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Abstract: The relaxation spectra, from which other material functions used to describe mechanical
properties of materials can be uniquely determined, are important for modeling the rheological
properties of polymers used in chemistry, food technology, medicine, cosmetics, and many other
industries. The spectrum, being not directly accessible by measurement, is recovered from relaxation
stress or oscillatory shear data. Only a few models and identification methods take into account the
non-negativity of the real spectra. In this paper, the problem of recovery of non-negative definite
relaxation spectra from discrete-time noise-corrupted measurements of relaxation modulus obtained
in the stress relaxation test is considered. A new hierarchical identification scheme is developed, being
applicable both for relaxation time and frequency spectra. Finite-dimensional parametric classes of
models are assumed for the relaxation spectra, described by a finite series of power-exponential and
square-exponential basis functions. The related models of relaxation modulus are given by compact
analytical formula, described by the products of power of time and the modified Bessel functions of
the second kind for the time spectrum, and by recurrence formulas based on products of power of time
and complementary error functions for frequency spectrum. The basis functions are non-negative. In
result, the identification task was reduced to a finite-dimensional linear-quadratic problem with non-
negative unknown model parameters. To stabilize the solution, an additional smoothing constraint
is introduced. Dual approach was used to solve the stated optimal identification task resulting in
the hierarchical two-stage identification scheme. In the first stage, dual problem is solved in two
levels and the vector of non-negative model parameters is computed to provide the best fit of the
relaxation modulus to experiment data. Next, in second stage, the optimal non-negative spectrum
model is determined. A complete scheme of the hierarchical computations is outlined; it can be easily
implemented in available computing environments. The model smoothness is analytically studied,
and the applicability ranges are numerically examined. The numerical studies have proved that using
developed models and algorithm, it is possible to determine non-negative definite unimodal and
bimodal relaxation spectra for a wide class of polymers. However, the examples also demonstrated
that if the basis functions are non-negative and the model is properly selected for a given type of
the real spectrum (unimodal, multimodal), the optimal model determined without non-negativity
constraint can be non-negative in the dominant range of its arguments, especially in the wide
neighborhood of the spectrum peaks.

Keywords: relaxation spectrum; linear relaxation modulus; non-negative model; identification
algorithm; least-squares identification; smoothing constraint; dual optimization problem

1. Introduction

The viscoelastic relaxation spectrum provides deep insights into the complex behavior
of polymers [1–3]. The spectrum is not directly measurable and must be recovered from
oscillatory shear or relaxation stress data [1,3]. During the last five decades, a number of
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models and methods have been proposed for the recovery of the relaxation spectrum of a
viscoelastic material from oscillatory shear data. The contributions by Baumgaertel and
Winter [4], Honerkamp and Weese [5], Malkin [6], Malkin et al. [7], Stadler and Bailly [8],
Davis and Goulding [9], Davis et al. [10], and Cho [11] are most frequently cited, as they laid
the foundations for several parallel directions of research on the identification of discrete
and continuous relaxation spectra based on dynamic modulus data.

Far fewer methods have been proposed for spectrum determination from time-
measurements of the relaxation modulus collected in the stress relaxation test, where
time-dependent shear stress is studied for the step increase in the strain. Additionally,
some of them only address specific materials. A concise discussion of these works, among
which three directions of research can be distinguished, is given in [12]. The three indicated
classes of approaches are: (1) differential models and algorithms based on applying the
Post–Widder formula [13] of the inverse Laplace transform to designate the relaxation
spectrum models proposed in the papers of Alfrey and Doty [14], Ter Haar [15], Bažant and
Yunping [16], Goangseup and Bažant [17]; (2) the models derived directly from the known
pairs of Laplace transforms proposed by Macey [18], Sips [19,20] and Yamamoto [21] and
(3) models based on the expansion of an unknown spectrum into a series of basis functions
forming a complete basis in the space of real-valued square-integrable functions devel-
oped by Stankiewicz [12,22,23] and Stankiewicz and Gołacki [24]. Some articles are also
discussed below.

The relaxation spectra of real materials are non-negative for any relaxation time
and any relaxation frequency. However, most of the known models and identification
algorithms do not take into account this non-negativity property. Therefore, the resulting
spectrum model may take a negative value for some relaxation times or frequencies.
The exceptions are those methods that use the spectrum approximation by non-negative
definite simple functions, represented by the Macey [18] exponential-hyperbolic model
of the spectrum, the Sips [19,20] model given by difference of two exponential functions,
next augmented by Yamamoto [21] to consider long-term modulus. However, resulting
spectrum models are positive for all arguments; the scope of their effective applicability is
limited due to rather narrow classes of models. The Alfrey and Doty [14] simple differential
model, the Ter Harr [15] approximation of the spectrum of relaxation frequencies by the
modulus multiplied by the time inverse of the relaxation frequency and other methods
using the Post-Widder inversion formula to designate the relaxation spectrum model,
as Bažant and Yunping [16] and Goangseup and Bažant [17] two-stage approaches of
approximating the stress data by multiple differentiable models of relaxation modulus and
next, applying the Post-Widder formula to compute the related spectrum model, guarantee
the positive definiteness of the recovered relaxation spectrum whenever the relaxation
modulus is a completely monotonic function [25]. Thus, the ranges of their applicability
are restricted, also due to the necessity of multiple differentiation of the noise corrupted
measurement data. A wider range of applicability has been obtained by Stankiewicz [22]
for the non-negative model based on the expanding of an unknown spectrum of relaxation
frequencies into a series of basis power-exponential functions. However, article [22] was
based on such a definition of the relaxation spectrum, which is not often used in the
literature.

Therefore, the goal of the present paper was to formulate and solve the problem of
determination of the non-negative definite model of the relaxation spectrum based on
discrete-time measurements of the relaxation modulus obtained in the relaxation test.

It was assumed that the approach’s proposed and developed identification scheme
will be applicable to determine both the relaxation time and frequency spectra. The
approximation of the continuous spectrum by finite series of non-negative basis functions
was applied. For modeling, the relaxation time spectrum model introduced in [12] was
used, while for the spectrum of relaxation frequencies, the basis functions described by the
product of power of time and square exponential functions were applied. The components
of the relaxation modulus model are given by compact recurrence formulas expressed in
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terms of the products of power of time, exponential, and complementary error function.
Both classes of models depend on some time-scale factors. The main properties of the
basis functions of relaxation spectrum and modulus models have been studied; positive
definiteness, monotonicity, and asymptotic properties have been examined. Ranges of
applicability for different scale-time factors were determined.

A quadratic identification index, which refers to the measured relaxation modulus,
was adopted. In result, the original continuous, infinite-dimensional, task of determining
the best non-negative definite function, was reduced to a static, finite-dimensional, linear-
quadratic optimization problem with a non-negativity constraint imposed on the vector
of model parameters. The smoothing constraint for the vector of model parameters was
introduced to achieve the well-posed optimization task. It is proved that the smoothness
of the optimal parameters vector implies smoothness of the fluctuations of the relaxation
spectrum model. Direct formula, upper, and lower bounds for the square integral norm of
the smoothed spectrum model are derived in terms of the smoothing parameter.

Next, the dual approach was applied to solve the stated linear-quadratic constrained
optimization task, resulting in the two-stage hierarchical identification scheme. The ex-
istence of the dual problem solution was proved. A parametric approach of successive
optimization was applied to solve the dual maximization task. The optimality condition
for the partial dual task was derived in the form of a simple algebraic equation. A hier-
archical two-stage identification scheme was proposed. The maximization dual task was
solved in two levels of the first stage, while the optimal model was determined in the
second stage of the scheme. The numerical realization based on applying the singular value
decomposition technique is discussed. A complete computational algorithm is outlined.
The identification scheme can be easily implemented in commonly used computing en-
vironments. The numerical studies were conducted for examples of Gauss-like spectra.
Both unimodal spectrum, typical for many polymers, e.g., example polymers used in food
technology [26], and bimodal spectra equally often used to describe rheological properties
of various polymers [27], e.g., polyacrylamide gels [28] and polymers used in food tech-
nology [29–31], were modeled. The examples and other numerical studies have proved
that using the algorithm, it is possible to determine non-negative definite unimodal and
bimodal relaxation spectra for a wide class of polymers. However, the examples also show
that, in practice, the non-negative models of the relaxation spectra or models non-negative
for almost all arguments can be obtained also using the classical approach, without the
additional constraint of the non-negativity of the model parameters, if the basis functions
of the relaxation spectra models are non-negatively defined.

In Appendix A, the proofs and derivations of some mathematical formulas are given.
Some tables have been moved to Appendix B, to increase the clarity of the article.

2. Materials and Methods
2.1. Spectrum of Relaxation

The uniaxial, nonaging, and isothermal stress–strain equation for a linear viscoelastic
material can be represented by a Boltzmann superposition integral [3]:

σ(t) =
∫ t

−∞
G(t− u)

.
ε(u)du,

where σ(t) and ε(t) denote the stress and strain at the time t and G(t) is the linear relaxation
modulus. Modulus G(t) is given by [1,3,12]:

G(t) =
∫ ∞

0

H(τ)

τ
e−t/τdτ, (1)

or, equivalently, by [1,3]

G(t) =
∫ ∞

0

H(v)
v

e−tvdv, (2)
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where H(τ) and H(v) characterize the distributions of relaxation times τ and relaxation
frequencies v, respectively. The continuous relaxation spectra H(τ) and H(v), related by
H(v) = H

(
1
v

)
, are generalizations of the discrete Maxwell spectrum [1,3] to a continuous

function of the relaxation times τ and frequencies v. Although other definitions of the
relaxation spectrum are used in the literature; for example, in [6,22,24,32,33], the definitions
introduced by Equations (1) and (2) dominate.

The problem of relaxation spectrum recovery from measurement data, i.e., the problem
of solving system of Fredholm integral equations of the first kind (1) or (2), is known to be
ill-posed in the Hadamard sense [34], i.e., small changes in measured relaxation modulus
can lead to arbitrarily large changes in the determined relaxation spectrum. In remedy,
some reduction in the set of admissible solutions can be used. Spectra of relaxation times
and frequencies will be modeled by non-negative definite finite series of non-negative basis
functions.

2.2. Model of Relaxation Time Spectrum

Assume that H(τ) ∈ L2(0, ∞), where L2(0, ∞) is the space of real-valued square-
integrable functions on the interval (0, ∞). The set of the linearly independent functions{

e−ατ , τe−ατ , τ2e−ατ , . . .
}

form a basis of the space L2(0, ∞) [35]; here α is positive time-
scaling factor. Since the maxima of these basis functions grows rapidly with k, in [12] the
scaled basis functions:

hk(τ, α) =
(ατ

k

)k
e−ατ+k, k = 0, 1, . . . , (3)

with the first function
h0(τ, α) = e−ατ , (4)

are assumed to approximate the relaxation time spectrum H(τ) by the model [12]:

HK(τ, α) = ∑K−1
k=0 gkhk(τ, α), (5)

where the lower index is the number of model summands. Function h0(τ, α) (4) is de-
fined for computational purposes only, since 00 = 1 [36], i.e., following [12], the general
Formula (3) can be applied in further analysis also for k = 0.

Then, according to Equation (1), the respective model of the relaxation modulus is
described by:

GK(t, α) =
∫ ∞

0

HK(τ, α)

τ
e−t/τdτ = ∑K−1

k=0 gk ϕk(t, α), (6)

where the basis functions for the spectrum model (6) are given by compact analytical
formula specified by the following theorem proved in [12].

Theorem 1 [12]. Let α > 0, k ≥ 0 and t > 0. Then the basis functions ϕk(t, α) are given by:

ϕk(t, α) =
∫ ∞

0

hk(τ, α)

τ
e−t/τdτ = 2ek

(√
αt
k

)k

Kk

(
2
√

αt
)

, (7)

where Kk(x) is the modified Bessel function of the second kind [37] of integer order k.

The courses of the dimensionless basis functions hk(τ, α) (3) and ϕk(t, α) (7) are shown
and discussed in [12] (Figures 1 and 2). In [12] the properties of the basis functions hk(τ, α)
and ϕk(t, α) were examined, their positive definiteness [12] (Section 2.2.1) and asymptotic
convergence ϕk(t, α)→ 0 as t→ ∞ [12] (Section 2.2.2) were proved. Their monotonicity
was also examined [12] (Section 2.2.4) and ranges of applicability were determined for a
wide range of the time-scale factor α [12] (Section 2.2.5).
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2.3. Model of Relaxation Frequency Spectrum

Assume that the spectrum introduced in Equation (2) is such that H(v) ∈ L2(0, ∞).
The set of the linearly independent functions

{
e−βv2

, ve−βv2
, v2e−βv2

, . . .
}

form a basis of

the space L2(0, ∞) [38]; here β is a positive time-scaling factor; more precisely, a square of
the time-scale factor

√
β expressed in seconds.

