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Abstract: Bottlebrush (BB) elastomers with water-soluble side chains and tissue-mimetic mechanical
properties are promising for biomedical applications like tissue implants and drug depots. This
work investigates the microstructure and phase transitions of BB elastomers with crystallizable
polyethylene oxide (PEO) side chains by real-time synchrotron X-ray scattering. In the melt, the
elastomers exhibit the characteristic BB peak corresponding to the backbone-to-backbone correlation.
This peak is a distinct feature of BB systems and is observable in small- or medium-angle X-ray
scattering curves. In the systems studied, the position of the BB peak ranges from 3.6 to 4.8 nm in BB
elastomers. This variation is associated with the degree of polymerization of the polyethylene oxide
(PEO) side chains, which ranges from 19 to 40. Upon crystallization of the side chains, the intensity of
the peak decays linearly with crystallinity and eventually vanishes due to BB packing disordering
within intercrystalline amorphous gaps. This behavior of the bottlebrush peak differs from an earlier
study of BBs with poly(ε-caprolactone) side chains, explained by stronger backbone confinement in
the case of PEO, a high-crystallinity polymer. Microstructural models based on 1D SAXS correlation
function analysis suggest crystalline lamellae of PEO side chains separated by amorphous gaps of
monolayer-like BB backbones.

Keywords: bottlebrush elastomers; X-ray scattering; polymer crystallization

1. Introduction

In semicrystalline polymers, intercrystalline amorphous regions significantly impact
several important properties, such as tensile strength [1], glass transition temperature [2,3],
thermal expansion [3,4], and barrier properties [5], among others. Flory emphasized
the significance of these regions, remarking, “The spatial form of polymer chains in the
amorphous state (including intercrystalline domains) must be understood if we are to
comprehend properties of polymers in molecular terms” [6]. Yet, directly assessing the
structure of these intercrystalline domains presents a difficult experimental challenge.
Consequently, scientists primarily rely on indirect methods for the characterization of
amorphous chains. This includes, for instance, the utilization of dynamic mechanical
analysis [7] to measure polymer relaxation parameters or the examination of miscibility
behavior at order–disorder interphases.

The bottlebrush (BB) polymers are unique systems that exhibit the presence of the
so-called “bottlebrush peak” in the small- or medium-angle X-ray scattering curves, which
corresponds to the average spacing between the backbones [8,9]. This originates from the
electron density contrast between the BB backbone and its side-chain shell. The observation
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of interchain correlation is a very particular characteristic of BB systems (melts, elastomers,
gels) [10,11] distinct from their linear counterparts. This structural feature recently allowed
for the visualization of the change in the chain conformation accompanying the crystal-
lization of the BB elastomers with crystallizable poly(ε-caprolactone) side chains for the
first time [12]. It was observed that, upon crystallization, the bottlebrush peak broadened
and shifted to larger q values, attributed to the segregation of the BB backbones to the
interlamellar regions, while parts of the side chains were progressively incorporated into
the growing crystalline phase [12]. Therefore, for these systems, the time-resolved X-ray
scattering provides the means not only to address the properties of the crystalline phase
but also to probe packing of the amorphous chains confined in several nanometer-wide
intercrystalline gaps.

Generally, (BB) polymers and copolymers have been garnering constant interest as a
versatile platform for fabricating self-assembled materials with tissue-mimetic mechani-
cal properties [11,13], holding promise for biomedical devices [14,15], pressure-sensitive
adhesives [16], and organic electronics [17]. The unique properties of BB systems owe to
molecular packing characterized by the architecturally suppressed overlap and entangle-
ment of polymer chains [18–20]. Specifically, molecular BBs demonstrate disentangled
polymer chains in the melt state, leading to a dramatic reduction in the rubber–elastic
plateau modulus. Simultaneously, BB elastomers reveal significant stiffening during de-
formation. This combination of initial softness and intense strain-stiffening is vital for
designing biomimetic materials capable of replicating the mechanical properties of soft
living tissues. By introducing crystallizable side chains into such systems, another tuning
mechanism becomes available, rendering these materials temperature-sensitive [21]. Fine-
tuning the melting temperature of crystals built from BB side chains can precisely match,
for instance, the body temperature. Such tailored thermal sensitivity can significantly
facilitate the implantation of BB-based medical devices in the form of microneedles, where
the materials, stiff at ambient temperature, undergo softening upon contact with the body
to match the modulus of the surrounding tissue.

