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Abstract: The present study investigates the utilization of nanoparticles based on poly-l-lactide
(PLLA) and polyglycerol adipate (PGA), alone and blended, for the encapsulation of usnic acid (UA), a
potent natural compound with various therapeutic properties including antimicrobial and anticancer
activities. The development of these carriers offers an innovative approach to overcome the challenges
associated with usnic acid’s limited aqueous solubility, bioavailability, and hepatotoxicity. The
nanosystems were characterized according to their physicochemical properties (among others, size,
zeta potential, thermal properties), apparent aqueous solubility, and in vitro cytotoxicity. Interestingly,
the nanocarrier obtained with the PLLA-PGA 50/50 weight ratio blend showed both the lowest size
and the highest UA apparent solubility as well as the ability to decrease UA cytotoxicity towards
human hepatocytes (HepG2 cells). This research opens new avenues for the effective utilization
of these highly degradable and biocompatible PLLA-PGA blends as nanocarriers for reducing the
cytotoxicity of usnic acid.

Keywords: poly-l-lactide; polyglycerol adipate; usnic acid; drug delivery; polymer nanoparticles;
drug hepatoprotection

1. Introduction

The quest for efficient drug delivery systems has prompted huge interest in the design
and development of nanostructured carriers to overcome the challenges associated with the
delivery of bioactive compounds. Polymeric nanosystems offer immense potential for drug
delivery by providing a versatile platform that can be finely tuned for various therapeutic
applications [1–4]. Their ability to be easily functionalized [5], self-assemble into unique
nanostructures [6–8], encapsulate and release drugs with controlled kinetics, enhance
solubility, and target specific tissues holds promise for revolutionizing the field of medicine,
offering solutions to challenges associated with traditional drug administration. Linear
aliphatic polyesters, such as polylactide, polyglycolide, or polyhydroxyalkanoates, have
garnered considerable attention as promising materials for nanocarriers in drug delivery
mainly due to their biocompatibility and biodegradability [9]. In addition, their inherent
hydrophobicity makes them good candidates for the incorporation of hydrophobic/low-
water-soluble drugs.
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The main drawback of this class of polymers is the lack of functional groups that may
tune their interaction with drugs as well as provide colloidal stability to the suspension.
In addition, most linear aliphatic polyesters possess a high crystallinity degree that may
negatively affect drug loading and polymer degradation rate [9–12]. Among aliphatic
polyesters, poly-l-lactide (PLLA) is biocompatible, FDA-approved, and extensively studied
for drug delivery [13,14]. One of the drawbacks of PLLA is its hydrophobic nature, which
may lead to low loading capacities of hydrophilic drugs and a slow degradation rate. There-
fore, PLLA may be not appropriate when rapid drug release or a short-term therapeutic
effect is desired [15]. In response to these challenges, the present study delves into the
preparation of nanostructured carriers based on PLLA blended with an amorphous, am-
phiphilic polyester, polyglycerol adipate (PGA), displaying free OH groups in a side chain.
The obtained nanocarriers were used for the encapsulation of usnic acid (UA), a secondary
metabolite of several lichens extensively studied for its broad variety of biological features,
including antimicrobial and anticancer properties [16–18].

Despite UA’s promising attributes, the practical application of UA in pharmaceutical
and biomedical contexts is hampered by inherent challenges, most notably its limited
solubility and bioavailability [16]. In addition, the FDA has reported about 21 cases of
serious liver reactions, including hepatic necrosis, fulminant hepatitis, and liver failure,
in people who take drugs and dietary supplements containing usnic acid [19,20]. As
a result, restrictions have been placed on the intake of UA or products containing UA,
strongly limiting their use in therapy. These decisions have prompted studies to reduce
UA liver toxicity, still maintaining its pharmacological effects [21]. The encapsulation
of UA in suitable polymer nanocarriers has lately shown the potential to decrease drug
hepatotoxicity [22–26].

