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Abstract: Green algae are a sustainable source of biopolymers for the global demand due to their
high photosynthetic efficiency. This article describes the extraction of cellulose from plant systems
represented by Ulva lactuca species. In order to extract various substances, algae were finely ground
with the help of solvents (liquid media). This was carried out to achieve the necessary conditions
that help reduce the resistance this phase shows in regard to the transport and transfer of the species
being extracted. The highest yield of extracted cellulose (20,944%) was obtained for the following
factors: S/L = 1/20; conc. ethanol = 90%, conc. salts = 4 g/L. Hydrogel membranes are a unique class
of macromolecular networks that contain a large fraction of aqueous solvent within their structure.
With the cellulose extracted from algae, we obtained membranes which underwent the process of
swelling in liquid media (ethyl alcohol) of different concentrations. The swelling of biocellulose
membranes in alcoholic solutions of high concentrations was investigated. It was observed that
the process of absorption of the alcoholic solution by the membrane occurred rapidly in the first
part. After stabilization, the membranes continued to absorb at a slower rate until stabilization or
saturation concentration was reached.

Keywords: swelling; membrane; cellulose; algae; diffusion of swelling layer

1. Introduction

In present, synthetic polymers began to widen their fields of use and they are find
practically in all branches of the economy due to their excellent mechanical properties
and competitive price. There are no limits regarding the use of polymer materials in the
age of advanced technologies. Nevertheless, the particularity of these synthetic polymers
obtained from monomers is their non-biodegradable behavior that affects the quality of the
environment. Therefore, scientists focused their attention to biodegradable biopolymers,
a current field of research with great ecological and economic importance. Due to their
structure, biopolymers have unique properties that can be adapted for different uses [1,2].

Organisms like bacteria, plants and animals produce through biosynthesis biopoly-
mers which could be separated by chemical or enzymatic treatment [3,4].

In recent decades, chemically synthesized fibers have been replaced by a wide range
of biopolymers leading to the development of the bio-composite materials industry [5–11].

Seaweed represents a sustainable feedstock for the global demand of biopolymers. In
nature, algae produce ten times more organic matter and release five times more oxygen
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than the entire terrestrial vegetation. Depending on the color of the predominant pigment,
algae are classified into green, blue, red and brown. The waters of the seas and oceans carry
huge amounts of algae of amazing diversity, organisms with a high growth rate.

Ulva lactuca (Phylum Chlorophyta, Class Ulvophyaceae, Order Ulvales, Family Ulvaceae)
is a green alga which can be found on large areas off the Black Sea but also in coastal
areas [12–14].

According to the study carried out by the Grigore Antipa Institute [15], for Romanian
Black Sea Ulva, the biochemical composition of the algal powder of the Ulva lactuca sp.
is the following: carbohydrates (54.95 ± 1.43%), mineral substances (24 ± 8.25%), pro-
teins (14.58 ± 1.30%) and lipids (0.69 ± 0.06%). According to another study carried
out by Lisha V.S. et al. [16], the seaweeds contain metals like zinc (28–64 mg.Kg−1), sele-
nium (0–0.05 mg.Kg−1), manganese (45–454 mg.Kg−1), iron (18–102 mg.Kg−1), copper
(18–102 mg.Kg−1), sulfur (0.4–1.4%), sodium (0.8–2.7%), potassium (0.7–2.4%), magnesium
(0.3–0.7%) and calcium (0.1–3.0%). Comparatively, following other experimental studies,
polysaccharides in Ulva lactuca are reported to comprise up to 45% [17], but it depends on
the climatic region and the season of harvesting.

Polysaccharides are found mainly in the cell wall with an important role in the struc-
tural reinforcement of the algae. They are also present in the intercellular space in small
proportions [18]. In Ulva lactuca, we can find two major polysaccharides, ulvans (made-up
mainly of rhamnose, glucuronic acid, xylose, glucose and sulfate [19,20]) and cellulose,
and two minors, xyloglucan and glucuronan. In comparison with xyloglucan, glucuronan
and some the ulvans which are hydro soluble, cellulose is insoluble and can be separated
from the other polysaccharides [21]. Currently, cellulose is one of the most commonly
used substrates and has a wide range of uses, from the textile industry, tissue engineer-
ing, the biomedical industry and pharmaceuticals to the food industry and wastewater
treatment [12,22,23]. Separation of cellulose from Ulva lactuca is easier to perform in the
absence of lignin because there is no delignification in the separation scheme.