Since for any fixed β the maximum:

max
v≥0

hk(v, β) =

(
k

2β

) k
2
e−

k
2 .

of the function hk(v, β) = vke−βv2
, grows or decreases rapidly with k, depending on the

value of parameter β, the real relaxation spectrum H(v) can be expanded into a series of
normalized basis functions:

=
hk(v, β) =

(
2βe

k

) k
2
vke−βv2

, k = 1, 2, . . . , (8)

with the first function
=
h0(v, β) = e−βv2

as follows
H(v) = ∑∞

k=0 gk
=
hk(v, β), (9)

where gk are constant model parameters. Since, for the spectra of relaxation times of real
materials, the asymptotic property that H(τ)→ 0 as τ → ∞ holds, having in mind the re-
lation H(v) = H

(
1
v

)
, the spectrum of relaxation frequencies tends to zero as the relaxation

frequency approaches zero from above, i.e., H(v)→ 0 , as v→ 0+ . Since
=
h0(0, β) = 1,

while
=
hk(0, β) = 0 for k ≥ 1, the first basis function can be neglected in the series ex-

pansion (9). Simultaneously, for practical reasons, it is convenient to replace the infinite
summation in (9) with a finite one of K terms, from 1 to K. Therefore, the spectrum H(v) is
approximated by a model of the form:

H(v) = ∑∞
k=0 gk

=
hk(v, β), (10)

where the new basis functions

hk(v, β) =

(
2βe

k + 1

) k+1
2

vk+1e−βv2
, k = 0, 1, 2, . . . , (11)

were created as a result of renumbering of
=
hk(v, β) (8), to unify the presentation of both

spectrum models, (5) and (10). According to Equation (2) the respective model of the
relaxation modulus G(t) is described by:

GK(t, β) =
∫ ∞

0

HK(v, β)

v
e−tvdv = ∑K−1

k=0 gkφk(t, β), (12)

where

φk(t, β) =
∫ ∞

0

hk(v, β)

v
e−tvdv. (13)

The basis functions φk(t, β) (13) of the model (12) are given by compact recursive-
analytical formulas specified by the following theorem proved in Appendix A.1.
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Theorem 2. Let β > 0, k ≥ 0 and t ≥ 0. Then the basis functions φk(t, β) (13) are described by
the recursive formula

φk+1(t, β) = e
(

k
k + 2

) k+2
2
[

φk−1(t, β)− 1√
2βe
√

k

(
k + 1

k

) k+1
2

tφk(t, β)

]
, (14)

for k ≥ 1, starting with

φ0(t, β) =

√
πe
2

e
t2
4β er f c

(
t

2
√

β

)
, (15)

and

φ1(t, β) =
e
2

[
1− 1√

2βe
t φ0(t, β)

]
, (16)

where the complementary error function er f c(x) is defined by [39]:

er f c(x) =
2√
π

∫ ∞

x
e−z2

dz. (17)

Thus, the problem of approximating of the continuous spectrum H(v) by finite series
HK(v, β) (10) is reduced to problem of the relaxation modulus G(t) approximation by finite
linear combination GK(t, β) (12) of the functions φk(t, β) (14)–(16) based on complementary

error function er f c
(

t
2
√

β

)
. The basis functions hk(v, β) and φk(t, β) are dimensionless.

A few first basis functions hk(v, β) (11) are shown in Figure 1 for two different values of
β; the corresponding functions φk(t, β) (14)–(16) are plotted in Figure 2. It is seen from
Figure 1 that the maximum of each scaled basis function hk(v, β) is equal one; however, the
relaxation frequency vmax yielding to the maximum, for a fixed β, depends on the index

k according to the formula vmax =
√

k+1
2β , i.e., grows with k. This means that increasing

the number of model components K will allow for good modeling of multimodal spectra.
However, modeling of such spectra requires a large number of model components, which
is confirmed by Example 2 presented below. Reducing the time-scale factor β shifts the
spectrum maxima towards larger relaxation frequencies. In turn, from Figure 2, it is seen
that the Debye decay monotonicity of basis functions for the relaxation modulus model is
in good agreement with the courses of the relaxation modulus obtained in an experiment
for real polymers; for example, elastic polyacrylamide hydrogels [28] (Figures 2a,b, 4a, A5,
A7, and A8a).
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2.3.1. Positive Definiteness of the Basis Functions

The basis functions of the relaxation frequency spectrum and modulus models are
positive definite. Since, for hk(v, β) (11) this property is obvious, the positive definiteness
of the functions φk(t, β) (14)–(16) directly results from their definition (13).

2.3.2. Monotonicity of the Basis Functions

The functions hk(v, β) (11) have a global maximum equal to 1. In view of positive
definiteness of basis functions φk(t, β) (14)–(16), conclusion on their monotonicity results di-
rectly from differential property (A1), derived in the Appendix A.1. They are monotonically
decreasing for any t ≥ 0.

2.3.3. Asymptotic Properties of the Basis Functions

Function φ0(t, β) (15), and whence, in view of (16) and (14), for any k ≥ 1 the ba-
sis functions φk(t, β), depend on the exponential multiplier et2/4β, which rapidly moves
towards infinity with growing time t. Therefore, the asymptotic properties of the basis
functions (14)–(16) must be analyzed. In Appendix A.2, the following result is derived.

Theorem 3. Let β > 0, k ≥ 0 and t ≥ 0. The basis functions φk(t, β) (13) described by the
formulas (14)–(16) are such that

lim
t→∞

φk(t, β) = 0, k = 0, 1, 2, . . ., (18)

lim
t→∞

tφk(t, β) = 0, k = 1, 2, . . ., (19)

while
lim
t→∞

tφ0(t, β) =
√

2eβ , (20)

and
lim
t→∞

t2φk(t, β) = 0, k = 2, 3, . . .. (21)

Despite these properties, in numerical computations, the limited values of φk(t, β)
can be guaranteed only for t ≤ tupp, where tupp depends on the maximal real number
accessible in the computing environment. For example, in Matlab the largest finite floating-
point number in IEEE double precision realmax ∼= 1.7977·10308. Whence, in view of
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Equation (15), the range of numerical applicability of the model in the time domain is such
that et2/4β ≤ realmax, i.e.,

t ≤ tupp = 2
√

β ln(realmax) ∼= 53.2834
√

β. (22)

2.3.4. Ranges of Applicability

In models (10) and (12), the parameter β > 0 is a square of the time-scaling factor. The
following rule applies: the larger the parameter β, the greater the relaxation times, the lower
the relaxation frequencies. The above is illustrated by Figures 1 and 2. Following [12,23],
upon the basis functions φk(t, β) course, the range of applicability is specified as the time t,
for which the first K functions φk(t, β) no longer permanently exceeds, i.e., for any θ > t,
ε = 0.5% of its maximum value. Specifically,

tapp(β) = max
0≤k≤K−1

min
t>0
{t : |φk(θ, β)| ≤ 0.005·φkmax(β) for any θ ≥ t}, (23)

where
φkmax(β) = max

t≥0
|φk(t, β)|.

Similarly, in [23], the range of applicability specified directly for the relaxation frequen-
cies v was defined based on the variability of the basis functions hk(v, β), i.e.,

vapp(β) = max
0≤k≤K−1

min
v>0
{τ : |hk(ϑ, β)| ≤ 0.005·hkmax(β) for any ϑ ≥ v}, (24)

with hkmax(β) defined by
hkmax(β) = max

v≥0
|hk(v, β)|.

The values of tapp(β) (23) and vapp(β) (24) for different factors β are summarized in
Table 1 for K = 5 and K = 12. For K = 6÷ 11 the same data are given in Table A1 in
Appendix B.

Table 1. Ranges of the applicability of the models (10) and (12) for various time-scale parameters for
K = 5 and K = 12.

Time-Scale Factor β
[s2]

K=5 K=5 K=12 K=12

Range 1 Relaxation
Frequencies
vapp(β)[s−1]

Range 1 of Times
tapp(β)[s]

Range 1 Relaxation
Frequencies
vapp(β)[s−1]

Range 1 of Times
tapp(β)[s]

0.0000001 10,791.76 0.006284 13,355.44 0.006284
0.000001 3412.50 0.01987 4223.70 0.01987
0.00001 1079.55 0.0628 1335.50 0.0628
0.0001 341.40 0.199 422.53 0.199
0.001 108.17 0.628 133.80 0.628
0.01 34.25 1.987 42.32 1.987
0.1 10.83 6.284 13.40 6.284
1 3.45 19.872 4.23 19.872
10 1.08 62.870 1.35 62.870

100 0.345 198.57 0.425 198.57
1 The upper bounds tapp(β) (23) and vapp(β) (24) of the applicability intervals

[
0, tapp(β)

]
and

[
0, vapp(β)

]
are

given.

A review of the data shows that the larger the parameter β, the larger the time range
tapp(β) is and the smaller the frequency range vapp(β). The number of model summands
K affects the frequency range, slightly increasing vapp(β) with increasing K, for fixed β.
At the same time, K does not affect the relaxation time range, because it is the first basis
function φ0(t, β) that determines tapp(β), see Figure 2.
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2.4. Identification Task

Identification consists in selecting, within the chosen class of models given by
Equations (5) and (6) or Equations (10) and (12), of such a model, which ensures the
best approximation to the measurement data. To unify the description, we will denote the
models GK(t, α) (6) and GK(t, β) (12) of the relaxation modulus, together, as GM(t).

For linear viscoelastic materials, the relaxation modulus is the stress, which is induced
in the material when the unit step strain is imposed [3,40]. However, it is impossible
to apply a step strain in experiments; loading is never performed infinitely fast [41–43].
Therefore, the relaxation modulus is not directly accessible by means of a straightforward
measurement method and is usually recovered from the experimental data of the stress
relaxation process history collected in non-ideal stress relaxation tests. In such two-phase
stress relaxation tests, the strain increases over the loading time interval until a predeter-
mined strain is reached, after which the strain is held constant. Different methods have
been proposed during the last few decades for the relaxation modulus determination using
the stress data histories from non-ideal relaxation tests [42,44–48]. The backward recursive
method developed by Lee and Knauss [42], the differential rule proposed by Sorvari and
Malinen [44], both addressed to the case of constant loading rate, and the general method
proposed by Zapas and Phillips [45], where the ‘true’ relaxation time is delayed of half
loading time, are most often cited. For detailed references and an overview, see [41,43,47].

Therefore, suppose a certain identification experiment (stress relaxation test [3,28,40])
resulted in a set of measurements of the relaxation modulus

{
G(ti) = G(ti) + z(ti)

}
at

the sampling instants ti ≥ 0, i = 1, . . . , N, where z(ti) is the measurement noise. It is
assumed that the number of measurements N ≥ K. As a measure of the model’s accuracy
the quadratic index is taken

QN(gK) = ∑N
i=1

[
G(ti)− GM(ti)

]2
= ‖GN −ΦN,KgK‖

2
2, (25)

where gK =
[
g0 · · · gK−1

]T is an K-element vector of unknown coefficients of the models
(5) and (6) or (10) and (12); ‖·‖2 denotes the square norm in the real Euclidean space RN .
The matrix ΦN,K is composed of the basis functions ϕk(t, α) (7) or φk(t, β) (14)–(16) as
follows

ΦN,K =

 ϕ0(t1, α) · · · ϕK−1(t1, α)
...

. . .
...

ϕ0(tN , α) · · · ϕK−1(tN , α)

 or ΦN,K =

φ0(t1, β) · · · φK−1(t1, β)
...

. . .
...

φ0(tN , β) · · · φK−1(tN , β)

 (26)

and GN is the vector of relaxation modulus measurements, i.e., GN =
[
G(t1) · · · G(tN)

]T.
For real physical materials, the relaxation spectra H(τ) and H(v) are non-negative

for any τ ≥ 0 and v ≥ 0. Thus, the requirement that the respective models HK(τ, α) (5)
and HK(v, β) (10) are also non-negative is natural. The basis functions of both classes of
models are non-negative. Therefore, if the model parameters are such that gk ≥ 0 for
any k = 0, . . . , K − 1, then the models HK(τ, α) and HK(v, β) are non-negative too. The
restriction that the model parameters are non-negative is sufficient, but not necessary
condition for the non-negativity of the spectrum models. Thus, the optimal identification of
non-negative relaxation spectrum models defined by Equations (5) and (6) or Equations (10)
and (12) consists in determining the non-negative model parameters minimizing the index
QN(gK, α), i.e., in solving the linear least-squares problem with inequality constraints:

min
gK≥0K

‖GN −ΦN,K gK‖
2
2, (27)

where 0K is K dimensional zero vector.
The existence and properties of the solution of the above task depend on the properties

of the matrix ΦN,K. Unfortunately, ΦN,K is usually rank-deficient. The linear-quadratic
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task (27) is ill-conditioned [34] and when the data are noisy, even small changes of the data
GN would lead to arbitrarily large artefacts in the optimal model parameters. Therefore,
the numerical solution of the finite-dimensional problem (27) is fraught with the same
difficulties that the original continuous ill-posed problem of the numerical solution of
the Fredholm Equations (1) and (2). The fluctuations of the solution of optimization task
(27) may be reduced by introducing an additional direct smoothing constraint ‖gK‖2 ≤ κ,
where a constant 0 < κ < ‖gN

K ‖2 estimates the level of smoothness assumed for the
model parameters gK; gN

K is the normal (minimum Euclidean norm) solution of the original
least-squares problem without constraints. As a result, the modified problem of optimal
relaxation spectrum identification is obtained: solve minimization task (27) under constraint

‖gK‖2
2 ≤ κ2. (28)

Dual approach is applied below to solve the optimization task (27), (28).

3. Results and Discussion

In this section, the optimal identification problem (27) with additional smoothing
constraint (28), is solved by applying the dual approach. The existence of the solution of
dual maximization task is proved. Next, the idea of parametric optimization [49] is applied
to solve the dual task. The necessary and sufficient optimality condition for partial dual
tasks is derived in the form of the algebraic polynomial equation. Hierarchical two-stage
identification scheme, with the solution of the dual maximization task in two levels, is
proposed. Their numerical realization and application of the singular value decomposition
technique are discussed. A complete computational algorithm is outlined. The analysis of
the smoothness of the relaxation spectra models is presented.

3.1. Dual Problem

By introducing Lagrangian multipliers, a vector λ ≥ 0K and a scalar γ ≥ 0, we can
define the Lagrangian for the optimization task (27), (28)

L(gK, λ, γ) = ‖GN −ΦN,K gK‖
2
2 − λT gK + γ

(
‖gK‖2

2 − κ2
)

, (29)

where superscript ‘T’ indicates transpose. The multiplier λ aims at providing a fulfillment
of the inequality gK ≥ 0K. The multiplier γ is the price imposed to satisfy the smoothness
constraint (28). The Lagranian is a differentiable function of all arguments.