Polyglycerol adipate (PGA) is a glycerol-derived biodegradable amorphous polyester
that can be enzymatically synthesized using a lipase enzyme (Novozym 435), known to
be selective to primary alcohols, that enables the synthesis of linear polyesters displaying
secondary hydroxyl groups [27,28]. Due to its well-balanced amphiphilicity, aided by the
secondary hydroxyl groups, PGA is able to self-assemble in water into ca. 100 nm sized
nanoparticles giving a stable nanosuspension without the requirement of surfactants [29].
Being an amorphous polymer, in general, PGA has been shown to exhibit improved
compatibility with a wider range of pharmaceutical compounds and be highly suited to
drug delivery applications [30].

The rationale behind blending PLLA to PGA for the preparation of nanostructures lies
in the potential synergistic combination of the individual characteristics of the two polymers.
The amorphous component PGA may facilitate drug loading, while the crystalline polymer
PLLA may contribute to structural integrity and controlled release, preventing premature
drug release and ensuring sustained therapeutic concentrations. In addition, the hydroxyl
groups of PGA may contribute to the stabilization of the polymer nanosuspension in
water. In order to confirm such hypotheses and study the potential hepato-protection
as a consequence of drug encapsulation, in the present work, nanoparticles of PLLA,
PGA, and a PLLA-PGA 50/50 blend were prepared by means of nanoprecipitation in
water. The size and zeta potential of the obtained particles as well as the stability of the
colloidal suspension over time were studied with dynamic light scattering. In order to
investigate the compatibility of PLLA and PGA in the 50/50 blend, the thermal properties
of the systems were also investigated using differential scanning calorimetry, which is a
renowned technique to study the compatibility and stability of polymers, plastic waste,
and hybrid organic–inorganic materials [31–34]. A qualitative degradation assay of NPs
was performed using a lipase from porcine pancreas as the degradative enzyme. Usnic
acid was then loaded in the nanostructured systems using three UA: (blend)polymer ratios
(with total UA content of 1.5, 3, and 6 mg). The apparent water solubility of the systems
was determined using UV–vis spectroscopy, and the cytotoxicity of pure and UA-loaded
NPs was studied in vitro vs. in human hepatocytes (HepG2 cells). The results evidenced
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how the blended system, PLLA-PGA, out-performed the others in terms of increasing drug
solubility in water and decreasing its cytotoxicity on the HepG2 cell line.

2. Materials and Methods
2.1. Materials

Lipase immobilized from Candida antarctica (>5000 U/g), glycerol (Gly), PLLA (50,000 g/mol),
and UA (2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyl-1,3(2H,9bH)-dibenzofurandione) were
bought from Sigma-Aldrich, Milan, Italy. Divinyl adipate (DVA) was purchased from TCI
America (Portland, OR, USA). All the chemicals were used without further purification.
Tetrahydrofuran was acquired from Sigma-Aldrich, Italy.

2.2. Methods
2.2.1. Nuclear Magnetic Resonance (NMR)

Polymer formation and repetitive unit chemical structure assignment were determined
using 1H NMR spectroscopy. Approximately 7 mg of sample was dissolved in 0.7 mL of
acetone-d6, analyzed using a Bruker DPX 300 MHz spectrometer (Ettlingen, Germany).

2.2.2. Attenuated Total Reflectance–Fourier-Transform Infrared Spectroscopy (ATR-FTIR)

Infrared spectroscopy was employed to evaluate the success of polymer functional-
ization. FTIR spectra were acquired in an attenuated total reflection mode (ATR) using a
Nicolet 6700 (Thermo Fisher Scientific, Waltham, MA, USA) with a Golden Gate Single
Reflection ATR System model equipped with a synthetic diamond having an angle of inci-
dence equal to 45◦. The OMNIC 8.3 software was used to process the data obtained during
the experiment. Measurements were conducted in a spectral range within 4000–650 cm−1,
with a resolution of 4 cm−1 and 200 scans per spectrum.

