO, USA). Between the electrodes, two
3 mm-thick glass sheets are placed. The distance between the electrodes is approximately
9 mm.
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The high voltage is measured, as indicated in Figure 1, through an HV voltage probe
1000:1, and the current value is taken on a 100 Ω shunt using a digital LeCroy WaveSurfer
3000 oscilloscope (Teledyne, www.teledynelecroy.com, 13 July 2023). The voltage and
current waveforms are presented in Figure 2.

www.teledynelecroy.com
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The recorded voltage and current waveforms were used to determine the power of
the electrical discharge.

PTFE substrates were then treated with the help of the DBD plasma. The Teflon
substrates involved in the experiments were treated with DBD plasma for 5 s. The printing
trials with silver ink were run immediately after the substrates were treated (within the first
minute) and were repeated on treated substrates after 60, 120, 180, and 240 min in order to
evaluate the plasma effects persistence over time. Imagistic observations were performed at
the level of straight-printed lines of different widths (200 µm, 500 µm, 750 µm, and 1000 µm,
respectively). A similar working procedure was established for printing treated substrates
with carbon ink. The screen-printing experiments with carbon ink were performed within
1 min after applying the treatment and repeated 10 days after submitting the substrate to
plasma treatment. In order to avoid ambient contamination during the 10-day depositing
period, the treated PTFE substrates were introduced into vacuum-sealed polymeric bags.
As in the case of the silver screen-printing experiments, the printing trials with carbon were
performed at the level of straight-printed lines of different widths (200 µm, 500 µm, 750 µm,
and 1000 µm, respectively).

For the printing experiments, three techniques were employed: flat-screen printing,
ink-jet printing, and R2R (roll-to-roll) screen printing.

Screen printing and ink-jet printing, from a technological viewpoint, are two non-contact
printing methods that assume the transfer of a pattern at the level of a substrate.

The first of these, screen printing, is perhaps the oldest and simplest technique, which
was adapted from printing to performing the functional printing of electrical and electronic
devices. The technology facilitates the transfer of a certain material, in a liquid state, at the
level of the substrate with the help of a screen mesh attached to the screen mask containing
openings positioned under the shape of the image to be transferred. The printed pattern is
realized by solidification of the so-called ink or paste, which is transferred at the surface of
the substrate through the openings of the screen mesh.

On the other hand, the ink-jet printing method is an automatized process supposing
the creation of a desired pattern on the surface of a substrate through the controlled disposal
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of ink microdroplets in accordance with the digital image/shape elaborated by the human
operator. As is known, this printing method was first used in the publishing industry and
was afterwards adopted by office printing devices and the flexible electronics industry.

In spite of the fact that in both cases the material to be transferred should be liquid,
the ink employed within ink-jet printing should exhibit much lower viscosity, but in both
cases, the ink’s adherence to the substrate is a fundamental property.

Within our work, the flat screen-printing experiments were performed with a semiau-
tomatic Ekra E2XL printer (Figure 3–left) by employing a 325 stainless steel screen mask
with a 25 µm EOM (emulsion on mask) and a diamond-shaped squeegee. The screen-
printing process variables were the following: off-contact distance 2 mm, pressure 1.5 N,
squeegee speed 80 mm/s, curing temperature 120 ◦C, and curing speed 0.95/min.
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The ink-jet printing single layer was realized using an Ardeje Origin D100 ink-jet
printer (Figure 3–right) at 600 dpi resolution and a speed of 100 mm/s in the multi-pass
printing mode, while curing was realized for 1 h at 140 ◦C.

The R2R experiments were performed with the help of Lambda, Edale R2R machinery,
(Figure 4) for which the process parameters were the following: printing speed of 5 m/min
and curing temperature of 120 ◦C. For cost-effective reasons, in the case of R2R printing,
the paper roll was used as a carrier substrate, while the Teflon substrates were attached on
top of it.
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Figure 4. Preparation of rotary screen printer for tests.

The water contact angle (WCA) and surface free energy were assessed with the help
of an Ossila Contact Angle Goniometer in accordance with the ASTM D5946 standard [27],
while surface tensions, σ, were determined with the help of Arcotest Ink Pink from 30 to
60 mN/m and accuracy +/−0.5 mN/m. The WCA and surface tension measurements
were performed in the first minute after plasma treatment.



Polymers 2023, 15, 3348 6 of 14

The printed layers were imaged with the help of a Nikon AZ100 microscope (Tokyo, Japan),
while the profilometric analysis was performed with a BRUKER DEKART XT profilometer.

Screen-printing carbon and silver inks were employed to perform the printing experi-
ments. Both silver (SCAG-004) and carbon inks (SRC-012) were provided by Mateprincs.
The technical characteristics of both inks are available on the producer’s commercial web-
site. (www.mateprincs.com (accessed on January 2023)) For the ink-jet printing sessions,
PV Nanocell (Migdal Ha’Emek, Israel) and Novacentrix JS-A211 (Austin, TX, USA) inks
were used.