In this present work, we investigated the crystallization behavior of BB elastomers with
polyethylene oxide side chains (PEO). Replacing PCL with PEO in BB side chains makes
the resulting BBs water-soluble, opening doors for new applications [11,22]. However,
the crystallization behavior of the BBs with these two oligomers in the side chain should
differ significantly, especially concerning the final crystallinity values, as PEO belongs to
the group of high-crystallinity polymers [23]. Therefore, we conducted a detailed in situ
investigation of the crystallization behavior of the newly synthesized BBs, focusing on the
evolution of the backbone configuration and the microstructure of the semicrystalline state.

2. Materials and Methods

To investigate the effect of brush structure on crystallization, we synthesized two series
of BB elastomers with different degrees of polymerization (DP) of PEO side chains (nsc)
and varied the DP of the backbone between crosslinks (nx) (Table 1). The route employed
for the fabrication of the BB elastomers is depicted in Scheme 1, while all synthetic details
along with molecular characterization are provided in the Supporting Information.

The small- and wide-angle X-ray scattering (SAXS and WAXS) experiments were
carried out at the BM26 beamline of the European Synchrotron Radiation Facility (ESRF)
in Grenoble (France). The measurements were conducted in transmission geometry using
photon energy of 12 keV. The accessed q values, with |q| = 4π sin(θ)/λ, where θ is the Bragg
angle and λ is the wavelength, cover a range from 8.0 × 10−2 nm−1 to 4.0 nm−1. A Pilatus
1M detector (169 mm × 179 mm active area) was employed for recording SAXS intensity
at a sample-to-detector distance of 3 m. WAXS patterns were collected simultaneously
using a 300 K Pilatus detector (254 mm × 33.5 mm active area). In the experiments, the
sample temperature was controlled with a THMS600 Linkam heating/cooling stage. The
samples were preliminarily molten during short-term annealing at 80 ◦C, after which, they
were cooled to −40 ◦C and then heated to 80 ◦C one more time at a rate of 12 K/min. The
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isothermal crystallization experiments were carried out upon melting at 80 ◦C and further
fast cooling to the temperature of isotherm. The details about data reduction are provided
in the Supporting Information.

Table 1. Molecular and thermal characteristics of the synthesized BB elastomers.

Sample Name nsc
1 nx

2 Cross-Linker ∆Hm
3 J/g Tm

4 ◦C Tc
4 ◦C

PGX_950_200 19 200 PEO 79.6 35.2 9.3
PGX_950_400 19 400 PEO 81.1 35.9 8.5
PGX_950_800 19 800 PEO 85.2 38.4 6.9
PGX_2k_200 40 200 PEO 80.2 43.3 13.7
PGX_2k_400 40 400 PEO 87.3 43.4 14.9
PBX_950_150 19 150 PBA 69.1 30.1 −21.8
PBX_950_300 19 300 PBA 72.8 34.6 −20.9

1 Degree of polymerization (DP) of the PEO side chains; 2 DP of the backbone between crosslinks; 3 enthalpy
of melting extracted from DSC measurements performed at a rate of 10 K/min; 4 melting and crystallization
temperatures.
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Scheme 1. Synthesis of the BB elastomers from a PEO macromonomer using either a PEO crosslinker
with Mn~6000 or a PBA-based crosslinker.

The thermal behavior of the samples was investigated with a DSC 3+ (Mettler Toledo,
Greifensee, Switzerland) differential scanning calorimeter using standard (10 ◦C/min)
heating and cooling rates. Thermal programs and DSC curves for dynamic melting and
crystallization are shown in Figure S1. The ∆Hm (melting enthalpy), Tm, and Tc (melting
and crystallization temperatures) were determined as the area and onset of the respective
Gaussian peak.

3. Results

The semicrystalline structure of PEO bottlebrush elastomers depends on side chain
length (∼ nsc) and crosslink density (∼ nx). Specifically, the melting temperatures are
higher for the samples with nsc = 40, indicating that the corresponding crystals are thicker.
On the other hand, for the same nsc-values, the enthalpies of melting slightly decrease with
the decrease in nx, which can be attributed to the impact of crystal defects introduced by
the crosslinks. The crystallization temperatures of all the BBs with the PEG crosslinker are
rather close to each other. By contrast, the samples with the PBA crosslinker demonstrate
significantly lower crystallization temperatures.