2.2.3. Differential Scanning Calorimetry (DSC)

A DSC analysis was performed on 4–5 mg of sample using a Mettler DSC 822 apparatus
(Mettler Toledo, Columbus, Ohio, USA) under N2 flow (30 mL/min). DSC experiments
were acquired at 10 ◦C min−1 in a temperature range from −70 to 190 ◦C. Two heating
cycles were recorded in order to remove any thermal history of the polymers. The second
heating cycle, carried out in the same temperature range, was used to determine the glass
transition temperature (Tg), melting temperature (Tm), and crystallization temperature (Tc)
of the polymers. The degree of crystallinity of the PLLA in the blend was calculated using
the following equation:

∆c =
∆Hm − ∆Hc

∆H0
m × WPLA

× 100

where ∆Hm is the enthalpy of melting for PLLA, ∆Hc stands for the enthalpy of crystalliza-
tion for PLLA, WPLA is the PLLA weight fraction in the blend system, and ∆H0

m is the heat
of fusion for 100% polymer crystal (∆H0

m= 93.0 J/g) [35].

2.2.4. Synthesis of Polyglycerol Adipate

Polyglycerol adipate was synthesized as previously described [36]. Enzymatic poly-
merization was carried out in a glass vial by adding DVA (6.31 mmol, 1.25 g) and Gly
(6.31 mmol). Then, THF (10 mL) was added to solubilize the mixture (200 rpm) at 50 ◦C.
After solubilizing, lipase (0.055 g) was added to ensure the polymerization, and the reaction
was left reacting for 5 h.

A needle was inserted through the rubber septum in order to facilitate the release of
acetaldehyde. The reaction was stopped by simply removing the immobilized enzyme by
means of filtration, followed by evaporation of the solvent under reduced pressure. The
resultant highly viscous yellow liquid was stored at −20 ◦C in order to minimize possible
hydrolysis side reactions.
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2.2.5. Nanoparticles’ Preparation

Polymer nanoparticles were prepared by nanoprecipitation in water, using THF as the
solvent for the polymer, as previously reported [34]. The nanoparticles were obtained from
pure PLLA and PGA or by blending PGA and PLLA in a 50/50 weight ratio.

PGA, PLLA, or PLLA/PGA 50/50 were dissolved in THF (1 mL) to obtain a 5 mg/mL
final concentration. The resulting solution (1 mL) was added dropwise to distilled water
(10 mL) under stirring (250 rpm) and left overnight to let the solvent evaporate. To promote
PLLA solubilization in THF, PLLA was quenched in liquid nitrogen (−196 ◦C) to obtain an
amorphous material and dissolved in THF after 30 min of sonication.

2.2.6. Usnic Acid Encapsulation in Polymer Nanoparticles

Usnic acid was entrapped in polymer nanoparticles by dissolving different amounts of
UA (1.5 mg, 3 mg, and 6 mg) into 1 mL of polymer solution in THF (5 mg/mL). The solution
(1 mL) was then added dropwise to distilled water (10 mL) under stirring (250 rpm) and
left overnight to let the solvent evaporate. In this way, three final UA concentrations 10,
20, and 40 times higher than the UA toxic concentration towards HepG2 cells (15 µg/mL)
were obtained. The samples were named Polymer-UAX where X was 10x 20x, or 40x.

2.2.7. Dynamic Light Scattering (DLS)

The nanoparticles’ hydrodynamic size, polydispersity index (PDI), and ζ-potential of
plain or loaded with UA (after filtration, 450 nm) were determined by using a Zetasizer
Nano apparatus (Malvern Instruments Ltd., Malvern, UK) equipped with a 4 mW HeNe
laser source (632.8 nm). The measurements were carried out at 25 ◦C. The stability of the
suspension was studied over a period of 7 days by measuring the size of the particles over
time.

2.2.8. Enzymatic Degradation

Lipase from porcine pancreas, Type II (≥125 units/mg protein (using olive oil (30 min
incubation)), 30–90 units/mg protein (using triacetin)) was used in the experiments. A
solution of the enzyme at 10 mg/mL in PBS was prepared. A total of 50 µL of this solution
was added to 250 µL of NPs (at a concentration of 2.5 mg/mL in water, as mentioned
previously). The effect of the enzyme was observed within 0, 1, 3, and 24 h at 25 ◦C.