The dual problem takes the form:

max
λ≥0K , γ≥0

LD(λ, γ) = LD

(
λ̂, γ̂

)
, (30)

where the dual function is defined as follows:

LD(λ, γ) = min
gK∈RK

L(gK, λ, γ) = L(ĝK(λ, γ), λ, γ). (31)

For an arbitrary κ, λ and γ > 0, the Lagrangian L(gK, λ, γ) is a strictly convex function
of gK, which has a unique minimum with respect to gK given by:

ĝK(λ, γ) = ΩK,K(γ)

(
ΦT

N,KGN +
1
2

λ

)
, (32)

with symmetric matrix

ΩK,K(γ) =
(

ΦT
N,KΦN,K + γIK,K

)−1
, (33)
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where IK,K is K dimensional identity matrix. Therefore, the dual function defined in
Equation (31), by Formulas (29), and (32), after simple algebraic manipulations, can be
expressed in compact form as:

LD(λ, γ) = GT
NGN − γκ2 −

(
ΦT

N,KGN +
1
2

λ

)T
ΩK,K(γ)

(
ΦT

N,KGN +
1
2

λ

)
. (34)

Before we solve dual problem (30), we will give the algebraic background of the
method. The algebraic formula describing LD(λ, γ) will be used to derive the basic result
regarding the existence of a solution to the dual problem.

3.2. Algebraic Tools

Following [12,23], the singular value decomposition (SVD) technique [50] is applied
here. Let SVD of the N × K dimensional matrix ΦN,K (26) takes the form [50]:

ΦN,K = UΣ VT , (35)

where Σ = diag(σ1, . . . , σr, 0, . . . , 0)εRN,K is a diagonal matrix containing the non-zero
singular values σ1, . . . , σr of the matrix ΦN,K, matrices V ∈ RK,K and U ∈ RN,N are
orthogonal, and r = rank[ΦN,K] < N. Due to the diagonal structure of Σ and orthogonality
of V and U, matrix ΩK,K(γ) (33) can be expressed as:

ΩK,K(γ) = VΛ(γ) VT , (36)

where K× K diagonal matrix Λ(γ) is as follows:

Λ(γ) =
(

ΣTΣ + γIK,K

)−1
= diag

(
1

σ2
1 + γ

, . . . ,
1

σ2
r + γ

,
1
γ

, . . . ,
1
γ

)
. (37)

Whence, the parameter ĝK(λ, γ) (32) is given by:

ĝK(λ, γ) = VΛ(γ)

(
ΣT UTGN +

1
2

VTλ

)
. (38)

3.3. Existence of the Dual Problem Solution

The following proposition, proved in Appendix A.3, is fundamental for the existence
of the solution to the optimization task (30).

Proposition 1. The dual function LD(λ, γ) (34), defined by Equation (31), is strictly concave
function of both arguments (λ, γ), whenever γ > 0.

Now, the existence of the dual problem solution is resolved by the next result proved
in Appendix A.4.

Theorem 4. If the smoothing parameter κ is such that

YT
KYK > σ4

1κ2, (39)

where
YK = ΦT

N,KGN , (40)

then there exists a solution
(

^
λ, γ̂

)
of the dual problem (30), such that γ̂ > 0.
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3.4. Solution of the Dual Problem

Application of the parametric approach [49] to solve the dual problem (30) results in
the scheme:

max
λ≥0K , γ≥0

LD(λ, γ) = max
λ≥0K

[
max
γ≥0

LD(λ, γ)

]
= max

λ≥0K

[
LD(λ)

]
= LD

(
λ̂
)

(41)

where the function LD(λ, γ) is defined by the following task:

max
γ≥0

LD(λ, γ) = LD(λ, γ(λ)) = LD(λ). (42)

From the proof of Theorem 4, it follows that, if the condition (39) is satisfied, then for
any fixed λ ≥ 0K the maximum, with respect to γ, of the strictly concave dual function
is positive. Therefore, ∂

∂γ LD(λ, γ) = 0 is the unique necessary and sufficient condition
for γ(λ) optimality in task (42), which, in view of Equations (A19) and (33), immediately
yields the following optimality condition for partial dual problem (42).

Theorem 5. Assume the condition (39) holds. The optimal Lagrange multiplier γ(λ) solves
uniquely the optimization task (42) if and only if the following equation is satisfied

κ2 =

(
ΦT

N,KGN +
1
2

λ

)T(
ΦT

N,KΦN,K + γ(λ)IK,K

)−2
(

ΦT
N,KGN +

1
2

λ

)
. (43)

The above optimality condition means that for any given λ ≥ 0K and respective
optimal γ(λ), the smoothing constraint (28) is satisfied as an equation for the resulting
model parameter ĝK(λ, γ(λ)) described by (32). For any fixed λ, Equation (43) can be
solved by an arbitrary method of solving nonlinear algebraic equations. By Equations (33),
(35) and (36), Equation (43) can be expressed as

κ2 =

(
ΣTUT GN +

1
2

VTλ

)T
Λ2(γ)

(
ΣTUT GN +

1
2

VTλ

)
, (44)

where, in view of Equation (37), diagonal K× K matrix:

Λ2(γ) = diag

(
1(

σ2
1 + γ

)2 , . . . ,
1

(σ2
r + γ)

2 ,
1

γ2 , . . . ,
1

γ2

)

Introducing K element vector w = ΣTUT GN + 1
2 VTλ composed of the elements wk,

Equation (44) can be rewritten as:

κ2 = ∑r
k=1 w2

k
1(

σ2
k + γ

)2 + ∑K
k=r+1 w2

k
1

γ2

whence equivalent polynomial equation of unknown variable γ follows:

0 = ∑r
k=1 w2

kγ2 ∏r
m = 1
m 6= k

(
σ2

m + γ
)2

+ ∏r
m=1

(
σ2

m + γ
)2[

∑K
k=r+1 w2

k − κ2γ2
]
. (45)

To solve Equation (45) of order 2(r + 1), in general, any numerical method of solving
polynomial equations can be applied [51].

In view of Equations (42) and (34) we have:

LD(λ) = GT
NGN − κ2γ(λ)−

(
ΦT

N,KGN +
1
2

λ

)T
ΩK,K(γ(λ))

(
ΦT

N,KGN +
1
2

λ

)
. (46)
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In the Appendix A.5, the following formula is derived:

∂

∂λ
LD(λ) = −ΩK,K(γ(λ))

(
ΦT

N,KGN +
1
2

λ

)
, (47)

where γ(λ) satisfies Equation (43).
By SVD (35) and Equation (36), function LD(λ) (46) takes the form:

LD(λ) = GT
NGN − κ2γ(λ)−

(
ΣT UTGN +

1
2

VTλ

)T
Λ(γ(λ))

(
ΣT UTGN +

1
2

VTλ

)
, (48)

while the gradient (47), in view of Equation (36), is equivalently given by:

∂

∂λ
LD(λ) = −VΛ(γ(λ))

(
ΣT UTGN +

1
2

VTλ

)
.

For solving the optimization task:

max
λ≥0K

[
LD(λ)

]
= LD

(
λ̂
)

, (49)

numerical methods of constrained nonlinear programming [52] can be applied.

3.5. Solution of the Smoothed Identification Problem

If the saddle point of the Lagrangian L(gK, λ, γ) (29) exists, then the dual approach can
be successfully applied to solve the optimization task (27) with the smoothing constraint
(28), i.e., to solve the stated identification problem. In the case considered, the existence of
a saddle point to the Lagrangian follows immediately from Theorem 1, cases (ii) and (iii)
in [53] due to the uniqueness of the minimum of L(gK, λ, γ) with respect to gK, given by
Equation (32). Thus, the vector:

ĝK = ĝK

(
λ̂, γ̂

)
= ΩK,K(γ̂)

(
ΦT

N,KGN +
1
2

λ̂

)
, (50)

or, equivalently,

ĝK = ĝK

(
λ̂, γ̂

)
= VΛ(γ̂)

(
ΣT UTGN +

1
2

VTλ̂

)
, (51)

where γ̂ = γ
(

λ̂
)

, is optimal solution of the optimization task (27), (28), i.e., the vector of
the best model parameters. According to Theorem 4, the price γ̂ > 0 and, by Equation (43),
for optimal ĝK (50) we have

‖ĝK‖2
2 = κ2, (52)

i.e., the smoothness constraint (28) is equally satisfied.

3.6. Two-Level Solution od the Dual Problem

To solve the dual problem (30) according to the optimization task (41), i.e., by suc-
cessive maximization with respect to γ and λ, the following two-level algorithm can be
applied.

Lower level of the dual problem solution:
Given the Lagrange multiplier λ ≥ 0K, find the multiplier γ(λ) ≥ 0 maximizing

LD(λ, γ) in the optimization task (42) by solving Equation (43).
Upper level of the dual problem solution:
Find the multiplier λ̂ ≥ 0K solving the optimization task (49).
The resulting pair

(
λ̂, γ̂

)
, γ̂ = γ

(
λ̂
)

, solves the dual problem (30). The numerical
computations must be arranged hierarchically, i.e., in each iteration of the maximization
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procedure at the upper level, the algebraic equation (43) must be solved in the lower-level
task. The complete computational procedure for determining the dual problem solution
and, next, the optimal model of the relaxation spectrum is given below.

3.7. Identification Scheme

The determination of the model of the relaxation spectrum involves the following
steps.

1. Perform the experiment (stress relaxation test [3,28,40]) and record the measurements
G(ti), i = 1, . . . , N, of the relaxation modulus at times ti ≥ 0.

2. Choose the number K of model components and, depending on the relaxation spec-
trum recovery problem considered, the time-scaling factor α for identification of
relaxation time spectrum or β for spectrum of relaxation frequencies determination,
comparing, for different values of α or β, a few first functions from the sequence
{ϕk(t, α)} or {φk(t, β)} with the experiment results

{
G(ti)

}
.

3. Compute the matrix ΦN,K (26) and, next, determine SVD (35).
4. Compute ‖gN

K ‖2 and choose the constant 0 < κ < ‖gN
K ‖2.

5. Determine, in the following two-level computations, the solution
(

λ̂, γ̂
)

of the dual
problem (30).

5.1 Choose the initial multiplier λ0 for the numerical procedure applied to solve
optimization task (49).

5.2 Let λm be the m-th iterate in the numerical procedure solving (49). For λ = λm

solve the Equation (43) according to the chosen numerical procedure and deter-
mine γ(λm). Polynomial Equation (45) can be solved instead of Equation (43).

5.3 Using γ(λm), compute the new multiplier λm+1, being the next approximation
of λ̂, according to the numerical procedure selected to solve the task (49),
with the maximized index LD(λ) given by Equation (46) or, equivalently, by
Equation (48). If, for λm+1, the stopping rule of the chosen numerical procedure
is satisfied, i.e.,

‖λm+1 − λm‖2 ≤ ε1

or ∣∣∣LD

(
λm+1

)
− LD(λ

m)
∣∣∣ ≤ ε2,

where ε1 and ε2 are preselected small positives, take λ̂ = λm and γ̂ = γ(λm)
as the solution to the dual problem (30), and go to Step 6. Otherwise return to
Step 5.2 and continue the computations for λ = λm+1.

6. Compute the vector of the optimal model parameters ĝK according to Equation (50) or
(51) and, depending on the spectrum recovery problem, determine the optimal model
of the relaxation time spectrum given by:

ĤK(τ, α) = ∑K−1
k=0 ĝkhk(τ, α), (53)

or optimal model of the spectrum of relaxation frequencies described by:

ĤK(v, β) = ∑K−1
k=0 ĝkhk(v, β), (54)

where ĝk are elements of the vector ĝK.

The schematic framework of the above procedure and communication between the
two levels solving dual problem and the remaining tasks and relaxation test experiment
are shown in Figure 3.
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3.8. Remarks

1. The SVD (35) of the matrix ΦN,K, of computational complexity O
(

NK2) [50], must
be computed only once in Step 3 and should not be repeated during the two-level
computations of Step 5.

2. The matrix ΦN,K depends on the choice of the basis functions as well as the measure-
ment points ti; however, it does not depend on the relaxation modulus measurements
G(ti). Thus, when the identification scheme is applied for successive samples of the
same material, Step 3 should not be repeated while the same time instants ti are kept
and the same model parameters α or β and K are used (selected in Step 2).

3. Since the normal solution gN
K = Φ†

N,KGN , where Φ†
N,K = VΣ†UT is the Moore–Penrose

pseudoinverse [54] of matrix ΦN,K (35) with K× N matrix Σ† = diag(1/σ1, . . . , 1/σr,
0, . . . , 0), the norm computed in Step 4 is as follows

‖gN
K ‖

2
2 = ∑r

i=1
x2

i
σ2

i
,

where xi are elements of the N dimensional vector X = UT GN .
4. The basis functions ϕk(t, α) (7) are the products of power of time and the modified

Bessel functions of the second kind, while the basis functions φk(t, β) (14)–(16) are
expressed using complementary error function. The modified Bessel functions of the
second kind are accessible, for example, in Matlab as besselk function. The function
er f c(x) is accessible practically in every computational packets either directly or by
the error function er f (x) = 1− er f c(x).

5. In the models proposed the parameters α and β are the time-scaling factors. For
the relaxation time model the following rule holds, the lower the parameter α is,
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the greater the relaxation times are [12]. For the relaxation frequency model, the
larger the parameter β, the greater the relaxation times, the lower the relaxation
frequencies. Through the optimal choice of the scaling factors, the best fit of the model
to the experimental data can be achieved. In [12], the hierarchical algorithm with
the optimal choice of the time-scaling factor α was presented. However, practically
in many cases, the selection of the time-scaling factors in Step 2 based on the data
concerning model applicability summarized in Tables 1 and A1 for factor β and
related tables in [12] for factor α or based on the comparison of a few first functions
from the sequences {ϕk(t, α)} or {φk(t, β)} for different values of α or β with the
experimentally obtained function G(ti), is quite enough. Similarly, the number K of
the models GK(t, α) (6) or GK(t, β) (12) series elements can be initially evaluated. This
rough selection strategy of the model parameters selection was applied in [23]. Thus,
the choice of K and α must be carried out a posteriori, after the preliminary analysis of
the experiment data.

6. Only the values of λm and γ(λm), not the related parameter ĝK(λ
m, γ(λm)) described

by Equation (32), are used in iterations of the numerical procedures solving the dual
problem tasks in Step 5. The vector ĝK of optimal model parameters is computed only
in Step 6.