Hydrogels are a unique class of macromolecular networks that contain a large fraction
of aqueous solvent within their structure.

The hydrophilicity of the network is due to the presence of chemical residues such
as hydroxylic (-OH), carboxylic (-COOH), amidic (-CONH-), primary amidic (-CONH2),
sulfonic (-SO3H) acids and others that can be found within the polymer backbone or
as lateral chains. Nevertheless, it is also possible to produce hydrogels containing a
significant portion of hydrophobic polymers, by blending or copolymerizing hydrophilic
and hydrophobic polymers.

The hydrophilic/hydrophobic balance of the hydrogels, the degree of cross-linking
and, especially, the degree of ionization and its interaction with counterions are the im-
portant parameters which control the equilibrium swelling, dimensional change and the
release patterns of drugs from these carriers [24,25]. Hence, mathematical modeling of
hydrogel swelling and predictability of swelling behavior has gained considerable attention
during recent decades.

The first part of the article describes the extraction of cellulose from plants represented
by algae. In order to extract various substances from algae, with the help of solvents,
they are finely ground. This is performed in order to achieve the necessary conditions to
reduce the resistance of this phase in terms of transport and transfer of extracted species.
Considering these aspects, it was decided to extract cellulose from the powder obtained by
grinding dried Ulva lactuca algae.

The second part of the article focuses on the conversion of obtained cellulose to mem-
brane and the study of its use in removing water from solvent/water mixtures, including
ethanolic solutions. Thus, from the extracted cellulose membranes were obtained that were
tested for use as pervaporation membranes. The first step consisted of investigating the
swelling in ethanolic solutions. The work has three elements of originality: (i) a proper
procedure for cellulose extraction from Ulva lactuca algal species, abundant in the Black
Sea; (ii) a solution for obtaining membranes starting from the obtained cellulose, enabling
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ethanolic solution pervaporation and (iii) experimental and modeling investigation with a
new model of obtained membranes swelling in concentrated ethanolic solutions.

2. Materials and Methods
2.1. Materials

For cellulose extraction from algae, Ulva lactuca sp., ethyl alcohol (C2H6O 90%, 60%),
sodium chloride (NaCl), ammonium oxalate ((NH4)2C2O4 0.05%), acetic acid (CH3COOH
5%), sodium hypochlorite (NaClO 5%), sodium hydroxide (NaOH 0.5 M) and hydrochloric
acid (HCl 5%) were used.

With respect to Ulva Lactuca algae composition, referring to the dry material, the
literature data [26] also tested by us show that it contains moisture (0.12 ± 0.08), ash
(0.18 ± 0.04), total nitrogen (0.022 ± 0.0019), proteins (0.145 ± 0.012), lipids (0.07 ± 0.005),
carbohydrates (0.563 ± 0.062) and insoluble fibers (0.263 ± 0.05).

Sodium hydroxide (NaOH 10% VWR Chemicals), thiourea (CH4N2S 5% Merck,
Bucharest, Romania), formaldehyde (CH2O 37% Merck, Bucharest, Romania) and ethyl
alcohol (C2H6O 99%, 80%, 60%, 40%) were used to obtain membranes and to subject them
to the swelling process.

2.2. Cellulose Extraction from Algae

The species Ulva lactuca sp. was harvested fresh from seawater, washed with distilled
water and cleaned of impurities [27]. The algae were placed for 48 h in an apparatus (fruit
dryer) with 5 overlapping trays, where they dehydrated evenly. The temperature of the
warm air flow circulating horizontally was set to 50 ◦C in order to not destroy the bioactive
substances found in algae [28,29]. Subsequently, the dried algae were finely ground by
mortaring and subjected to observation by transmission (Figure 1) under an IOR ML-4M
optical microscope (60-fold magnification (eyepiece 10 × 60)).
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Figure 1. Stages of extracting cellulose from algae ((a) extraction, (b) washing, (c) drying).

To extracted cellulose from algae species Ulva lactuca, 10 g of algae was introduced
into a solution of ethyl alcohol [30]. The extraction was performed in a water bath with
weak magnetic agitation (800 rot/min) at 65 ◦C in an Erlenmeyer flask with a ground
glass stopper for 48 h (Figure 1a). The extractant was an ethanol/water mixture of various
concentrations (90% and 60%, respectively). NaCl was also added in various concentrations
2 g/L and 4 g/L [5,27].