The small- and wide-angle X-ray scattering profiles of the samples (SAXS and WAXS)
measured after cooling them from 80 ◦C (melt) to −40 ◦C at a rate of 12 K/min are given
in Figure 1. In the melt, the elastomers exhibit the characteristic bottlebrush peak at q∗1
(Figure 1A, inset). The peak positions are expected to exhibit scaling in accordance with
n−3/8

sc , aligning with previous studies of PCL brushes [12]. However, based on the two
measurement points available, we cannot conclusively affirm this scaling in the present
case. Upon crystallization, the semicrystalline structure is formed, with the appearance
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of a characteristic interference peak q∗2 (the so-called long period Lp) in the SAXS region
and sharp crystalline reflections in WAXS (Figure 1). The samples with longer side chains
(nsc = 40) generate the q∗2-peak at smaller q values (Figure 1A, inset), which is attributed
to the formation of thicker crystals. Importantly, the bottlebrush peak is not visible for
the semicrystalline state of all PEO samples (Figure 1A). This is in contrast to what has
been previously observed for PCL brushes [12], where the evolution of the bottlebrush
peak during crystallization was suggested as a marker for monitoring changes in the
backbone configuration.
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Figure 1. (A) SAXS curves of PGX_2k_200 (blue), PGX_2k_400 (pink), PGX_950_200 (purple),
PGX_950_400 (green), and PGX_950_800 (orange) measured at −40 ◦C. Inset: Bottlebrush peak
ex hibits low-q shift upon increasing side chain length from PGX_950_200 (nsc = 19, purple)
to PGX_2k_400 (nsc = 40, pink) in the melt state. (B) WAXS curves plotted using the same
color code as in panel A. For simplicity, the (032) peak indicates a superposition of overlapping(
132

)
, (112),

(
212

)
,
(
124

)
,
(
204

)
, and (004) reflections.

The exemplified WAXS curves presented in Figure 2B do not reveal major differences
between the samples with long and short side chains. However, it should be noted that
the samples with shorter side chains do not exhibit a group of weak WAXS peaks in the
boxed q-region around 1.0 Å−1. This suggests a higher concentration of structural defects
for the crystals with shorter chains. The microstructural parameters of the semicrystalline
structures are summarized in Table 2.

Table 2. Microstructural characteristics of the synthesized PEO bottlebrush networks at −40 ◦C.

Sample Name d1
1 nm Lp

2 nm La
2 nm Lc

2 nm αSAXS
3 αWAXS

4

PGX_950_200 3.6 8.0 2.6 5.4 67.5 52.6
PGX_950_400 3.6 8.0 2.3 5.7 71.3 53.9
PGX_950_800 3.6 7.9 2.1 5.8 73.4 52.2
PGX_2k_200 4.9 11.0 3.5 7.5 68.2 67.0
PGX_2k_400 4.8 11.5 3.6 7.9 68.7 66.5

PBX_950_150 5 3.7 8.0 2.7 5.3 66.3 56.6
PBX_950_300 5 3.7 7.2 2.3 4.8 67.6 56.0

1 d-spacing of the q∗1-peak of the bottlebrush melt determined as 2π/q∗1 ; 2 long period (Lp), crystal thickness (Lc),
and amorphous layer thickness (La) determined from the 1D SAXS correlation function analysis; 3 SAXS linear
crystallinity defined as Lc/Lp; 4 WAXS crystallinity index computed as an integral intensity of the crystalline
WAXS peaks normalized by the total scattering intensity; 5 SAXS/WAXS data are given in Figure S3.
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Figure 2. (A) Selected SAXS curves recorded during cooling from 80 ◦C to −40 ◦C at a rate of
12 K/min for sample PGX_2k_400; inset: bottlebrush peaks of the corresponding curves after back-
ground subtraction. (B) Corresponding WAXS curves with the temperature color code identical for
panels A and B. (C) Evolution of WAXS crystallinity and amplitude of the bottlebrush peak during
the cooling ramp. (D) Correlation of the amplitude of the bottlebrush peak and crystallinity for
the cooling ramp (blue symbols) and for the subsequent heating ramp to 80 ◦C at the same rate
(red symbols).

The crystal thickness from SAXS shows that the BBs with longer side chains form
thicker crystals, which is consistent with the DSC measurements (Table 1). This increase is
accompanied by the thickness increase in the interlamellar amorphous regions La.

To better understand the BB packing transformations during crystallization and melt-
ing, in situ dynamic and isothermal crystallization experiments were performed using
the synchrotron source. The synchrotron heating/cooling experiments are exemplified in
Figure 2 for the case of sample PGX_2k_400. The SAXS-WAXS curves recorded during crys-
tallization show the steadily growing interference peak concurrently with the increasing
intensity of the WAXS reflections.