3.9. Smoothness Analysis

The smoothing constraint (28) was introduced to stabilize the resulting vector ĝK (50),
for which the equality (52) holds. Since the non-negative basis functions hk(τ, α) (3) and
hk(v, β) (11) for any arguments are bounded by one, the following inequalities:

max
τ≥0

ĤK(τ, α) ≤∑K−1
k=0 |ĝk| and max

v≥0
ĤK(v, β) ≤∑K−1

k=0 |ĝk|

hold for the optimal models (53) and (54) with arbitrary time-scale factors, which means
that the smoothing of the vector of model parameters imply the boundness of the respective
relaxation spectra.

The norms ‖HK(τ, α)‖2 and ‖HK(v, β)‖2 are also the measures of smoothness of the
spectra models, where ‖·‖2 means here the square norm in L2(0, ∞). Proposition 1 in
[Belssel] characterizes ‖HK(τ, α)‖2 as the square form of gK with the matrix dependent on
α. In the Appendix A.6 the analogous property for the spectrum HK(v, β) is proved.

Proposition 2. For an arbitrary time-scale factor β and arbitrary vector of model parameters gK
for the relaxation spectrum model HK(v, β) (10) we have

‖HK(v, β)‖2
2 =

1√
2βe

gT
KΘgK, (55)

where Θ is K× K symmetric, positive definite, real matrix of the elements:

θkj(β) =

(
k+j+3

k+1

) k+1
2
(

k+j+3
j+1

) j+1
2 √k + j + 3

√
2k+j+3

φk+j+2(0, 2β), (56)

where k, j = 0, 1, . . . K− 1 and the values of the basis functions φk(t, β) (14)–(16) at t = 0 are as
follows

φ2k(0, 2β) =

(
e

2k + 1

)k

∏k−1
j=1 (2j + 1)

√
πe

2(2k + 1)
(57)

for even indices and

φ2k+1(0, 2β) =

(
e

k + 1

)k+1 k!
2

(58)

for odd indices, where k = 1, 2, . . .. Matrix Θ is a positive definite.
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The basis functions φk(0, 2β) (57), (58) for the time t = 0 do not depend on the
time-scale factor, in fact. Propositions 2 and 3 in [12] specify various useful estimates of
‖HK(τ, α)‖2, which can be directly applied to obtain the respective estimates of the norm
‖HK(v, β)‖2 and, for the optimal models, results in the next property.

Proposition 3. For an arbitrary time-scale factors α and β and the vector of optimal model
parameters ĝK (50), for the optimal models ĤK(τ, α) (53) and ĤK(v, β) (54) the following upper:

‖ĤK(τ, α)‖2 ≤
1√
2α

√
σ1(Γ1)‖ĝK‖2 =

1√
2α

√
σ1(Γ1) κ,

‖ĤK(v, β)‖2 ≤
1

4
√

2βe

√
σ1(Θ)‖ĝK‖2 =

1
4
√

2βe

√
σ1(Θ) κ, (59)

and lower
‖ĤK(τ, α)‖2 ≥

1√
2α

√
σmin(Γ1)‖ĝK‖2 =

1√
2α

√
σmin(Γ1) κ,

‖ĤK(v, β)‖2 ≥
1

4
√

2βe

√
σmin(Θ)‖^

gK‖2 =
1

4
√

2βe

√
σmin(Θ) κ. (60)

bounds hold, where σ1(Θ), σ1(Γ1) are the largest and σmin(Θ), σmin(Γ1) are the minimal singular
values of matrix Θ (56)–(58) and matrix Γ1 defined in [12] (Equation (53)).

The square roots of the singular values σ1(Θ) and σmin(Θ) for K = 5, 6, . . . 12 are
summarized in Table 2. Since

√
σ1(Θ) grows with K, the greater the number of model

summands are, the greater time scaling factor should be, to achieve pre-assumed multiplier√
σ1(Θ)/ 4

√
2βe in the estimation (59). However, this increase is relatively much weaker

than in the case of the model HK(τ, α) (53). Similarly, as in the case of HK(τ, α) (for details,
see [12]), estimation (60) is useful only for small K and small time-scale factors. Thus, the
smoothness of the vector ĝK (50) of model parameters guarantees that the fluctuations of
the respective spectra of relaxation ĤK(τ, α) and ĤK(v, β) are also bounded. The time-scale
factors α and β affect the smoothness of the models.

Table 2. The square roots of the largest σ1(Θ) and minimal σmin(Θ) singular values of the matrix Θ

(56)–(58) for K = 4, 5, . . . 12 model summands.

K 4 5 6 7 8 9 10 11 12√
σ1(Θ) 2.680365 2.946643 3.176727 3.380015 3.562632 3.728808 3.881584 4.023221 4.155442√

σmin(Θ) 0.031663 0.008960 0.002528 7.110 × 10−4 1.992 × 10−4 5.565 × 10−5 1.550 × 10−5 4.306 × 10−6 4.306 × 10−6

3.10. Examples

Three examples are presented below. In two examples, the relaxation spectra de-
scribed by the double-mode Gauss-like distributions are considered since spectra of this
type describe the viscoelastic properties of various polymers: [27] (Figures 4b and 8b), poly-
acrylamide gels [28] (Figure A4), cold gel-like emulsions stabilized with bovine gelatin [29],
fresh egg white-hydrocolloids foams [31] (Figures 6 and 14) and are tested when develop-
ing new identification methods; for example, in [8] (Figure 2), [9] (Figures 9, 11 and 17)
and [10] (Figures 2, 3, 6, 7–11 and 14). In the third example, one-mode Gauss distribu-
tion was taken; typical, for example, for relaxation spectra of some native starch gels [26]
(Figures 6b, 7 and 9a).

As in [12], in all examples for numerical experiment N = 5000, sampling instants
ti were generated with the constant period in the time interval T = [0, T] seconds and
additive measurement noises z(ti) were selected independently by random choice with
uniform distribution on the interval [−0.005, 0.005] Pa. The real spectra and modulus
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and the basis functions hk(τ, α) (3), hk(v, β) (11) of the spectra models and ϕk(t, α) (7),
φk(t, β) (14)–(16) of the modulus models were simulated in Matlab R2022a using the special
functions besselk and erfc. For the singular value decomposition procedure, svd was applied.

The relaxation time and frequencies models are determined in the class of models
defined by HK(τ, α) (5) and HK(v, β) (10). In all examples, the same workflow is applied.
First, the optimal models were determined by a two-level regularized least-squares iden-
tification scheme proposed in the previous paper [12], i.e., neglecting the non-negativity
requirement. This means that, in particular, the optimal time-scale factors αopt and βopt
and the optimal regularized model parameter vectors g̃K were determined resulting in the
unconstrained, i.e., determined without non-negativity constraint, models of relaxation
time:

H̃K
(
τ, αopt

)
= ∑K−1

k=0 g̃khk
(
τ, αopt

)
, (61)

and relaxation frequencies

H̃K
(
v, βopt

)
= ∑K−1

k=0 g̃khk
(
v, βopt

)
, (62)

where g̃k are elements of the vector g̃K.
Next, for the optimal factors αopt and βopt, the best models with the optimal parameters

ĝK ≥ 0K are determined with the non-negativity requirement using the scheme proposed
above. As a result, the relaxation spectra ĤK(τ, α) (54) and ĤK(v, β) (54) were obtained for
time scale factors α = αopt and β = βopt with the non-negative optimal parameters ĝK (50).
The smoothing parameter κ was selected several times until a satisfactory accuracy of the
fit of the model to the experimental data was obtained. Since some elements of the vectors
g̃K are negative, i.e., the respective components of the models (61) and (62) are negative too,
κ smaller than the norm ‖g̃K‖2 are applied.

3.10.1. Example 1

Consider viscoelastic material of relaxation spectrum described by the double-mode
Gauss-like distribution considered in [12,27]:

H(τ) =

[
ϑ1e−(

1
τ−m1)

2
/q1 + ϑ2e−(

1
τ−m2)

2
/q2

]
/τ, (63)

inspired by polyethylene data from [27], especially HDPE 1 sample from [27] (Table 1 and
Figure 8b), where the parameters are as follows [12]: ϑ1 = 467 Pa·s, m1 = 0.0037 s−1,
q1 = 1.124261× 10−6 s−2 , ϑ2 = 39 Pa·s, m2 = 0.045 s−1 and q2 = 1.173× 10−3 s−2. It is
shown in [12] that the related real relaxation modulus is

G(t) =
√

π

2

[
ϑ1
√

q1 e
1
4 t2q1−m1ter f c

(
1
2 tq1 −m1√

q1

)
+ ϑ2
√

q2 e
1
4 t2q2−m2ter f c

(
1
2 tq2 −m2√

q2

)]
. (64)

Following [12], the time interval T = [0, 1550] seconds is assumed for numerical
experiments. In [12], the optimal models H̃K

(
τ, αopt

)
(61) with the parameter vectors g̃K and

time-scaling factors αopt were determined for K = 3, 4, . . . , 10. Detailed data, including αopt,
g̃K, regularization parameters λGCV

(
αopt

)
, the square norms ‖g̃K‖2 and ‖H̃K

(
τ, αopt

)
‖2, as

the measures of the solution smoothness, and mean square identification index QN(g̃K)/N
were summarized in [12] and (Tables 3 and A3). Only αopt, QN(g̃K)/N and ‖g̃K‖2 are
rewritten here in Table 3; the last two to compare with respective data for the constrained
non-negative model ĤK

(
τ, αopt

)
(54). The vectors g̃K are given in [12] (Table A3), from

which it can be seen that some of their elements are negative. For K = 3 one element,
for K = 4 two elements, for K = 5, 7, 8, 9 three elements and for K = 6, 10, 11, 12 four
elements are negative. Also, the spectra H̃K

(
τ, αopt

)
(61) are negative for some ranges of the

relaxation frequencies, see [12] (Figures 4 and 7a) and also Figure 4, below. The non-negative
optimal vectors ĝK are given in Table A2 in Appendix B. Only two or three elements of
these vectors are non-zero, the corresponding elements of the Lagrange multipliers vectors
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λ̂ are obviously zero. Other numerical data for optimal non-negative models ĤK
(
τ, αopt

)
,

i.e., square norm ‖g̃K‖2, identification index QN(ĝK)/N and the Lagrange multiplier γ̂ are
given in the last columns of Table 3. Figure 4 illustrated the course of the real spectrum
H(τ) (63), the unconstrained model H̃K

(
τ, αopt

)
(61) (blue line) and non-negative model

ĤK
(
τ, αopt

)
(54) (green line) for K = 6, 8, 10, 12. The non-negative models ĤK

(
τ, αopt

)
are

summarized in Figure 5 for K = 6, 7, . . . , 12. In Figure 6, the models of the relaxation
modulus G̃K

(
t, αopt

)
and ĜK

(
t, αopt

)
corresponding to H̃K

(
τ, αopt

)
(61) and ĤK

(
τ, αopt

)
(54),

respectively, computed according to Equation (6) are plotted for K = 8, 12, where the
measurements G(ti) of the real modulus G(t) (64) are also marked. The optimal models
G̃K
(
t, αopt

)
have been better fitted to the experimental data than ĜK

(
t, αopt

)
, thus G̃K

(
t, αopt

)
practically coincide with the measurement points. The deterioration of the identification
index for the non-negative models changes from 5.97 times for K = 12 to 65.56 times for
K = 5.

Table 3. The parameters of the optimal models in Example 1 for the models H̃K
(
τ, αopt

)
(61) without

non-negativity constraint: optimal time-scale factors αopt, the mean quadratic identification indices
QN(g̃K)/N (c.f., definition (25)) and the square norms ‖g̃K‖2 for the optimal model parameters
g̃K [12] (Table A3) and for optimal models ĤK

(
τ, αopt

)
(54) determined with the non-negativity

constraint: the multiplier γ̂ defined by the optimization task (30) and the norms ‖ĝK‖2 (equal
to smoothing parameters κ) and identification indices QN(ĝK)/N corresponding to non-negative
optimal parameters ĝK (50) from Table A2.

Without Non-Negativity Constraint With Non-Negativity Constraint

K
αopt

[s−1]
QN(

~
gK)/N

[Pa2]
‖~

gK‖2
[Pa]

^
γ

QN(
^
gK)/N

[Pa2]
‖^

gK‖2=κ
[Pa]

3 0.00520 8.63505 × 10−4 0.7055 2.677 × 10−3 8.64732 × 10−4 0.7
4 0.01675 3.43945 × 10−5 7.3485 2.88 × 10−6 1.99487 × 10−3 1.1644
5 0.02025 2.71552 × 10−5 4.6724 7.88 × 10−6 1.78025 × 10−3 1.1394
6 0.02375 2.48511 × 10−5 3.6493 1.66 × 10−3 1.53113 × 10−3 1.1749
7 0.02655 2.48256 × 10−5 2.8846 1.61 1.18092 × 10−3 1.2169
8 0.02865 2.51617 × 10−5 2.3555 7.48 × 10−6 8.136760 × 10−4 1.2634
9 0.03005 2.52412 × 10−5 2.0639 8.87 4.90203 × 10−4 1.3110
10 0.03215 2.51143 × 10−5 1.9058 7.42 3.06912 × 10−4 1.3872
11 0.03390 2.48521 × 10−5 1.8020 4.79 × 10−7 1.77760 × 10−4 1.4485
12 0.03670 2.44452 × 10−5 1.7198 1.739 × 10−3 1.45878 × 10−4 1.5083
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Figure 6. The measurements G(ti) of the real relaxation modulus G(t) (64) (red points) from Example
1 and the optimal approximated models determined without non-negativity constraint G̃K

(
t, αopt

)
and with non-negativity constraint ĜK

(
t, αopt

)
for K model summands: (a) K = 8; (b) K = 12.