The ulvans were then extracted by adding 100 mL ammonium oxalate (0.05%) to the
skimmed algae. The mixture was then heated for one hour between 90 and 100 ◦C while
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stirring. The residues of the hydrophilic fraction were removed by successive washings
with hot water. The algae were bleached at 60 ◦C in a mixture of 200 mL acetic acid (5%)
and 100 mL NaClO (5%) allowing removal of pigments (chlorophyll) (Figure 1b). Numer-
ous extraction methods have been reported regarding conventional and unconventional
procedures to separate chlorophyll. These can be intensified when using heating and/or
stirring during extraction [31].

The algae were then washed with distilled water and dried at 105 ◦C. In the final
extraction step, algae were treated with 100 mL NaOH (0.5 M) overnight at 60 ◦C under
constant stirring conditions. The insoluble fraction was then washed to neutrality and
dried. The powder obtained was mixed with 200 mL hydrochloric acid (5%), the mixture
was heated to a boil, then the solution was left overnight at 30 ◦C while stirring. The
extracted cellulose was washed to neutral pH and dried at 105 ◦C (Figure 1c).

2.3. Obtaining Membranes from Cellulose Extracted from Algae and the Process of Swelling

In order to obtain the extracted cellulose membranes and to swell them, the following
steps were followed. A solution of 150 mL containing 10% w/w NaOH and 5% of thiourea
was prepared. In the alkaline solution, cellulose powder from algae was added at a
concentration level between 7 and 10% by mass. The systems were kept under controlled
agitation conditions and at a temperature of no more than 30 ◦C for a time of three hours.
The slurry of cellulose in the alkaline solution was cooled at −10 ◦C for a period of 24 h.
After observing the formation of cellulose gel in the alkaline solution, the cellulose gel
was left to heat at room temperature (Figure 2a). We prepared 250 mL of slow acid
solution with formaldehyde with which we washed the obtained membrane structure.
We continued washing the membrane structure with distilled water until neutral pH was
obtained (Figure 2b). The washed membranes were kept in distilled water with small
formaldehyde concentration for a period of 24 h. The membranes were dried by water
evaporation in a dehydrator at 70 ◦C for a period of 2 h, and after they were dried in a
thermobalance at 100 ◦C (Figure 2c).
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Figure 2. Stages of obtaining membranes from cellulose extracted from algae ((a) phase inversion,
(b) crude membrane, (c) dried membrane).

The membranes thus obtained underwent the process of swelling in an alcoholic
solution. Ethyl alcohol of 99%, 80%, 60% and 40% concentration was used, and the mass
of the membranes and the swelling time were recorded. The membrane was completely
immersed in a sufficiently large volume of ethanolic solution. At certain intervals, the
membrane was extracted, and we observed the increase in volume expressed quantitatively
by the increase in its mass. This increase in mass is due to absorption from the water
swelling medium.
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3. Results and Discussion
3.1. Cellulose Extraction from Algae

The dried algae were subjected to observation by transmission (Figure 3) under the
IOR ML-4M optical microscope (60-fold magnification (eyepiece 10 × 60)).
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In Figure 3, it can be observed that the powder contains particles below 500 microns.
Using the TM4000 Tabletop Scanning Electron Microscope (Chiyoda, Hitachi, Japan)

we were able to analyze the powder of the species Ulva lactuca (Figure 4a,b).
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Figure 4. SEM image of dry Ulva lactuca species. Scale bar length: (a) 100 µm; (b) 30 µm.

In Figure 4a,b, we can very clearly observe microfibers (even nanofibers) but also
certain cellulose structures.

In order to highlight the functional groups of species in the Ulva lactuca algae sample,
Tensor 37 Bruker (Elmsford, Woodstock, NY, USA) equipment was used for FT-IR analyses.

The FTIR spectra in the region 4000–400 cm−1 for Ulva lactuca species powder is
shown in Figure 5. The large width of the band at 3283.60 cm−1 indicates the presence
of functional group -OH. The lipids from the green algae structure were identified using
the band at 2925.26 cm−1. A broad band in the 1800–1500 cm−1 range with a wavelength
of 1635.60 cm−1 can include proteins and amides I from the protein structure. Also, the
wavelength 1531.94 cm−1 indicates the presence of amides II in the protein structure. The
peak at 1231.88 cm−1 shows the carboxylic group COO− and the characteristic band for
phosphate P=O –esters. The presence of carboxylic acid and the –OH group is an indication
of the presence of polysaccharides (especially cellulose), which is also confirmed by the
peak at 1044.62 cm−1.
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Figure 5. FT-IR spectrum of algal powder from species Ulva lactuca before the extraction.