3. Results and Discussion

The screen-printing experiments with both silver and carbon inks were performed
initially at the level of untreated Teflon substrates. The printing experiments realized at the
level of untreated PTFE highlighted, as expected, the impossibility of printing this type of
material with both inks because of PTFE’s wettability and surface tension, which do not
allow ink to adhere to the material’s surface (Figure 5).
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As can be noticed, drops of inks formed at the substrate’s surface immediately after
printing due to polar groups, which are present at the interface between the polymer and
the printing ink.

The evaluation of the surface tension (σ) measured with Arcotest Ink Pink showed an
increase in σ up to 40 < σ < 42 mN/m for the treated Teflon foil and from σ < 30 mN/m
corresponding to untreated substrate. The WCA evaluated after plasma treatment for
the treatment indicated a decrease from approximately 103◦ to approximately 70◦ after
treatment times of 3 s, as reported in Figure 6. The increase in treatment time had a
small influence on WCA, with the values obtained for 30 s of plasma treatment being
approximately 65◦.
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Evolution of Ink Adhesion on Treated/Untreated Film

The improvement in printing conditions on PTFE are indubitably visible. The plasma
pre-treatment allowed the patterning of a continuous layer of silver ink on the entire pre-
treated surface. One can attribute the successful printing of silver ink to a considerable
improvement in both wettability and surface tension during the pre-treatment processes
because of the peroxide radicals and functional groups formed, which also considerably
enhance the adhesion of silver layers (see Figure 7).
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Figure 7. Screen-printed treated Teflon substrate with (a) silver ink and (b) carbon ink.

As can be seen in Figure 7, in the area not treated with non-thermal plasma, the
conductive ink has a tendency to regroup in a multitude of microdroplets, with the printed
circuit obtained being practically unusable. Instead, on the treated surface, the earring has
a uniform appearance, which indicates quality printing of the electrical circuit. Moreover,
it is noticeable that the effect of plasma pre-treatment lasted for longer periods of time, a
fact which is emphasized by the outstanding printing results obtained when running the
experiments after 240 min from the moment when the treatment was performed, as can be
seen in Figure 8.

As can be noticed in Figure 8, the resolution of the printed lines of silver ink improves
while the width of the line increases. The resolution improvement is evident when compar-
ing the quality of the line’s edges of 200 µm width with the resolution of those of 500 µm
width. While increasing the width to 750 µm and 1000 µm, the differences in resolution
are minimal and almost invisible. This fact denotes once again the fact that the plasma
pre-treatment has a long-lasting period.
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The situation is similar with respect to the screen-printing experiments with the
carbon-based ink at PTFE’s surface. As can be noticed, a layer of continuous carbon ink
was successfully patterned at the level of the PTFE substrate surface immediately after the
pre-treatment was applied. The screen-printing trials performed 10 days after pre-treating
the sample demonstrate that the surface physical and chemical modifications are stable
over time, in which case contact with the ambient environment is avoided.

The resolution of the printed lines of carbon ink is not time-dependent and is unmodi-
fied, even if the printing is realized within 1 min from the time of applying the pre-treatment
or 10 days later. The difference in resolution is distinguishable while increasing the width
of the printed lines from 500 µm to 750 µm, but when increasing the width from 750 µm to
1000 µm, the difference is minimal (see Figure 9).
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In terms of the width of the patterned traces of silver ink, the average values obtained
are presented below. The average values of the width measured at the level of the silver
screen-printed lines are very close to the expected width dimensions (Table 1).

Table 1. Average measured width of the silver screen-printed layers.

200 µm 500 µm 750 µm 1000 µm

240 min 233.65 536.63 764.69 959.61

180 min 213.94 494.58 747.11 994.65

120 min 185.49 485.12 713.41 1011

60 min 207.15 486.18 727.15 1022.55

1 min 205.46 497.35 741.95 1015.08

Average value 209.14 499.97 738.86 1000.58

Resistivity measurements were also performed after the treatment of the substrates.
Samples were treated for 5 s and printed using flat-screen printing at 0, 1, 2, 3, and 4 h
after treatment. As can be seen, there were no significant differences in respect to resistivity
values over time; thus, one can state that printing the samples up to 4 h after pre-treatment
is possible from the point of view of conductivity values (Table 2).

Table 2. Resistance values of silver traces flat-screen printed after treatment.