3.10.2. Example 2

Consider again the double-mode Gauss-like distribution described by equation (63).
Now the parameters are: ϑ1 = 42.2 Pa·s, m1 = 0.013012 s−1, q1 = 1.25 × 10−4 s−2,
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ϑ2 = 31.52 Pa·s, m2 = 0.05860 s−1, and q2 = 1.07284 × 10−3 s−2. By the formula
H(v) = H(1/v), the respective spectrum of relaxation frequencies is as follows:

H(v) =
[
ϑ1e−(v−m1)

2/q1 + ϑ2e−(v−m2)
2/q2

]
v, (65)

the corresponding real relaxation modulus G(t) is described by Equation (64).
For experiment, the time interval T = [0, 750] seconds is selected in view of the course

of the modulus and the Formula (22) important for numerical computations.
The optimal unconstrained models H̃K

(
v, βopt

)
(62) with the parameter vectors g̃K

and time-scaling factors βopt were determined using the two-level identification scheme
proposed in [12] for K = 6, 7, . . . , 21, and βopt, regularization parameters λGCV

(
βopt

)
,

norms ‖g̃K‖2 and mean square identification index QN(g̃K)/N were enclosed in Table 4.
The vectors g̃K are given in Table A3 in Appendix B for selected K, from which it can be
seen that the number of negative elements is less than for Example 1. The courses of the
unconstrained models H̃K

(
v, βopt

)
(62) are illustrated by Figure 7, where the real spectrum

H(v) (65) and non-negative model ĤK
(
v, βopt

)
(54) are also given for even K from 6 to

20. For some K the spectra H̃K
(
v, βopt

)
(62) are negative for some ranges of the relaxation

frequencies, see Figure 7b–d for K = 8, 10, 12. For K = 6, the number of model elements is
too small to describe the real bimodal spectrum. Only the stronger maximum of the real
spectrum is approximated by both models; however, the approximation is more accurate
for the non-constrained model, similarly to the approximation of the relaxation modulus
measured by identification index. For K = 8, 10, 12, the non-constrained optimal spectrum
is negative for some relaxation frequencies, thus applicability of the proposed scheme is
necessary to obtain the non-negative model. However, model ĤK

(
v, βopt

)
is unimodal. For

K ≥ 14 the non-constrained spectrum H̃K
(
v, βopt

)
is non-negative, becomes bimodal and

better approximates both the real relaxation modulus and relaxation spectrum than the
model ĤK

(
v, βopt

)
, being still unimodal.

Table 4. The parameters of the optimal models in Example 2 for the models H̃K
(
v, βopt

)
(62) deter-

mined without non-negativity constraint: optimal time-scale factors βopt, regularization parameters
λGCV

(
βopt

)
(for details see [12]), the mean quadratic identification indices QN(g̃K)/N (compare

(25)) and the norms ‖g̃K‖2 for the optimal model parameters g̃K given in Table A3 and for optimal
models ĤK

(
v, βopt

)
(54) determined with the non-negativity constraint: the multiplier γ̂ defined by

the optimization task (30) and the norms ‖ĝK‖2 (equal to smoothing parameters κ) and identification
indices QN(ĝK)/N corresponding to non-negative optimal parameters ĝK (50), see Table A3.

Without Non-Negativity Constraint With Non-Negativity Constraint

K
βopt

[s2]
λGCV(βopt)

QN(
~
gK)/N

[Pa2]
‖~

gK‖2
[Pa]

^
γ

QN(
^
gK)/N

[Pa2]
‖^

gK‖2
[Pa]

6 392 1.7651 × 10−6 8.40211 × 10−6 2.814225 7.7539× 10−5 3.09039 × 10−5 1.23554
8 496 7.4141 × 10−6 8.25509 × 10−6 4.161575 0.0269 5.89873 × 10−5 1.65147
10 610 2.5071 × 10−6 8.24771 × 10−6 6.084721 9.31× 10−7 2.14951× 10−4 0.983014
12 769 2.1041 × 10−7 8.24645 × 10−6 14.724716 1.49× 10−4 7.55925 × 10−4 1.17871
14 684 9.010 × 10−5 8.25172× 10−6 1.266785 7.88× 10−4 1.60128 × 10−4 1.42615
15 809 2.390 × 10−5 8.24382 × 10−6 1.762488 0.5564 4.02679 × 10−4 1.54932
16 777 1.010 × 10−5 8.24388 × 10−6 1.576049 0.5288 1.77827 × 10−4 1.28109
17 1004 1.6491 × 10−6 8.24399 × 10−6 2.605599 0.0976 2.9148 × 10−4 1.169359
18 860 1.530 × 10−4 8.24674 × 10−6 0.975532 0.3973 8.049 × 10−5 0.82328
19 1168.5 3.600 × 10−6 8.24483 × 10−6 1.861569 0.7793 6.4736 × 10−4 1.16471
20 1150.75 4.530 × 10−5 8.31429 × 10−6 1.071904 0.9573 8.4609× 10−4 1.07082
21 1084.25 1.4140 × 10−4 9.79755 × 10−6 0.726038 0.000115 9.79755 × 10−6 0.726038
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Figure 7. Relaxation frequency spectrum 𝐻 𝑣  (65) (solid red line) from Example 2 and the corre-
sponding optimal models determined without non-negativity constraint 𝐻 𝑣, 𝛽  (62) and with 
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(b) 𝐾 = 8; (c) 𝐾 = 10; (d) 𝐾 = 12; (e) 𝐾 = 14; (f) 𝐾 = 16; (g) 𝐾 = 18; (h) 𝐾 = 20. 
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sponding optimal models determined without non-negativity constraint H̃K

(
v, βopt

)
(62) and with

non-negativity constraint ĤK
(
v, βopt

)
(54) (green line) for K summands of the model: (a) K = 6; (b)

K = 8; (c) K = 10; (d) K = 12; (e) K = 14; (f) K = 16; (g) K = 18; (h) K = 20.

The non-negative optimal vectors ĝK are given in Table A3. For this model, only two
to five elements of these vectors are zero. Other numerical data for optimal non-negative
models ĤK

(
v, βopt

)
, i.e., norm ‖ĝK‖2, index QN(ĝK)/N and the Lagrange multiplier γ̂

are given in the last columns of Table 4. In Figure 8, the models of the relaxation mod-
ulus G̃K

(
t, βopt

)
and ĜK

(
t, βopt

)
corresponding to H̃K

(
v, βopt

)
(62) and ĤK

(
v, βopt

)
(54),

respectively, computed according to Equation (12) are plotted for K = 12, 20, also the
measurements G(ti) of the real modulus G(t) (64) are given.

For K = 21, vector g̃K is non-negative, thus ĝK = g̃K also solves the optimization task
(27), (28). The related spectrum model ĤK

(
v, βopt

)
= H̃K

(
v, βopt

)
is plotted in Figure 9a,

while the relaxation modulus model ĜK
(
t, βopt

)
corresponding to ĤK

(
v, βopt

)
(54) is given

in Figure 9b. The perfect approximation of the relaxation modulus does not match the good
approximation of the relaxation spectrum, and the model has also lost its bimodal character.
The model already has too many non-zero terms; exactly 21.
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Figure 8. The measurements G(ti) of the real relaxation modulus G(t) (64) (red points) from Example
2 and the optimal approximated models determined without non-negativity constraint G̃K

(
t, βopt

)
and with non-negativity constraint ĜK

(
t, βopt

)
for K model summands: (a) K = 12; (b) K = 20.
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Figure 9. Relaxation frequency spectrum H(v) (65) from Example 2 and the corresponding op-
timal models of: (a) relaxation spectrum H̃K

(
v, βopt

)
= ĤK

(
v, βopt

)
and (b) relaxation modulus

G̃K
(
t, βopt

)
= ĜK

(
t, βopt

)
for K = 21 summands of the model.

However, for K ≤ 20, as K increases, the models H̃K
(
v, βopt

)
(62) determined without

non-negativity constraint approximates the bimodal spectrum more and more closely, the
model determined with the non-negativity constraint does not. Models ĤK

(
v, βopt

)
(54),

with increasing K, better and better approximate the second, major, maximum, but it does
not model the first, minor, maximum even for 20 components.

3.10.3. Example 3

Now, we consider viscoelastic material of unimodal relaxation spectrum described by
distribution:

H(v) = ϑve−(v−m)2/q. (66)

where the parameters are as follows: ϑ = 39 Pa·s, m = 0.045 s−1, and q = 1.173× 10−3 s−2.
The corresponding real relaxation modulus G(t) is described by one component of the
model of the form (64). In experiment the time interval T = [0, 500] seconds was applied,
which resulted from the inspection of the course of G(t).

For K = 3, 4, . . . , 8, the optimal time-scaling factors βopt, the related regularization
parameters λGCV , the mean optimal identification indices QN(g̃K)/N and square norms
‖g̃K‖2 are given in Table 5. The vectors of optimal model parameters g̃K are given in
Table A4 in Appendix B; the elements of these vectors are both negative and positive.
related to model H̃K(v, β) (62)

Next, for time-scale factor β = βopt the optimal non-negative models ĤK(v, β) (54)
were determined; the smoothing parameter κ was selected several times until a satisfactory
accuracy of the fit of the model to the experimental data was obtained. The non-negative
optimal parameters ĝK (50) are given in Table A4, while the multiplies γ̂ defined in Equa-
tion (30), norms ‖ĝ‖2, and optimal identification indices QN(ĝK)/N are given in Table 5.
For K = 3, 4, . . . 12, the real spectrum H(v) (66), optimal models H̃K

(
v, βopt

)
(62) and

ĤK
(
v, βopt

)
(54) are plotted in Figure 10. The norms ‖ĝ‖2 are equal to the smoothing

parameters κ, which are assumed smaller than the norms ‖g̃K‖2, since a quick inspection of
the data from Table A4 shows that many elements of the vector g̃K are negative (even, six by
eight for K = 8). In Figure 11 the optimal models of the relaxation modulus GK(t) related
to unconstrained H̃K

(
v, βopt

)
(62) and non-negative ĤK

(
v, βopt

)
(54) relaxation spectra are

plotted for K = 3 and K = 7.
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Table 5. The parameters of the optimal models in Example 3 for the model H̃K
(
v, βopt

)
(62) without

non-negativity constraint: optimal time-scale factors βopt, regularization parameters λGCV [12], the
mean quadratic identification indices QN(g̃K)/N and the square norms ‖g̃K‖2 for the optimal model
parameters g̃K [12] and for optimal model ĤK

(
v, βopt

)
(54) determined with the non-negativity

constraint: the multiplier γ̂ defined in Equation (30) and the norms ‖ĝK‖2 (equal to smoothing
parameters κ) and identification indices QN(ĝK)/N corresponding non-negative optimal parameters
ĝK (50).

Without Non-Negativity Constraint With Non-Negativity Constraint

K
βopt

[s2]
λGCV

QN(
~
gK)/N

[Pa2]
‖~

gK‖2
[Pa]

^
γ

QN(
^
gK)/N

[Pa2]
‖^

gK‖2=κ
[Pa]

3 477 4.0 × 10−6 8.35568 × 10−6 1.9731 1.86 × 10−5 5.69022 × 10−4 1.5606
4 495 3.9 × 10−6 8.26117 × 10−6 2.1789 5.277 × 10−3 5.15926 × 10−4 1.4038
5 507 7.7 × 10−6 8.25179 × 10−6 2.3219 4.161 × 10−3 1.00861 × 10−4 1.3122
6 517 4.9 × 10−6 8.25048 × 10−6 2.4096 6.11 × 10−6 2.12842 × 10−5 1.2277
7 511 1.9 × 10−6 8.25042 × 10−6 2.3902 2.63 × 10−4 8.87258 × 10−6 1.1912
8 416 2.3 × 10−6 8.24898 × 10−6 2.4891 1.942 × 10−3 1.41488 × 10−5 1.2510

Figure 10 shows that the H̃K
(
v, βopt

)
model, determined without additional non-

negativity constraint, is negative in some range of frequencies for any K. However, the
identification index QN(ĝK)/N is from 1.08 (for K = 7) to 68.1 (for K = 3) times greater
than QN(g̃K)/N obtained for unconstrained model (Table 5), the inspection of Figure 10
shows that model ĤK

(
v, βopt

)
well approximates the real spectrum, and the quality of this

approximation improves with increasing K. For K = 3, . . . , 8, two elements of the vector ĝK
are zero, i.e., for K = 3 only one element of the vector ĝK is non-zero and in result index
QN(ĝK)/N is the biggest, see also Figure 11a. Analysis of both the values of identification
index QN(ĝK)/N and Figure 10 indicates that the best model with non-negativity constraint
was obtained for K = 7. For K = 7, both the relaxation modulus models practically coincide
with the measurement points and with each other, see Figure 11b. Increasing the number
of model components to K = 8 no longer corrects the model.

3.10.4. Discussion

In Example 1, the peaks of the spectrum are more distant than in Example 2. For
successive k, the maxima of the basis functions hk(τ, α) (3) are more distant than the
maxima of the functions hk(v, β) (11). Thus, the relaxation time model HK(τ, α) (5) was
more appropriate for modeling spectrum in Example 1, than model HK(v, β) (10). For the
same reason, in Example 1, it was enough to use K = 12 model components, while in
Example 2, many more model components were necessary (K = 21) to obtain a satisfactory
approximation of the real relaxation modulus and spectrum.

The parameter vectors ĝK of the models determined with non-negativity constraint
have zero elements. Therefore, these models are composed of fewer items than index
K would indicate. However, the model of full dimension K must be determined on the
identification stage. The proposed approach, effective for the unimodal spectrum, is less
effective for the multi-modal spectra, because the additional non-negativity constraint
reduces the set of admissible models and, therefore, makes it impossible to achieve such
a good fit of the model to the experiment data as for the model determined without this
constraint.
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more appropriate for modeling spectrum in Example 1, than model 𝐻 𝑣, 𝛽  (10). For 
the same reason, in Example 1, it was enough to use 𝐾 = 12 model components, while in 
Example 2, many more model components were necessary (𝐾 = 21) to obtain a satisfac-
tory approximation of the real relaxation modulus and spectrum. 