The extraction of cellulose was performed according to an experimental plan con-
sidering the following factors: solid/liquid ratio, ethanol concentration at extraction and
concentration of salts in extractant; see Table 1.

Table 1. Experimental determinations regarding the extraction of cellulose from algae.

No.
crt.

Solid/Liquid
Ratio, S

Ethanol
Concentration %, E

Concentration of
Salts %, C Cellulose Yield, R
g/L Ppm

1 1/20 90% 2 0.085 20.817% ± 0.004
2 1/20 90% 4 0.898 20.944% ± 0.002
3 1/20 60% 2 0.085 4.494% ± 0.001
4 1/20 60% 4 0.898 4.625% ± 0.007
5 1/10 90% 2 0.085 15.022% ± 0.005
6 1/10 90% 4 0.898 15.829% ± 0.003
7 1/10 60% 2 0.085 3.781% ± 0.004
8 1/10 60% 4 0.898 4.030% ± 0.006

The yield of extracted cellulose (R) is considered a process-dependent variable. The
concentration of salts in the extractant was determined with a digital dissolved solids
concentration analyzer (ppm). The highest yield of extracted cellulose (20,944%) was
obtained for the following factors: S/L = 1/20; conc. ethanol = 90%, conc. salts = 4 g/L.

3.2. Dissemination of Membrane Precipitation Results and Membrane Swelling Process

Using the TM4000 Tabletop Scanning Electron Microscope (Chiyoda, Hitachi, Japan)
we analyzed cellulose obtained from the species Ulva lactuca (Figure 6a,b). In order to
highlight the functional groups of species in the Ulva lactuca algae sample, Tensor 37 Bruker
(Elmsford, Woodstock, NY, USA) equipment was used for FT-IR analyses (Figure 7).
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The spectral analysis of the cellulose extracted from Ulva lactuca species is presented
in Figure 7. FTIR analysis shows the characteristic bands of the oscillation vibrations of
the -OH group (3339.90 cm−1) and fatty acids (1712.66 cm−1). The peak at 1643.02 cm−1

confirms the presence of proteins and amides I from the protein structure. A small intensity
band in range of 1389–1357 cm−1, at 1369.12 cm−1, indicates the existence of lipids even
after the extraction. Characteristic bands for polysaccharides are confirmed by peaks at
1157.18 cm−1 and 1024.94 cm−1. Therefore, FT-IR analysis revealed that the method was
efficient in obtaining cellulose from Ulva lactuca algae [32].

The presence in the extracted cellulose FTIR spectrum of all the peaks characteristic of
commercial cellulose indicates that the one obtained is a cellulose of this type.

Table 2 gives the measured swelling degree, established by Equation (1), where mt and
m0 are the membrane mass at a specific time at the beginning of the swelling. Regarding
relationship (1), we demonstrate that, due to the precise determination of membrane mass
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after swelling, this relationship is frequently used [33–37] to express the degree of swelling,
even though it can also be interpreted as membrane absorption capacity.

Table 2. Dynamics of Ulva lactuca cellulose swelling degree (t = 20 ◦C, δ0 = 2.5 mm).

t min 0 1 2 3 4 5 6 7 8 9 10 11 12

Sd
%

Eth 99% 0 27.5 47.9 63.2 70.4 75.5 78.6 80.7 81.4 82.3 83.5 84.4 85.1
Eth 80% 0 48.2 89.1 106.9 122.8 126.7 129.5 130.4 131.8 132.7 133.4 133.9 134.4
Eth 60% 0 71.2 114.3 145.5 163.4 177.8 185.1 189.8 192.2 193.4 194.6 195.8 196.1
Eth 40% 0 87.5 156.2 181.2 200.1 212.5 218.7 221.2 222.6 223.7 225.1 226.2 226.8

We can observe that the process of absorption of the alcoholic solution by the mem-
brane occurs rapidly in the first part. After stabilization, the membranes continue to absorb
at a slower rate until stabilization or saturation concentration is reached.