In contrast, the bottlebrush peak progressively vanishes (Figure 2A, inset), leaving the
place for the second order of the interference peak. To appreciate the simultaneous decay
of the bottlebrush peak and increase in WAXS crystallinity, the temperature dependencies
of the two parameters are presented in Figure 2C. The initial decrease in the d1-amplitude
in the temperature range from 80 to 30 ◦C is attributed to the change in the electron density
contrast between the phases of the phase-separated morphology due to thermal contraction.

Starting from the onset of crystallization, the decrease in the d1-amplitude becomes
sharper and reaches zero much before the completion of crystallization (Figure 2D). The
heating and cooling traces completely superimpose, suggesting that the bottlebrush peak
behavior is largely determined by the sample crystallinity. In the crystallinity range be-
tween zero and ∼0.45, the dependence of the d1-amplitude on crystallinity is linear. This
signifies that the consumption of the bulk amorphous phase results in the progressive
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disappearance of the bottlebrush peak, which is completely absent from the curves in the
final semicrystalline state.

4. Discussion

The obtained data are in contrast to the previously studied PCL brushes [12]. The
fact that the bottlebrush peak completely vanishes is explained by a significantly smaller
thickness of the amorphous gaps for this high-crystallinity polymer compared to PCL.
In the PCL brushes, (nsc = 13), La = 9 nm is notably larger than the d-spacing of the
corresponding d1-peak of the unperturbed bulk amorphous phase (in the melt, the BB
diameter d1 = 4.9 nm). In contrast, the intercrystalline amorphous gap thickness for the
PGX_2k_400 sample in the semicrystalline state (La = 3.6 nm) is significantly smaller
than the BB diameter in the melt (d1 = 4.8 nm). This means that crystallization-induced
confinement of BB backbones in PEG bottlebrushes is much stronger.

The rejection of the BBs to intercrystalline gaps and the incorporation of significant
parts of the side chains in the growing crystals completely destroy the initial packing of the
BBs in the unperturbed amorphous phase. This makes the observation of the backbone-
to-backbone correlation in a semicrystalline state of PEO bottlebrushes impossible. The
fact that the bottlebrush peak disappears prior to the end of crystallization suggests the
imperfect packing of lamellar stacks, where the lamellae growth in the amorphous gaps
between the lamellar stacks dominates when crystallinity exceeds 0.45. Therefore, the
intensity of the bottlebrush peak provides a direct measure of the consumption of the
unperturbed bulk amorphous phase in the course of crystallization.

The isothermal crystallization of PEO brushes is illustrated using PGX_950_200 as an
example (Figure 3). The SAXS-WAXS curves confirm the above-discussed general trends
during cooling and heating ramps. Similarly to the nonisothermal crystallization regime,
the bottlebrush peak vanishes during isothermal crystallization. Yet, the SAXS curves reveal
less variation in the main interference peak position, which is normal for the isothermal
crystallization. In Figure 3C, the bottlebrush peak amplitude is plotted together with the
WAXS crystallinity index and SAXS invariant. Like in the case of the nonisothermal regime,
the correlation of the d1-amplitude and WAXS crystallinity index is linear, with zeroing of
the bottlebrush peak intensity occurring slightly above 0.5. The small difference in the cut-
off crystallinity between the two crystallization conditions may be linked to more regular
lamellar stacking during isothermal crystallization, which would leave less interstack
amorphous gaps upon the impingement of banded spherulites (not shown here). On this
figure panel, a post-crystallization stage is specifically marked. This stage corresponds to
the situation when the amplitude of the bottlebrush peak has already reached zero levels,
indicating that the bulk amorphous phase is fully consumed, and the SAXS invariant has
leveled out at its maximum values. However, the WAXS crystallinity still shows a small
additional increment due to crystal growth in confined spaces. This observation is in line
with what has been found for the isothermal PCL brush crystallization [13], also exhibiting
a post-crystallization stage.