The parameter vectors 𝒈  of the models determined with non-negativity constraint 
have zero elements. Therefore, these models are composed of fewer items than index 𝐾 
would indicate. However, the model of full dimension 𝐾 must be determined on the 
identification stage. The proposed approach, effective for the unimodal spectrum, is less 
effective for the multi-modal spectra, because the additional non-negativity constraint 
reduces the set of admissible models and, therefore, makes it impossible to achieve such a 
good fit of the model to the experiment data as for the model determined without this 
constraint. 

Additionally, the examples showed that a new model of the frequency spectrum can 
be applied for unimodal and bimodal spectra approximation when the regularized 
least-squares identification with optimal choice of the time-scale factor is used without 
additional non-negativity constraint.  

3.11. Applicability of the Scheme to Discrete Relaxation Spectra Identification 
Assume, as above, that the experiment resulted in a set of the measurements �̅� 𝑡 = 𝐺 𝑡 + 𝑧 𝑡  at the times 𝑡 ≥ 0, 𝑖 = 1, … , 𝑁. By (1), for any time 𝑡  we have:  𝐺 𝑡 = ℋ 𝑒 ⁄ 𝑑𝜏. (67)

Let 𝜏 = ∆ + 𝑘∆𝜏, where 𝑘 = 0,1, … , 𝐾 − 1 and ∆𝜏 > 0 is the length of integration 
step. Then, for any 𝑖 = 1, … , 𝑁, the integral of the right-hand side of Equation (67) can be 
approximated by: 𝐺 𝑡 ≅ ∑ ℋ 𝑒 ⁄ ∆𝜏, (68)

whenever the number of subintervals 𝐾 and the integration step ∆𝜏 are such that the 
integrand is sufficiently small for 𝜏 ≥ 𝐾 − ∆𝜏. Denoting:  

Figure 11. The measurements G(ti) (red points) of the real relaxation modulus G(t) from Example 3
and the models of the relaxation modulus corresponding to the optimal spectra models determined
without non-negativity constraint H̃K

(
v, βopt

)
(62) (blue line) and with non-negativity constraint

ĤK
(
v, βopt

)
(54) (green line) for: (a) K = 3; (b) K = 7 summands of the model.

Additionally, the examples showed that a new model of the frequency spectrum
can be applied for unimodal and bimodal spectra approximation when the regularized
least-squares identification with optimal choice of the time-scale factor is used without
additional non-negativity constraint.

3.11. Applicability of the Scheme to Discrete Relaxation Spectra Identification

Assume, as above, that the experiment resulted in a set of the measurements{
G(ti) = G(ti) + z(ti)

}
at the times ti ≥ 0, i = 1, . . . , N. By (1), for any time ti we have:

G(ti) =
∫ ∞

0

H(τ)

τ
e−ti/τdτ. (67)

Let τk = ∆τ
2 + k∆τ, where k = 0, 1, . . . , K− 1 and ∆τ > 0 is the length of integration

step. Then, for any i = 1, . . . , N, the integral of the right-hand side of Equation (67) can be
approximated by:

G(ti) ∼= ∑K−1
k=0

H(τk)

τk
e−ti/τk ∆τ, (68)

whenever the number of subintervals K and the integration step ∆τ are such that the
integrand is sufficiently small for τ ≥

(
K− 1

2

)
∆τ. Denoting:

gK =

 H(τ0)
...

H(τK−1)

, ΦN,K =


∆τ
τ0

e−t1/τ0 · · · ∆τ
τK−1

e−t1/τK−1

...
. . .

...
∆τ
τ0

e−tN /τ0 · · · ∆τ
τK−1

e−tN /τK−1

, (69)

compare Equation (26), the set of discretized model equations takes the form:

GM ∼= ΦN,KgK, (70)

with vector gK of unknown relaxation spectrum at relaxation times τk and known elements
of the matrix ΦN,K, where GM is the vector of the relaxation modulus of model (1) at
times ti, defined by analogy to the vector of relaxation modulus measurements GN . Now,
the square of the model (70) error is described by identification index QN(gK) (25) and
the proposed identification scheme can be applied for determining the best nonnegative
approximations of the discretized relaxation time spectrum. As a result, the set of pairs
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(
τk, Ĥ(τk)

)
, for k = 0, 1, . . . , K − 1, where the optimal Ĥ(τk) are uniquely given by the

optimal model parameter ĝK according to Equation (69). The approximation of the the
discrete spectrum becomes more accurate as more rectangles are used in the series (68). By
analogous discretization of Equation (2), discrete relaxation frequency spectrum can be
determined.

The simple rectangular (midpoint) rule with equally spaced points τk is applied here;
however, other, more sophisticated quadratures can be also used.

4. Conclusions

In this paper, a new hierarchical identification scheme for recovery of the non-negative
continuous relaxation spectra has been derived. The scheme can be applied to identify
both relaxation time and frequency spectra using the relaxation test data. Two classes of
models are considered; both are based on an expansion of an unknown spectrum into a
series of non-negative basis functions. The continuous spectrum of relaxation times was
approximated by finite series of power-exponential basis functions, with the components of
the relaxation modulus model described by the product of power of time and the modified
Bessel function of the second kind. For modeling of the relaxation frequency spectrum, the
basis functions described by the product of power of time and square exponential functions
were applied. The components of the related relaxation modulus model were proven to be
described by compact recurrence formulas expressed in terms of the products of power of
time, exponential, and complementary error functions. The quadratic identification index
related to the relaxation modulus measurements was used, and an additional smoothing
constraint was imposed on the model parameters to ensure the problem was well-posed.
The numerical experiments showed that both considered classes of models can be applied
for unimodal and bimodal relaxation spectra modeling with additional non-negativity
constraints. The model of the relaxation time spectrum using the modified Bessel functions
can be recommended for modeling bimodal spectra with the peaks more distant than the
relaxation frequency model.

However, the examples showed that in many cases, the non-negative models of the
relaxation spectra or models non-negative for almost all arguments can be obtained also
using the classical approach, without the additional constraint of the model parameters
non-negativity, whenever the basis functions of the relaxation spectrum model are non-
negatively defined. Thus, the following procedure can be recommended for the non-
negative relaxation spectrum determination. First, find the best model of the relaxation
spectrum using regularized least-squares identification and check the definiteness of the
designated model. If this model is non-negative over a significant range of relaxation times
or frequencies, accept it. Otherwise, apply the proposed two-stage hierarchical algorithm
and determine the nonnegative relaxation spectrum model.

However, the best non-negative model can be obtained by solving the original infinite-
dimensional task of optimal approximation of the real spectrum in the class of continuous
non-negative functions by applying the calculus of variations technique. It will be the
subject of further work.

Author Contributions: Conceptualization, A.S. and M.B; methodology, A.S.; software, A.S.; valida-
tion, A.S. and M.B.; formal analysis, A.S.; investigation, A.S.; writing—original draft preparation,
A.S., M.B. and P.D.; visualization, A.S. and P.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank an anonymous reviewer for a suggestion
regarding the possibility of using the presented algorithm to identify discrete relaxation spectra.

Conflicts of Interest: The authors declare no conflict of interest.



Polymers 2023, 15, 3464 29 of 42

Appendix A

Appendix A.1. Proof of Theorem 2

First we prove (15) and (16) for k = 0 and k = 1. To derive (15), in view of (11) and
(13), we have

φ0(t, β) =
√

2βe
∫ ∞

0
e−βv2

e−tvdv,

whence, by applying the substitution u =
√

βv + t/2
√

β, we obtain:

φ0(t, β) =
√

2e·e
t2
4β

∫ ∞

t/2
√

β
e−u2

du,

which, having in mind the definition (17) of the complementary error function, can be
rewritten as (15).

For k ≥ 0, on the basis of (11) and (13), the following general differential property
holds

φk+1(t, β) = (−1)

√
2βe

k + 2

(
k + 1
k + 2

) k+1
2 ∂φk(t, β)

∂t
. (A1)

Whence, putting k = 0, the integral φ1(t, β) can be expressed as

φ1(t, β) = (−1)

√
βe
2
·∂φ0(t, β)

∂t
. (A2)

Since, in view of (17),
der f c(x)

dx
=
−2√

π
e−x2

, (A3)

bearing in mind (15), Equation (A2) can be rewritten as

φ1(t, β) = (−1)

√
βe
2
·
√

πe
2

[
t

2β
e

t2
4β er f c

(
t

2
√

β

)
− 2√

π

1
2
√

β
e

t2
4β e

−t2
4β

]
,

whereas the next formula follows

φ1(t, β) =
e
2

[
1− 1√

2βe

√
πe
2

t e
t2
4β er f c

(
t

2
√

β

)]
, (A4)

which, in view of (15), can be expressed as (16).
For the proof of recurrence formula (14) mathematical induction will be used. In the

base case of the proof by induction, for k = 1, by (A1), we have

φ2(t, β) = (−1)

√
2βe

3

(
2
3

)
∂φ1(t, β)

∂t
,

which, combined with (16) yields

φ2(t, β) =

√
2βe

3

(
2
3

)
e
2

1√
2βe

[
φ0(t, β) + t

∂φ0(t, β)

∂t

]
.

Whence, including (A2), we obtain formula (14) for k = 1, i.e.,

φ2(t, β) = e
(

1
3

) 3
2
[

φ0(t, β)− 2
1√
2βe

tφ1(t, β)

]
.
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Now, in the induction step, let us assume that (14) holds for k ≥ 1. We prove that it
holds also for k + 1. For k + 1, differential formula (A1) yields

φk+2(t, β) = (−1)

√
2βe

k + 3

(
k + 2
k + 3

) k+2
2 ∂φk+1(t, β)

∂t
. (A5)

By the induction hypothesis, from (14) we immediately have

∂φk+1(t, β)

∂t
= e

(
k

k + 2

) k+2
2

ψk(t, β), (A6)

where

ψk(t, β) =
∂φk−1(t, β)

∂t
− 1√

2βe
√

k

(
k + 1

k

) k+1
2

φk(t, β)− 1√
2βe
√

k

(
k + 1

k

) k+1
2

t
∂φk(t, β)

∂t
. (A7)

Taking into account (A1), derivatives ∂φk−1(t,β)
∂t and ∂φk(t,β)

∂t can be expressed as the
functions of φk(t, β) and φk+1(t, β), respectively. Whence, function ψk(t, β) (A7), after
algebraic manipulations, can be expressed as

ψk(t, β) = (−1)
1√
2βe

k + 1√
k

(
k + 1

k

) k+1
2

φk(t, β) +
1

2βe

(
k + 2

k

) k+2
2

tφk+1(t, β). (A8)

Substituting ψk(t, β) (A8) into (A6) results in

∂φk+1(t, β)

∂t
= −e

(
k

k + 2

) k+2
2
[

1√
2βe

k + 1√
k

(
k + 1

k

) k+1
2

φk(t, β)− 1
2βe

(
k + 2

k

) k+2
2

tφk+1(t, β)

]
,

which, combined with (A5), yields

φk+2(t, β) = e

√
2βe

k + 3

(
k

k + 3

) k+2
2
[

1√
2βe

k + 1√
k

(
k + 1

k

) k+1
2

φk(t, β)− 1
2βe

(
k + 2

k

) k+2
2

tφk+1(t, β)

]
,

whence, after algebraic manipulations, we finally obtain

φk+2(t, β) = e
(

k + 1
k + 3

) k+2
2
[

φk(t, β)− 1√
2βe

1√
k + 1

(
k + 2
k + 1

) k+2
2

tφk+1(t, β)

]
.

Thus, theorem is proved. �

Appendix A.2. Proof of Theorem 3

Mathematical induction will be used again. In the base step, we prove (18), (20) for
k = 0 and (18), (19) for k = 1 and k = 2. The function φ0(t, β) (15) can be expressed as

φ0(t, β) =

√
πe
2

er f c
(

t
2
√

β

)
e
−t2
4β

,
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where both the numerator and denominator tends to zero, when t → ∞ . Thus, using the
L’Hospital’s rule, having in mind (A3), we obtain

lim
t→∞

φ0(t, β) =

√
πe
2

lim
t→∞

− 2√
π

1
2
√

β
e
−t2
4β

− t
2β e

−t2
4β

=

√
πe
2

lim
t→∞

1√
πβ

t
2β

= 0. (A9)

To prove (20), the product tφ0(t, β) is rewritten as

tφ0(t, β) =

√
πe
2

er f c
(

t
2
√

β

)
1
t e
−t2
4β

,

whence, by the L’Hospital’s rule we have

lim
t→∞

tφ0(t, β) =

√
πe
2

lim
t→∞

− 2√
π

1
2
√

β
e
−t2
4β

1
t

(
− t

2β

)
e
−t2
4β − 1

t2 e
−t2
4β

=

√
πe
2

lim
t→∞

1√
πβ

1
2β + 1

t2

=
√

2eβ . (A10)

For k = 1, by (16) and (A10), we immediately have

lim
t→∞

φ1(t, β) =
e
2

[
1− 1√

2βe

√
2βe

]
= 0.