Sd =
mt −m0

m0
× 100 (1)

The low swelling in concentrated ethanol indicates that it is possible to use these
membranes for ethanol dehydration of ethanol solutions having the composition similar to
the ethanol/water azeotrope.

Numerous mathematical models have been proposed describing the kinetics of hy-
drogel swelling. In this paper, a model based on the diffusion of the mobile front inflation
is proposed.

Empirical, semi-empirical and phenomenological models can be identified in the
existing large amount of data and considerations regarding the swelling of polymers
(biopolymers). The model proposed in the paper is part of the phenomenological category
and has strong elements of novelty and adaptability to other geometric shapes (cylinders
and spheres) of polymers that swell. It can also be in the class of models based on diffusion,
as discussed in the following, but it differs from them in that fact that it uses as foundation
the steady-state diffusion with a variable boundary [38–40]. The steady-state diffusion with
a variable boundary is defined by a front the kinetic process of structural and vibrational
arrangement of polymer fibers takes place.

The Fickian diffusion models apply Fick’s laws to the distribution of solvent in a gel
sample during swelling or collapse. These models predict that the fractional approach
to equilibrium increases linearly with the square root of time up to roughly 0.4 and that
the swelling curve, the fractional approach to equilibrium vs. square root of time, is not
sigmoidal even if the diffusion coefficient is a function of composition [30,41–43]. Deviations
from the fixed boundary Fickian behavior are usually attributed to some of the following
phenomena: (i) variable surface concentration, (ii) a history-dependent diffusion coefficient,
(iii) stresses between parts of the gel swollen to different extents and (iv) polymer relaxation.
The first three have been discussed by Crank et al. [5], while the last has been modeled by
Joshi et al. [31,44,45]. Although these models predict the swelling curves for large volume
changes reasonably well, they are subject to three objections: (i) they do not allow for the
movement of the gel boundary, (ii) they require three or more parameters to fit experimental
data and (iii) the diffusion coefficients may show unusual composition dependence, e.g., a
maximum at an intermediate composition. However, it has been shown that the sigmoidal
swelling behavior can be well described by Fickian diffusion when the movement of the
gel surface is considered correctly [32,46].

In this study, we used a diffusion model with a variable effective diffusion coefficient
starting from the Fickian model.

Figure 8 shows a physical model which can explain the swelling of one biopolymer
membrane such as pure cellulose and biocellulose or some of those composites between the
two. It is observed that the membrane during swelling contains three layers. The external
layer of the swelled polymer, where the transported water is the swelling medium, goes by



Polymers 2023, 15, 4673 9 of 15

diffusion from saturation concentration to the concentration characterizing the action of the
swelling front. The very small intermediate layers, where the kinetic process takes place
and the fibrils of biopolymer pass from a pressured to a relative relaxed state, operates with
the swelling media difference of concentration CF-C0. The internal layer is represented by
the non-swelled biopolymer. As shown in Figure 8, external layers increase in time, and
the intermediate layer keeps its small thickness and disappears at the end of the swelling,
whereas the thickness of internal layer decreases during swelling.
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According to the presented model for the external layer and for the intermediate
layer, the transported swelling medium follows an unsteady-state diffusion process.
So, the swelling process can be characterized by the following mathematical model
(Equations (2)–(13)).

∂c
∂τ

= Des ×
∂2c
∂z2 (2)

δ + δF ≤ z ≤ δ + δF + δS, τ = 0, c = c0 (3)

z = δ + δF + δS, τ > 0, c = cS (4)

z = δ + δF, τ > 0, c = cF (5)

∂c
∂τ

= DeF ×
∂2c
∂z2 (6)

δ ≤ z ≤ δ + δF, τ = 0, c = c0 (7)

z = δ + δF, τ > 0, c = cF (8)

z = δ, τ > 0, c = c0 (9)
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kl × (cl − cS) = Des ×
(

∂c
∂z

)
z=δ+δF+δs

= Des ×
(

∂c
∂z

)
z=δ+δF

= DeF ×
(

∂c
∂z

)
z=δ+δF

, τ > 0
(10)

cF = cδ+δF (11)

ρs

Ms
× dδs

dτ
=

Des

δs
× (cS − cF) (12)

τ = 0, δS = 0 (13)

ρF
Ms
× dδF

dτ
=

DeF
δF
× (cF − c0) (14)

τ = 0, δF = 0 (15)

The swelling model, above described, and concentrated through relations (2)–(13) is an
unsteady-state diffusion model for movement of swelling media in a membrane in which
there is a mobile diffusion front (Figure 8). This 2D model highlights that the diffusion
coefficient in the swollen membrane part and the diffusion coefficient in the swelling front
are the main model parameters.