The configuration of the side chains and main chain in the semicrystalline state can
be deduced from the comparison of the SAXS crystal thickness and side chain length. For
nsc = 40, the Lc-values range between 7.5 and 7.9 nm, which correspond to 27–28 monomers
for the classical (7/2) helical conformation of PEO [22]. In this case, the backbone with
the remaining na = nsc − Lc ∗ 7

c =12–13 side-chain monomers are incorporated in the
interlamellar amorphous region. This amorphous part of BB molecules serves as a fold
connecting the crystalline stems in different crystallographic positions. It is known from
the literature that the sharp regular folds on the surface of solution-grown PEO crystals
can be as short as 3.5 monomers [24], suggesting that crystallization leaves enough chain
length for the formation of diverse folds, including adjacent reentry folds, as well as more
loose folds. The latter can involve sequences of several PEO monomers located close to
the backbone. Assuming that the PEO stems are not inclined with respect to the basal
(b*c*) lamellae plane, the amorphous part of the bottlebrush should fit into the interlamelar
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gap of thickness La. Given that all crystallographic positions are filled with crystalline
stems, the flux (Φ) of amorphous chains emanating from the crystal surface should have a
total density of approx. 4.7 chain/nm2. This condition comes from the fact that the (b*c*)
section of the unit cell accommodates four PEO chains. Therefore, the total height of the
amorphous parts of the side chains protruding from the crystal surface can be estimated
as follows:

h =
na Mmon

NAρa
Φ, (1)

where Mmon is the PEO monomer mass, ρa is the mass density of amorphous PEO, and
NA is the Avogadro number. For simplicity, Equation (1) neglects the volume of the main-
chain monomer as it is much smaller than the volume of na side-chain monomers. Using
ρa = 1.12 g/cm3, (see, e.g., Ref. [25]) we calculate h ranging between 3.7 and 4.0 nm. These
values are close to La, which means that the structure of the interlamellar amorphous gap
contains approximately one monolayer of the bottlebrush backbones. The schematics of
the semicrystalline structure are depicted in Figure 4A.
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Figure 3. (A) Selected SAXS curves recorded during isothermal melt crystallization of sample
PGX_950_200 at 24 ◦C; the time scale is given in color code. (B) Corresponding WAXS curves with the
same color code. (C) Time evolution of the WAXS crystallinity index, amplitude of the bottlebrush
peak, and SAXS invariant. (D) Dependence of d1-amplitude on the WAXS crystallinity index.

The situation is different for the samples with shorter side chains (nsc = 19). In this
case, the lamellar thickness is comprised between 5.4 and 5.8 nm, which is equivalent to the
crystalline stem length of 19–21 monomers. It is, therefore, clear that individual side chains
cannot form stems in a simple way. One likely alternative would be the formation of the
so-called “half-stemmed” crystal [26], where the stem length is about one half of a bilayer
crystal thickness with chain ends entering the crystalline phase (Figure 4B). Although such
a microstructure is unconventional, the general possibility of the PEO lattice to incorporate
different chain defects is well known. For example, the PEO chains containing a 1,2,3-
triazole ring in the central position of the chain (PEO11-TR-PEO11) can be incorporated
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in the crystalline lattice forming a composite bilayer crystal [27]. The presence of defects
(chain ends) in PEG crystals of the BB with short side chains nsc = 19 can be inferred
from the notable discrepancy between linear and bulk crystallinity, approximately 20%. In
contrast, in crystals with longer chains (nsc = 40), this difference is limited to only a few
percent, as indicated in Table 2. Additionally, the absence of WAXS peaks near q = 1.0 Å−1

(cf. Figure 2B), as mentioned earlier, suggests a higher concentration of structural defects in
crystals with shorter chains.
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states of brush elastomers with nsc = 40 (A) and nsc = 19 (B).

Considering that in the bilayer structure, the h value should exhibit a two-fold increase,
this results in h = 5.2–5.8 nm. Since the experimentally observed L′as are much smaller,
one should introduce an additional modification to the microstructure. This additional
feature is likely the chain tilt in the crystal. Generally, it is known that chain tilts are typical
for polymers forming planar zigzag conformations in the crystalline state and having a
significant density difference between the crystalline and amorphous phases [28]. The
nonplanar chain conformations are seemingly less concerned with such features [29] (see,
e.g., the results of a direct chain tilt measurement for the bulk sample of polytrimethylene
terephthalate [30]). However, there are reports on the occurrence of significant chain tilts
in the crystals of cyclic PEO [31]. The studied architecture of the PEO brushes might also
be prone to forming tilted stems due to topological problems at the crystal–amorphous
interface related to the covalent bonding of the side chains to the main backbone. Assuming
the tilt angle ϕwith respect to the lamellar is normal, the na and h are calculated as follows:

na = nsc − Lc × 7/(2c× cosϕ), (2)

h =
2na Mmon

NAρa
Φcosϕ. (3)
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The coefficient 2 in Equation (3) results from the bilayer structure, where chains in each
amorphous region are covalently bound to both neighboring crystals instead of just one, as
in the case of nsc = 40. By substituting Equation (2) into (3), one obtains the following:

cosϕ =
NAρah

2MmonΦnsc
+

7Lc

2cnsc
. (4)

Replacing h with La′s found from the SAXS correlation function analysis in Equation
(4), we estimate ϕ ≈ 43◦. The corresponding schematics are shown in Figure 4B. It is
noteworthy that direct measurements of the tilt angle would be necessary to verify the
proposed molecular packing model.