Having in mind (A4), the product tφ1(t, β) can be expressed as a fraction

tφ1(t, β) =
e
2

[
1
t e
−t2
4β − 1√

2βe

√
πe
2 er f c

(
t

2
√

β

)]
1
t2 e

−t2
4β

,

which numerator and denominator tends to zero, when t → ∞ . Thus, the L’Hospital’s
rule and (A3) yield

lim
t→∞

tφ1(t, β) =
e
2

lim
t→∞

−1
t2 e

−t2
4β − t

2β ×
1
t e
−t2
4β + 1

2
√

β

2√
π

1√
2βe

√
πe
2 e

−t2
4β

−2
t3 e

−t2
4β − t

2β
1
t2 e

−t2
4β

,

whence the next limit directly follows

lim
t→∞

tφ1(t, β) =
e
2

lim
t→∞

−1
t2 − 1

2β + 1
2β

−2
t3 − 1

2β
1
t

=
e
2

lim
t→∞

1
2
t +

1
2β t

= 0. (A11)

Similarly, to prove (19) for k = 2, the product tφ2(t, β), due to (14), (16) and (15), can
be expressed as

tφ2(t, β) = e
(

1
3

) 3
2


√

πe
2

1
t2 er f c

(
t

2
√

β

)
− e√

2βe

[
1
t e
−t2
4β − 1√

2βe

√
πe
2 er f c

(
t

2
√

β

)]
1
t3 e

−t2
4β

,

where numerator and denominator tends to zero, when t → ∞ . Thus, using again the
L’Hospital’s rule and differential formula (A3) we obtain
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lim
t→∞

tφ2(t, β) = e
(

1
3

) 3
2

lim
t→∞

−
√

πe
2

2
t3 er f c

(
t

2
√

β

)
−
√

e
2β

1
t2 e

−t2
4β − e√

2βe

[
−1
t2 e

−t2
4β + −1

2β e
−t2
4β + 1

2β e
−t2
4β

]
−3
t4 e

−t2
4β − 1

2βt2 e
−t2
4β

,

whence, after algebraic manipulations, due to (15) we have

lim
t→∞

tφ2(t, β) = e
(

1
3

) 3
2

lim
t→∞


√

πe
2

2
t3 er f c

(
t

2
√

β

)
3
t4 e

−t2
4β + 1

2βt2 e
−t2
4β

 = e
(

1
3

) 3
2

lim
t→∞

 2
t3 φ0(t, β)
3
t4 +

1
2βt2

,

which, by (A9), finally yields

lim
t→∞

tφ2(t, β) = e
(

1
3

) 3
2

lim
t→∞

 2
t3 φ0(t, β)
3
t4 +

1
2βt2

 = e
(

1
3

) 3
2

lim
t→∞

[
2φ0(t, β)
3
t +

1
2β t

]
= 0.

Thus, Property (18), for k = 2, follows directly from (14), (A9) and (A11).
In the induction step, we assume that (18) and (19) hold for k and k− 1, where k ≥ 2.

We prove that (18) and (19) hold also for k + 1. By (14), in view of the induction hypothesis,
in particular, due to (18) for k− 1 and (19) for k, we immediately have

lim
t→∞

φk+1(t, β) = e
(

k
k + 2

) k+2
2
[

lim
t→∞

φk−1(t, β)− 1√
2βek

(
k + 1

k

) k+1
2

lim
t→∞

tφk(t, β)

]
= 0.

Keeping in mind (14), the product tφk+1(t, β) is

tφk+1(t, β) = e
(

k
k + 2

) k+2
2
[

tφk−1(t, β)− 1√
2βe
√

k

(
k + 1

k

) k+1
2

t2φk(t, β)

]
,

whereby the induction hypothesis tφk−1(t, β) becomes zero, when t → ∞ . Thus, it is only
necessary to show that t2φk(t, β) tend to zero as t→ ∞ . Since both the numerator and
denominator if the right fraction in

t2φk(t, β) =
t2

1
φk(t,β)

,

tend to infinity as t→ ∞ , applying the L’Hospital’s rule we obtain

lim
t→∞

t2φk(t, β) = lim
t→∞

t2

1
φk(t,β)

= lim
t→∞

2t
−1

[φk(t,β)]
2

∂φk(t,β)
∂t

,

which, in view of (A1), can be expressed as

lim
t→∞

t2φk(t, β) =
2√

k+2
2βe

(
k+2
k+1

) k+1
2

lim
t→∞

tφk(t, β)φk(t, β)

φk+1(t, β)
,

and next, including the formula (14), as follows

lim
t→∞

t2φk(t, β) = 4βe
(

k
k + 2

) k+2
2

lim
t→∞

[
φk−1(t, β)φk(t, β)

φk+1(t, β)
− 1

e

(
k + 2

k

) k+2
2

φk(t, β)

]
, (A12)
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where the second summand in the square brackets of the right-hand side tend to zero as
t→ ∞ , according to the induction hypothesis. Since by (14) the first summand can be
expressed as a fraction

φk−1(t, β)φk(t, β)

φk+1(t, β)
=

1
e

(
k+2

k

) k+2
2

φk−1(t, β)φk(t, β)

φk−1(t, β)− 1√
2βek

(
k+1

k

) k+1
2 tφk(t, β)

=

1
e

(
k+2

k

) k+2
2

1
φk(t,β)

− 1√
2βek

(
k+1

k

) k+1
2 t

φk−1(t,β)

,

which denominator tends to infinity as t→ ∞ , also the first summand in the square
brackets of the right hand side of (A12) become zero as t→ ∞ . Thus,

lim
t→∞

t2φk(t, β) = 0,

i.e., (21) is proved, whence also (19) follows for k + 1. This completes the proof. �

Appendix A.3. Proof of Proposition 1

Since symmetric matrix ΩK,K(γ) (33) is positive definite for any γ > 0, the dual
function LD(λ, γ) (34) is strictly concave function of λ. By the following differential
property [50]:

∂

∂x
[A(x)B(x)] =

∂A(x)
∂x

B(x) + A(x)
∂B(x)

∂x
, (A13)

which holds for arbitrary differentiable matrix functions A(x) and B(x), the first derivative
of the dual function (34) with respect to γ is as follows

∂

∂γ
LD(λ, γ) = −κ2 −

(
ΦT

N,KGN +
1
2

λ

)T ∂ΩK,K(γ)

∂γ

(
ΦT

N,KGN +
1
2

λ

)
, (A14)

while the second derivative is

∂2

∂γ2 LD(λ, γ) = −
(

ΦT
N,KGN +

1
2

λ

)T ∂2ΩK,K(γ)

∂γ2

(
ΦT

N,KGN +
1
2

λ

)
. (A15)

By the next differential property [50]:

∂

∂x

[
A(x)−1

]
= −A(x)−1 ∂A(x)

∂x
A(x)−1, (A16)

which holds for arbitrary differentiable and invertible matrix function A(x), for ΩK,K(γ)
(33) we have

∂

∂γ
ΩK,K(γ) =

∂

∂γ

(
ΦT

N,KΦN,K + γIK,K

)−1
= −

(
ΦT

N,KΦN,K + γIK,K

)−2
= −Ω2

K,K(γ). (A17)

Whence, keeping in mind (33), (A13), (A16) and (A17), we obtain

∂2ΩK,K(γ)

∂γ2 = − ∂

∂γ
Ω2

K,K(γ) = 2
(

ΦT
N,KΦN,K + γIK,K

)−3
= 2Ω3

K,K(γ). (A18)

Combining (A14) and (A17) yields

∂

∂γ
LD(λ, γ) = −κ2 +

(
ΦT

N,KGN +
1
2

λ

)T
Ω2

K,K(γ)

(
ΦT

N,KGN +
1
2

λ

)
, (A19)
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while, by (A18) and (A15), the second derivative is as follows

∂2

∂γ2 LD(λ, γ) = −2
(

ΦT
N,KGN +

1
2

λ

)T
Ω3

K,K(γ)

(
ΦT

N,KGN +
1
2

λ

)
.

Thus, LD(λ, γ) is strictly concave function of the multiplier γ, too.
Differentiating ∂

∂γ LD(λ, γ) (A19) with respect to λ and taking into account the quadratic
form of λ given by (34), it is easy to check that the Hessian matrix of the dual function takes
the form:

H(λ, γ) =

 − 1
2 ΩK,K(γ) Ω2

K,K(γ)
(

ΦT
N,KGN + 1

2 λ
)

(
ΦT

N,KGN + 1
2 λ
)T

Ω2
K,K(γ) −2

(
ΦT

N,KGN + 1
2 λ
)T

Ω3
K,K(γ)

(
ΦT

N,KGN + 1
2 λ
)
.

Since ΩK,K(γ) (33) is positive definite, the Hessian H(λ, γ) is negative definite for an
arbitrary λ ≥ 0K, on the basis of the known result concerning the definiteness of block
matrices [55] (Twierdzenia Ib”). Thus, dual function LD(λ, γ) is strictly concave function of
both arguments (λ, γ). Theorem is proved. �

Appendix A.4. Proof of Theorem 4

In the proof, the following Rayleigh-Ritz inequalities [56] (Lemma I) which hold for
any xεRm and any symmetric matrix X = XTεRm,m:

λmin(X)xTx ≤ xTXx ≤ λmax(X)xTx, (A20)

is used, where λmin(X) and λmax(X) are minimal and maximal eigenvalues of X.
Since for any γ > 0 matrix ΩK,K(γ) (33) is positive definite, using the left inequality

from (A20) to estimate the last term of the right-hand side of (34), we obtain the following
inequality

LD(λ, γ) ≤ GT
NGN − γκ2 − λmin[ΩK,K(γ)]

(
YK +

1
2

λ

)T(
YK +

1
2

λ

)
, (A21)

where λmin[ΩK,K(γ)] > 0 is minimal eigenvalue of ΩK,K(γ) and vector YK is defined by
(40). By (36) and (37), we have λmin[ΩK,K(γ)] = 1/

(
σ2

1 + γ
)
, whenever γ > 0, whence

inequality (A21) can be rewritten as

LD(λ, γ) ≤ GT
NGN − γκ2 − 1(

σ2
1 + γ

)(YK +
1
2

λ

)T(
YK +

1
2

λ

)
= LDupp(λ, γ). (A22)

Let (λ0, γ0) be a pair of arbitrary allowable Lagrange multipliers, i.e., λ0 ≥ 0K and
γ0 ≥ 0.

The upper bound LDupp(λ, γ) of LD(λ, γ), defined by the right-hand side equation in
(A22), is strictly concave function of γ, which for

γmax(λ) =

√(
YK + 1

2 λ
)T(

YK + 1
2 λ
)

κ
− σ2

1 (A23)

takes maximum, with respect to γ, given by

LDupp(λ, γmax(λ)) = GT
NGN + σ2

1 κ2 − 2κ

√(
YK +

1
2

λ

)T(
YK +

1
2

λ

)
. (A24)

For the non-negative definite basis functions ϕk(t, α) (7) or φk(t, β) (14)–(16), the inequality
YK > 0K holds, since the relaxation modulus measurements are non-negative. Therefore,
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all elements of the vector YK are positive. Thus, in view of the assumption (39), γmax(λ)
given by (A23) is positive for any λ ≥ 0K.

There exists a positive constant

M0 =
(

γ0 + σ2
1

)
κ +

1
κ

(
YK +

1
2

λ0

)T
ΩK,K(γ0)

(
YK +

1
2

λ0

)
, (A25)

such that for any λ ≥ 0K, inequality ‖λ‖2 > M0 implies

L(λ, γ) ≤ LDupp(λ, γ) ≤ LDupp(λ, γmax(λ)) < LD(λ0, γ0). (A26)

for any γ > 0. Indeed, if λ2 > M0, then having in mind non-negativity of the vectors YK
and λ, by (A25) we have

(
YK +

1
2

λ

)T(
YK +

1
2

λ

)
≥ 1

4
‖λ‖2

2 >

[(
γ0 + σ2

1

)κ

2
+

1
2κ

(
YK +

1
2

λ0

)T
ΩK,K(γ0)

(
YK +

1
2

λ0

)]2

,

whence the following inequality follows from extreme, left and right, expressions

2κ

√(
YK +

1
2

λ

)T(
YK +

1
2

λ

)
>
(

γ0 + σ2
1

)
κ2 +

(
YK +

1
2

λ0

)T
ΩK,K(γ0)

(
YK +

1
2

λ0

)
.

Thus, by (A24) and (34), the next estimation holds

LDupp(λ, γmax(λ)) < LD(λ0, γ0),

and, due to (A22), implies (A26) for an arbitrary γ > 0, which, in view of the left inequality
in (A22), means that the maximization of the dual function LD(λ, γ) with respect to λ can
be restricted to λ ≥ 0K such that ‖λ‖2 ≤ M0.

Similarly, for an arbitrary γ > γ2, where

γ2 = γ0 +
1
κ2

(
YK +

1
2

λ0

)T
ΩK,K(γ0)

(
YK +

1
2

λ0

)
,

which yields that

γκ2 > γ2κ2 = γ0κ2 +

(
YK +

1
2

λ0

)T
ΩK,K(γ0)

(
YK +

1
2

λ0

)
,

by (34), the next inequality folds

LD(λ, γ) < LD(λ0, γ0)

for any λ ≥ 0K. Thus, maximization of the dual function with respect to γ can be restricted
to the subset 0 ≤ γ ≤ γ2, independently of the value of λ ≥ 0K.

Combining the above, the maximization in the dual optimization task (30) can be
constrained to compact subset of the pairs (λ, γ) in the Cartesian product RK

+×R+ defined
by inequalities

‖λ‖2 ≤ M0 and 0 ≤ γ ≤ γ2,

here, R+ denotes the set of non-negative real numbers. Thus, by view of the Weierstrass
theorem concerning the extreme of continuous function on the compact set [52], the exis-
tence of the solution to the dual problem is immediately concluded. To demonstrate that
the optimal price γ̂ > 0, we show that for any λ ≥ 0K inequality (39) imply

lim
γ→0+

∂

∂γ
LD(λ, γ) > 0,
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i.e., the dual function grows, as a function of γ, in the near right neighborhood of the zero.
To show the above, note that by (A19) and the left inequality in (A20), having in mind that
due to (36) and (37) λmin

[
Ω2

K,K(γ)
]
= 1/

(
σ2

1 + γ
)2, we have

∂

∂γ
LD(λ, γ) ≥ −κ2 +

1(
σ2

1 + γ
)2

(
YK +

1
2

λ

)T(
YK +

1
2

λ

)
. (A27)

The assumption (39) imply

−κ2 +
1
σ4

1
YT

KYK > 0.