The following parts of the model can be clearly distinguished: (a) the unsteady
diffusion model for the swelled layer (Equations (2)–(5)), (b) the unsteady diffusion model
for the front (intermediate) layer (Equations (8)–(11)), (c) the condition for the localization
of swelling media concentration at the surface of the intermediate layer (Equations (9)–(11))
and (d) the dynamics of the swelled and intermediate layers.

We show, without equations, that the above model can be dimensionally reduced to a
single diffusion model with a variable effective diffusion coefficient.

The major difficulties of these models are represented by the problem of time depen-
dence of the diffusion frontiers. They can create serious problems for the transposition of
numeric models. If the diffusion rate of swelling media is much greater than the rate of
moving of swelled interface towards the center of the membrane, then a pseudo-steady
state can be assumed. In this case, the above model generates the following diffusion
problems (Equations (16)–(18)).

∂

∂z

(
Des ×

∂c
∂z

)
= 0, z = δ + δF + δs → c = cs; z = δ + δF → c = cF (16)

∂

∂z

(
DeF ×

∂c
∂z

)
= 0, z = δ + δF → c = cF; z = δ→ c = c0 (17)

(
Des ×

∂c
∂z

)
z=δ+δF

=

(
DeF ×

∂c
∂z

)
z=δ+δF

(18)

Analytic solutions for these problems can be easily obtained. In order to give such
a solution, we notice that in the intermediate layer a kinetic process takes place. More
precisely, it is expressed by the polymeric fibrils passing from a rigid packed structure
to a highly relaxed structure. If we take into consideration the extremely small thickness
of this layer, we can note that the kinetic process will occur at its surface. Consequently,
the steady-state diffusion model for the intermediate layer is replaced with the expression
of surface swelling media flux coupled with the adequate transformation of the relation
(Equation (10)). The result is given by the relation (Equation (19)) where the constant of
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kinetic process of fibrils relaxation, kF, characterizes the system biopolymer-swelling media,
and it is expected to have an important temperature dependence.

kl × (cl − cs) =
Des

δs
× (cs − cF) = kF × (cF − c0) (19)

The coupling of the relation of steady-state diffusion in the swelling layer (Equation (16))
with the relation (Equation (19)) allows us to write the expressions of concentrations cS and
cF depending on the swelling layer thickness (Equations (19) and (20)).

cs(δs) =

kl × cl +
Des
δs
× kF × c0

kF+
Des
δs

Des
δs

+ kl − Des
δs
×

(
Des
δs

kF+
Des
δs

) (20)

cF(δs) =
Des
δs
× cs(δs) + kF × c0

Des
δs

+ kF
(21)

With respect to cs(δs), it is shown that if the values go over equilibrium concentra-
tion (liquid membrane concentration when the saturation is finished), then cs (δs) takes
this value.

In order to obtain the swelling dynamics model, relations (Equation (20)) and
(Equation (21)) are connected to the relation (Equation (11)), transcribed below so as to
emphasize the dynamics of the thickness of the swelling layer.

dδs

dτ
=

Des

δs
× Ms

ρs
× (cs(δs)− cF(δs)) (22)

The mathematical model expressed by the assembly of relations (Equations (20)–(22))
cannot be integrated with the initial relation (Equation (13)). In order to solve this small
problem, we consider that at the beginning of swelling process, on the membrane surface,
a kinetic process takes place which shows the passing of the biopolymer fibrils from a rigid
to a relaxed structure (see the schema from Figure 8 for τ = 0). The phenomenological
analysis of this consideration leads to a solution which permits the expression of the initial
condition associated with a differential equation, showing the increase in the swelling
layers (Equation (22)). This is also highlighted by the relation (Equation (23)) where ∆τ is
the time interval for the appearance of the swelled structure on the membrane surface.