Generally, the formation of half-stemmed crystals requires nuclei having crystalline
stems spanning the entire lamellar thickness. The side-chain polydispersity, according to
the supplier specification [32], makes occurrences of side chains with nsc = 17.0 ÷ 23.9
possible. Therefore, the formation of such nuclei cannot be precluded. In addition, the PEG
crosslinks present in the system have molecular weights of ~6000 and can also serve as
templates for the formation of such crystals. To appreciate the efficiency of nucleation on
the crosslinks, it is instructive to compare the crystallization kinetics in the systems with
PEG and PBA crosslinks. As noted above, the Tcs of both systems dramatically differ. An
example of the crystallization of a PBA-containing sample is given in Figure S4 (Supporting
Information). The crystallization of PBX_950_300 at 5 ◦C occurs approx. at the same rate as
the crystallization of PGX_950_200 at 24 ◦C. This shows that the presence of a PEG linker
significantly accelerates the process. Therefore, the polydispersity of side chains alone is
probably insufficient to ensure the nucleation of such composite crystals.

5. Conclusions

In conclusion, the microstructure and phase transitions of bottlebrush elastomers con-
taining PEO side chains with DPs of 19 and 40 were investigated with synchrotron X-ray
scattering. It was observed that the characteristic bottlebrush peak with the d-spacing of
3.6–4.8 nm, which is present in the unperturbed bulk amorphous phase, progressively van-
ishes upon crystallization. This is explained by the rejection of the bottlebrush backbones
from the growing crystals and their confinement within intercrystalline gaps of 2.1–3.6 nm.
The complete disappearance of the bottlebrush peak is in contrast with previous studies on
the bottlebrushes with poly(ε-caprolactone) side chains and can be accounted for by the
higher crystallinity of PEO (52–67%) and stronger backbone confinement. The analysis of
the microstructure of the semicrystalline state of the bottlebrushes suggests that the back-
bones form a layer with a thickness comparable to that of a monolayer. This configuration
of the intercrystalline amorphous regions is in line with the high crystallinity of the final
morphology.

From the perspective of using newly synthesized materials in biomedical applications,
there may be a preference for bottlebrush elastomers with a degree of polymerization (DP)
of 19 for the polyethylene oxide (PEO) side chains, as opposed to 40. This preference is
due to the melting point of the corresponding crystals being closer to the human body
temperature. As a result, materials based on these systems will soften upon insertion into
the human body, making them more suitable for such applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16020296/s1, Figure S1: DSC traces of the synthesized
PEO brushes, the macromonomer and PEG crosslinker measured on heating and cooling at a rate
of 10 K/min; Figure S2: Left: 1D SAXS correlation functions used for calculation of thickness of the
lamellar (Lc) and interlamellar amorphous layer (La) layer. Right: Example of decomposition of WAXS
intensity (black) into crystalline peaks (blue) and amorphous halo (red) for sample PEG_2k_400;
Figure S3: A: SAXS curves of samples PBX_950_150 and PBX_950_300 recorded at −40 ◦C after
melting at 80 ◦C. B: WAXS curve corresponding to sample PBX_950_150; Figure S4: A: Selected SAXS
curves recorded during isothermal melt crystallization of sample PBX_950_150 at 5 ◦C, the time scale

https://www.mdpi.com/article/10.3390/polym16020296/s1
https://www.mdpi.com/article/10.3390/polym16020296/s1
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is given in color code. B: Time evolution of the WAXS crystallinity index, amplitude of the bottlebrush
peak and SAXS invariant. Inset: time evolution of the lamellar thickness; Table S1: Molecular
and thermal characteristics of the macromonomer and PEO crosslinker; Table S2: Microstructural
characteristics of PBX_950_150 after melt crystallization at 5 ◦C for 3000 s. References [33–36] are
cited in the supplementary materials.
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