Thus, there exists γ1 > 0, for example

γ1 =

√
YT

KYK

κ
− σ2

1 ,

such that for any λ ≥ 0K, having in mind that also YK ≥ 0K, by (A27), the inequality
∂

∂γ LD(λ, γ) > 0 holds for any 0 < γ < γ1, i.e., the dual function increases with growing
γ in the near neighborhood of γ = 0. Therefore, the optimal price γ̂ ≥ γ1 > 0, which
completes the proof. �

Appendix A.5. Derivation of the Formula (47)

The function LD(λ) (46) can be expressed as

LD(λ) = GT
NGN − κ2γ(λ)− Γ(λ), (A28)

where the last summand, by (46) and (40), is as follows

Γ(λ) =
(

YK +
1
2

λ

)T
ΩK,K(γ(λ))

(
YK +

1
2

λ

)
. (A29)

Let λk be the k-th element of the vector λ, k = 1, . . . , K. Thus, (A28) yields

∂

∂λk
LD(λ) = −κ2 ∂γ(λ)

∂λk
− ∂

∂λk
Γ(λ). (A30)

By (A29) and (A13), we have

∂

∂λk
Γ(λ) =

(
YK +

1
2

λ

)T
ΩK,K(γ(λ))Jk

K +

(
YK +

1
2

λ

)T ∂ΩK,K(γ(λ))

∂λk

(
YK +

1
2

λ

)
, (A31)

where Jk
K is K-dimensional vector, which k element is equal one, while the other elements

are zero. Since
∂

∂λk

(
ΦT

N,KΦN,K + γ(λ)IK,K

)
=

∂γ(λ)

∂λk
IK,K,

due to (33) and (A16), we obtain

∂ΩK,K(γ(λ))

∂λk
= −∂γ(λ)

∂λk

(
ΦT

N,KΦN,K + γ(λ)IK,K

)−2
= −∂γ(λ)

∂λk
Ω2

K,K(γ(λ)). (A32)

Combining (A30), (A31) and (A32) yields

∂LD(λ)

∂λk
= −κ2 ∂γ(λ)

∂λk
−
(

YK +
1
2

λ

)T
ΩK,K(γ(λ))Jk

K +
∂γ(λ)

∂λk

(
YK +

1
2

λ

)T
Ω2

K,K(γ(λ))

(
YK +

1
2

λ

)
,



Polymers 2023, 15, 3464 37 of 42

whence, in view of (43) and (40), we obtain

∂

∂λk
LD(λ) = −

(
YK +

1
2

λ

)T
ΩK,K(γ(λ))Jk

K = −
(
Jk

K

)T
ΩK,K(γ(λ))

(
YK +

1
2

λ

)
,

Therefore, having in mind (33) and (40), the formula (47) describing the gradient ∂
∂λ LD(λ)

immediately results. �

Appendix A.6. Proof of Proposition 2

By (10), for any factor β and any vector gK, we have

‖HK(v, β)‖2
2 =

∫ ∞

0

[
∑K−1

k=0 gkhk(v, β)
]2

dv, (A33)

which can be rewritten as

‖HK(v, β)‖2
2 = ∑K−1

k=0 ∑K−1
j=0 gkgjϑkj(β),

where the functions
ϑkj(β) =

∫ ∞

0
hk(v, β)hj(v, β)dv (A34)

are such that ϑkj(β) = ϑjk(β) for k, j = 0, 1, . . . K− 1.
By (11) and (A34) we have

ϑkj(β) =

(
2βe

k + 1

) k+1
2
(

2βe
j + 1

) j+1
2 ∫ ∞

0
vk+j+2e−2βv2

dv,

whence, having in mind (11) and (13), the next equality results

ϑkj(β) =

√
k + j + 3√

2βe

(
k+j+3

k+1

) k+1
2
(

k+j+3
j+1

) j+1
2

2
k+j+3

2

φk+j+2(0, 2β) =
1√
2βe

θkj(β).

Thus, ϑkj(β) and θkj(β) (56) are uniquely determined by the basis functions φk(t, β)
for t = 0. By the recurrent formula (14), for t = 0, we have

φk+1(0, 2β) = e
(

k
k + 2

) k+2
2

φk−1(0, 2β).

Since er f c(x) = 1, by (15), we have φ0(0, 2β) =
√

πe/2 , and (16) yields
φ1(0, 2β) = e/2 . Thus, it is easy to check, by algebraic manipulations, that for even
indices formula (57) holds, while for odd indices (58) is satisfied, where k = 1, 2, . . ..

According to (A33) and (55), the quadratic form gT
KΘgK is expressed as

gT
KΘgK =

√
2βe

∫ ∞

0

[
∑K−1

k=0 gkhk(v, β)
]2

dv.

Thus, gT
KΘgK ≥ 0 for an arbitrary vector gK, and gT

KΘgK = 0, if and only if
∑K−1

k=0 gkhk(v, β) = 0 for almost all v > 0. Since the basis functions hk(v, β) are inde-
pendent, the last equality holds, if and only if gk = 0 for all k = 0, 1, . . . , K− 1, i.e., only if
the vector gK = 0, which yields the positive definiteness of Θ. Proposition is proved. �
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Appendix B

Table A1. Ranges of the applicability of the models (10) and (12) for various time-scale parameters
for K = 6, . . . 11.

Time-Scale
Factor β

[
s2]

Range 1 of
Relaxation

Frequencies
vapp(β)

[
s−1]

Range1 of
Times tapp(β)

[s]

Range 1 of
Relaxation

Frequencies
vapp(β)

[
s−1]

Range 1 of
Times tapp(β)

[s]

K = 6 K = 6 K = 7 K = 7

0.0000001 11,227.86 0.006284 11,632.60 0.006284
0.000001 3550.95 0.01987 3678.97 0.01987
0.00001 1.122.75 0.0628 1163.50 0.0628
0.0001 3.55.20 0.199 368.10 0.199
0.001 1.12.50 0.628 116.40 0.628
0.01 35.53 1.987 36.86 1.987
0.1 11.305 6.284 11.685 6.284
1 3.60 19.872 3.69 19.872
10 1.125 62.870 1.17 62.870

100 0.36 198.57 0.37 198.57

β
[
s2] K = 8 K = 8 K = 9 K = 9

0.0000001 12,012.84 0.006284 12,372.50 0.006284
0.000001 3798.96 0.01987 3912.97 0.01987
0.00001 1201.50 0.0628 1237.50 0.0628
0.0001 380.06 0.199 391.53 0.199
0.001 120.30 0.628 123.90 0.628
0.01 38.18 1.987 39.33 1.987
0.1 12.065 6.284 12.445 6.284
1 3.825 19.872 3.915 19.872
10 1.206 62.870 1.242 62.870

100 0.38 198.57 0.395 198.57

β
[
s2] K = 10 K = 10 K = 11 K = 11

0.0000001 12,714.52 0.006284 13,041.84 0.006284

0.000001 4020.80 0.01987 4124.535 0.01987

0.00001 1271.60 0.0628 1304.50 0.0628

0.0001 402.20 0.199 412.61 0.199
0.001 127.20 0.628 130.50 0.628
0.01 40.22 1.987 41.40 1.987
0.1 12.73 6.284 13.11 6.284
1 4.05 19.872 4.14 19.872
10 1.278 62.870 1.3050 62.870

100 0.405 198.57 0.4150 198.57
1 The upper bounds tapp(β) (23) and vapp(β) (24) of the applicability intervals

[
0, tapp(β)

]
and

[
0, vapp(β)

]
are

given.
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Table A2. Optimal non-negative parameters ĝK of the relaxation spectrum models from Example
1 for K = 3, . . . , 12 numbers of model components K = 3, . . . , 12; the elements of the vectors are
expressed in [Pa].

Non-Negative Optimal Model Parameters ĝK

K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 K=11 K=12

0.51610 0.60302 0.52025 0.43015 0.33212 0.23311 0.13764 0.04694 0 0
0.47285 0.03345 0.24236 0.39697 0.54005 0.67254 0.79475 0.89649 0.96617 0.98616

0 0 0 0 0 0 0 0 0 0.01056
0.99558 0 0 0 0 0 0 0 0

0.98433 0 0 0 0 0 0 0
1.01872 0 0 0 0 0 0

1.03876 0 0 0 0 0
1.04386 0 0 0 0

1.03356 0 0 0
1.05751 0 0

1.07919 0
1.14125

Table A3. Optimal non-constrained
~
gK and non-negative parameters

^
gK of the relaxation spectrum

models from Example 2 for selected numbers of model components K; the elements of both vectors
are expressed in [Pa].

Non-Constrained Optimal Model Parameters
~
gK

K=6 K=8 K=10 K=12 K=14 K=15 K=16 K=18 K=20 K=21

0.69589 1.23437 2.48294 3.04854 0.63923 0.54198 0.57961 0.478723 0.40709 0.36393
−1.77431 −3.18711 −2.69711 5.24032 0.03965 0.33562 0.21153 0.16921 0.21656 0.11202
1.91327 1.39411 −3.13256 −12.91242 −3.423× 10−5 −0.05921 −0.03719 0.11940 0.12699 0.14692
0.78759 1.87886 3.41395 1.72539 0.076367 0.38651 0.35181 0.11929 0.16832 0.00767
0.08083 0.40102 1.38949 2.44539 −0.43247 −0.66386 −0.60506 −0.22342 −0.25073 0.13480
0.00327 0.05369 0.42147 1.85665 0.201602 −0.64325 −0.45072 0.10231 0.08018 0.08627

0.00411 0.08935 0.91252 0.70569 0.29752 0.39431 0.12578 −0.04074 0.082852
1.37 × 10−4 0.01230 0.30148 0.60727 0.91472 0.84376 −0.00747 −0.12579 0.19501

9.822 × 10−4 0.06676 0.29290 0.77923 0.66133 0.186577 0.17558 0.101948
3.448 × 10−5 9.537 × 10−3 0.09022 0.38086 0.30802 0.47089 0.18924 0.15143

7.963 × 10−4 0.018247 0.12026 0.09394 0.48281 0.06758 0.22989
2.959 × 10−5 2.362 × 10−3 0.02511 0.01909 0.29154 0.28282 0.14736

1.785 × 10−4 3.372 × 10−3 2.515 × 10−3 0.11590 0.54995 0.14569
6.015 × 10−6 2.652 × 10−4 1.962 × 10−4 0.03149 0.51033 0.25043

9.326 × 10−6 7.093 × 10−6 5.837 × 10−3 0.28295 0.26079
2.279 × 10−8 7.103 × 10−4 0.10182 0.16058

5.137 × 10−5 0.02424 0.06268
1.679 × 10−6 3.712 × 10−3 0.01589

3.333 × 10−4 2.557 × 10−3

1.339 × 10−5 2.388 × 10−4

9.906 × 10−6

Non−negative optimal model parameters
^
gK

K = 6 K = 8 K = 10 K = 12 K = 14 K = 15 K = 16 K = 18 K = 20 K = 21

0.37194 0.10317 0.37144 0.50501 0 0 0.3370 0.516089 0.375427 0.36393
0 0 0 0 8.65 × 10−4 1.05 × 10−5 0.24060 0 0 0.11202

1.16788 1.64821 0.72971 9.308 × 10−7 1.36631 1.5380 0 0 1.33 × 10−10 0.14692
0.15572 0 0.53285 0 0 0.18528 0.01840 0 0 0.00767

3.601 × 10−3 0 0.10922 0 0.36131 0.02458 0 0 0 0.13480
0 0.01015 1.051 × 10−8 0.74577 0.18804 0 0 0.339032 0.367328 0.08627

1.956 × 10−3 0 0.700892 0.03469 2.119 × 10−3 0.41948 0.200519 0.294 0.082852
1.069 × 10−4 6.772 × 10−4 0.28695 2.257 × 10−3 7.336 × 10−4 0.84380 0 0 0.19501

8.569 × 10−5 0.06676 0 6.418 × 10−5 0.66133 0.186117 0.148038 0.101948
9.67 × 10−7 9.537 × 10−3 4.0 × 10−5 2.07 × 10−6 0.30802 0.470796 0.160911 0.15143

7.963 × 10−4 1.717 × 10−5 2.756 × 10−7 0.09394 0.482808 0.061062 0.22989
2.960 × 10−5 3.74 × 10−6 0 0.01909 0.291539 0.282294 0.14736

5.60 × 10−7 0 2.515 × 10−3 0.115905 0.54995 0.14569
4.0 × 10−8 4.0 × 10−10 1.962 × 10−4 0.031492 0.510332 0.25043

8.0 × 10−11 7.090 × 10−6 5.838 × 10−3 0.282955 0.26079
2.280 × 10−8 7.10 × 10−4 0.101824 0.16058

5.14 × 10−5 0.024238 0.06268
1.68 × 10−6 3.712 × 10−3 0.01589

3.33 × 10−4 2.557 × 10−3

1.34 × 10−5 2.388 × 10−4

9.906 × 10−6
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Table A4. Optimal parameters g̃K and ĝK of the best models H̃K(v, β) (62) and ĤK(v, β) (54) of the
relaxation spectrum from Example 3 determined without and with the non-negativity constraints,
respectively, for time scale factors β = βopt given in Table 5; the elements of the vectors ĝK are
expressed in [Pa].

Optimal Model Parameters g̃K Determined without Non-Negativity Constraint

K = 3 K = 4 K = 5 K = 6 K = 7 K = 8

−0.31279 −0.33746 −0.33855 −0.3194927 −0.33996837 −0.592754
0.15877 −0.03316 −0.19956 −0.3546004 −0.2678777 1.026829
1.94169 2.15237 2.2879722 2.3595877 2.34997477 2.10646

0.01423 0.0474225 0.1037881 5.89358 × 10−2 −0.55997
2.9359 × 10−3 0.01345137 9.9667 × 10−4 −0.19311

7.7147 × 10−4 −1.09287 × 10−3 −4.00838 × 10−2

−1.1487 × 10−4 −4.5905 × 10−3

−2.229 × 10−4

Optimal model parameters ĝK determined with non−negativity constraint

K = 3 K = 4 K = 5 K = 6 K = 7 K = 8

0 0 0 0 0 0
1.5606281 0 0 0 0 0.18757

0 1.38536 1.24139 1.10756 1.0669564 1.19620
0.22688 0.42096 0.502009 0.4743012 0.310804

0.06093 0.168412 0.2304561 0.047481
0.017565 0.0497706 0

3.928854 × 10−3 2.9752 × 10−4

1.11681 × 10−4
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