τ = 0, δs0 =
kF ×Msm

ρm × (kF + kl)
× kl × (cl − c0)× ∆τ (23)

To obtain the final model of biopolymer swelling, the assembly of relations
(Equations (20)–(23)) is completed with the balance of polymeric material and with the
expression of the swelling ratio. On this basis, the differential equation (Equation (24))
and the relation (Equation (26)) are derived. The expression of the actual degree of swelling
of the membrane described by relation (26) agrees with the expression in relation (1), which
is used to capitalize on experimental results. The model developed this way has the ability
to express the swelling of the membrane as an increase in volume.

dδ

dτ
=

ρs −Msm × cs(δs)

ρ0 −Msm × c0
× dδs

dτ
(24)

τ = 0, δ = δ0 (25)

Sτ =
δs × ρs

δ0 × ρ0
(26)
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In the above relation, the density of the swelled layer can be appreciated as shown in
the relation (Equation (27)) where ρ0 is the density of the non-swelled polymer.

ρs =
δs

δs + δ
× ρsm +

δ

δs + δ
× ρ0 (27)

The developed model thus has as its main parameter the diffusion coefficient of the
liquid phase through the swelled polymer structure. The characteristic kinetic constant
showing the structural change in the diffusion front appears as a secondary parameter in
the model. It must be considered that the diffusion front is finally embedded in the swollen
polymer. The testing of the model on biocellulose swelling showed that we can express the
current kF as in the relation (Equation (28)), where kF0 shows the specificity of the polymers
and of the swelling liquids. Using experimental swelling data from Table 2, we can identify
the best values of Des and kF0 by minimizing the function which expresses the mean squared
deviation between these data and those calculated according to the model. The identified
Des and kF0, given by Table 3, show that these parameters are strongly influenced by the
water content of the swelling medium (Figure 9).

kF = kF0

(
δs

δ + δs

)0.5
(28)

Table 3. Identified values of model parameters swelling of Ulva lactuca cellulose membrane.

N.c Eth. Conc (%) kF0 (m/s) Des m2/s

1 99 4.5 × 10−3 0.08 × 10−10

2 80 7.3 × 10−3 0.25 × 10−10

3 60 9.7 × 10−3 0.52 × 10−10

4 40 11.5 × 10−3 1.13 × 10−10
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Figure 9. Dynamics of Ulva lactuca cellulose swelling degree of the model and experiment (line
(model) red: 99% ethanol, blue: 80% ethanol, green: 60% ethanol, magenta: 40% ethanol; points
(experimental) red: 99% ethanol, blue: 80% ethanol, green: 60% ethanol, magenta: 40% ethanol).

4. Conclusions

This study proposed and implemented a procedure for extracting cellulose from the al-
gal species Ulva lactuca that is found in abundance along the Romanian Black Sea Coastline.
A physicochemical characterization of the algal powder Ulva lactuca was conducted, but
also of the biocellulose obtained from the algal material, using optic microscopy, SEM and
FTIR. The extraction of biocellulose was performed through ethanol precipitation, which
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includes the removal of lipids, pigments, ulvans and hemicellulose without affecting the
cellulose obtained as a white powder. The highest yield of extracted cellulose (20,944%) was
obtained for the following factors (S/L = 1/20; conc. ethanol = 90%, conc. salts = 4 g/L),
this proving that Ulva lactuca is a viable alternative resource in cellulose production.

Also, a procedure was performed to obtain membranes from cellulose extracted from
the algal species Ulva lactuca. The swelling of biocellulose membranes in alcoholic solutions
of high concentrations was investigated. It can be observed that the process of absorption of
the alcoholic solution by the membrane occurs rapidly in the first part. After stabilization,
the membranes continue to absorb at a slower rate until the stabilization or saturation
concentration is reached.

The low swelling in concentrated ethanol indicates that it is possible to use these
membranes for ethanol dehydration of ethanol solutions with a composition similar to the
ethanol/water azeotrope.

The developed mathematical model thus has as its main parameter the diffusion
coefficient of the liquid phase through the swelled polymer structure. The characteristic
kinetic constant showing the structural change in the diffusion front appears as a secondary
parameter in the model. It must be considered that the diffusion front is finally embedded
in the swollen polymer. The identified Des (diffusion rate of swelling media) and kF0 (which
characterizes the system biopolymer-swelling media) shows that these parameters are
extremely strongly influenced by the water content of the swelling medium according
to the mathematical model. The purpose of studying and developing membranes is to
use them in the processes of separation of alcohol/water mixtures for solvent recovery
and reuse.
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