Resistance (Ω)

200 µm 500 µm 750 µm 1000 µm 1500 µm 2000 µm 2500 µm 3000 µm

Ag Mateprincs_5s, 4 h 55.3 18.3 13 10.3 7.6 6.3 5.4 4.7

Ag Mateprincs_5s, 3 h 63 21.7 14.1 11.2 8.2 6.7 5.7 4.9

Ag Mateprincs_5s, 2 h 62 21.4 15 11.4 8.1 6.7 5.7 4.9

Ag Mateprincs_5s, 1 h 63.9 20.6 13.9 10.8 7.7 6.4 5.3 4.5

Ag Mateprincs_5s, 0 h 55.5 20.4 14.1 11.2 8 6.6 5.7 4.9

According to profilometric determinations and analysis, it can be noticed that the
thickness of the ink patterned at the level of the substrate is not dependent on the time
when the printing was performed.
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However, a small difference was noticed in respect to the thickness of the layer.
The expected height of the layer, according to our design and emulsion thickness on the
mesh, is approximately 15 µm, while the one measured at the level of the layer patterned
immediately after applying the pre-treatment is 16.60 µm. The height of the layer printed
after 4 h was approximately 15.50 µm. However, a difference was noticed with respect to
the height of the layer at the middle of the width. For the layer printed after 4 h, the height
in the middle of the width was lower. Moreover, the height of the carbon layer measured is
8.82 µm, which is approximately 12% of the expected height according to our design and
the thickness of the emulsion on the mesh (see Figures 10 and 11).
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Figure 11. Effects of plasma pre-treatment on carbon layer’s height screen printed on Teflon, 1 min
after applying the pre-treatment.

The efficiency of the plasma pre-treatment was also evident in the case of the ink-jet
printing experiments. As visible in Figure 12, ink-jet printing is impossible to realize at
the level of untreated PTFE. After pre-treating the substrate with non-thermal plasma
under similar conditions as those employed for the substrates used in the screen-printing
experiments, printing is possible, and ink traces of different widths (200 µm, 500 µm,
750 µm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, and 3 mm) are successfully printed. In Figure 12a,b,
the effect of plasma treatment is visible on the right side of the picture. On the left side of
the substrate, in the non-treated area, it is evident that the printing could not be realized,
and the inks are not adherent to the substrate’s surface.
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Figure 12. Ink-jet printed silver lines on Teflon substrate with (a) silver ink 1 and (b) silver ink 2.

After curing the substrate at 140 ◦C, the resistance values of the printed traces were
determined, and the values obtained are presented below (Table 3):

Table 3. Resistance values of silver traces ink-jet printed after treatment.

Trace Width (µm) 500 µm 750 µm 1000 µm 1500 µm 2000 µm 2500 µm 3000 µm

Resistance (Ω) 1127 643 375 214 216 203 145

In order to verify the efficiency of the plasma treatment over time, ink-jet printing
trials were performed after 120 min, 180 min, and 7 days, respectively. In the case of the
experiments performed after 7 days, the substrates were deposited exactly in the same
manner as in the case of the substrates employed in the screen-printing experiments. Our
ink-jet printing experiments demonstrate the fact that the treatment lasts for long periods
of time (Figure 13).
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Figure 13. Ink-jet printed silver lines on Teflon substrate patterned after (a) 120 min, (b) 180 min, and
(c) 7 days. The right side of each foil was plasma-treated, while the right side was untreated.

Last but not least, we verified the effect of plasma treatment by performing multilay-
ered ink-jet printing. Thus, at the level of the pre-treated Teflon substrate, we patterned
three layers of silver-based ink via ink-jet printing. Printing was also possible in the case of
multilayered ink-jet printing trials, and our results are presented in Figure 14.
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Figure 14. Multilayered ink-jet-printed silver lines on Teflon plasma-treated substrate.

Overall, the printing trials (flat screen and ink-jet) and results obtained at the level
of plasma-treated PTFE substrates clearly demonstrate the efficiency of plasma treatment
with respect to improving the adhesion of silver- and carbon-based inks, but they more
importantly demonstrate the fact that the effect of plasma treatment at the level of PTFE
is less dependent on time. The increase in the surface tensions of PTFE from less than
30 mN/m to values above 40 mN/m seems to be sufficient for allowing the patterning of
conductive inks at its surface. The improvement in surface tensions may be attributed to
peroxide radicals (C–O–O) and active functional groups containing oxygen (O–C=O, C=O,
C–O) as stated by [16].

4. Conclusions

PTFE is a polymer demonstrating outstanding chemical, mechanical, and thermal
properties and might be a potential candidate for the development of flexible electronics
for operating in extreme working environments, but its usability is hampered by difficult
and low printing properties. The effect of non-thermal plasma pre-treatment at the level of
PTFE substrates was evaluated from the printability capacity point of view. The printing
trials (ink-jet and screen printing) were performed immediately after plasma pre-treatment
and over longer periods of time (which spanned from minutes to days), with the aim of
evaluating the time persistence of the pre-treatment. Significantly enhanced adherence of
both the silver and carbon inks in the case of both types of printing technologies, namely
ink-jet printing and screen printing, was encountered. The improvement in adhesion
properties may be attributed to modifications in surface properties, which are mainly
attributed to the formation of polar groups at the solid–liquid interface.
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