2.2.9. Apparent Solubility Test

In order to assess the ability of polymer nanoparticles to encapsulate the drug, UV-vis
spectroscopy was employed according to a previously developed method [37]. Specifically,
the variation in absorbance between the free drug in water and its polymer formulation was
measured. This was achieved by normalizing the absorbance values of the drug−polymer
dispersions against the absorbance of the free drug in water at the same maximum wave-
length. The resulting values (∆A%), calculated with the formula below, were then used
to compare the ability of the different polymer formulations to encapsulate the drug. The
absorbance (A0) of the drugs alone in water was evaluated at 290 nm. In parallel, the
absorbance of the aqueous solutions of drug/polymer blends (A) was tested using the
absorbance of the polymer solutions as a blank. All the absorbance values were kept in the
range 0 < A < 1, where the Beer−Lambert law can be considered valid and, thus, so can the
correlation between absorbance and drug concentration.

∆A% = ∆A × 100 =
A − A0

A0
× 100

2.2.10. Study of Drug Release

Drug cumulative release was evaluated using the dynamic dialysis method [38,39]
that involves the physical separation of the drug-loaded nanoparticles from the release
environment by usage of a dialysis membrane that allows for ease of sampling at periodic



Polymers 2024, 16, 427 5 of 18

intervals. Specifically, a defined aliquot (1 mL) of UA-loaded nanoparticles suspensions
(PLLA-UA20X, PGA-UA20X, and PLLA-PGA-UA20X) was inserted in a dialysis bag (CUT
OFF 3500), which was then immersed in 15 mL of deionized water. At predefined times
(from 15 to 240 min), the release medium was collected, replaced with fresh water, and
analyzed by means of UV–Vis spectroscopy at 290 nm.

2.2.11. Cell Culture and MTS Assay

HepG2 cells, a human hepatocarcinoma cell line, obtained from the American Type
Culture Collection (HB-8065, ATCC, Rockville, MD, USA) were used as the hepatocytes
model [40–42]. The cells were grown in Dulbecco’s modified eagle medium low glucose
(Sigma-Aldrich), supplemented with 10% fetal bovine serum (FBS) (Gibco, Thermo Fisher
Scientific, Waltham, MA, USA) with 1% penicillin/streptomycin, 1% L-glutamine, and 1%
sodium pyruvate (Sigma-Aldrich), at 37 ◦C with 5% CO2.

To assess the hepatotoxic effect, an MTS 3-[4,5-dimethylthiazol-2 -yl]-5-[3-
carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium)-based colorimetric assay was
performed (Promega Corporation, Madison, WI, USA). A total of 5 × 103 HepG2 cells
per well were left untreated (CTL) or treated with 90, 60, 30, 15, 7.5, and 3.75 µg/mL of
UA and PLLA-UA20X, PGA-UA20X, PLLA-PGA-UA10X, PLLA-PGA-UA20X, and PLLA-
PGA-UA40X nanoparticles containing 30, 15, and 7.5 µg/mL of UA for 24, 48 and 72 h.
After each time point, a 100 µL MTS solution was added to the wells. Spectrophotometric
absorbance was directly measured at 492 nm after 3 h of incubation using a microplate
reader (NB-12-0035, NeBiotech, Holden, MA, USA).

2.2.12. Immunofluorescence Analysis

To visualize cell morphology and actin filaments, immunofluorescence experiments
were performed. A total of 30 × 103 cells per well were seeded in eight-well-ibidi plates
and cultured for 24 and 72 h in the presence of 30 µg/mL of UA and with PLLA-UA20X,
PGA-20X, and PLLA-PGA-UA20X nanoparticles containing 30 µg/mL of UA. At the end
of the treatments, the cells were washed in PBS, fixed in 100% ethanol for 15 min, at
room temperature, and permeabilized with 0.5% Triton-X 100 in PBS, for 10 min, at room
temperature. After blocking with 3% bovine serum albumin (BSA) in PBS for 30 min, at
room temperature, the cells were incubated with Phalloidin Alexa Fluor 488 (Immunological
Sciences, Rome, Italy) 1:40, for 20 min, at room temperature. The cells were ultimately
washed in PBS and incubated with DAPI (Invitrogen, Thermo Fisher Scientific, Waltham,
MA, USA) to visualize the nuclei. The images were captured with the optical microscope
Leica DM IL LED, using a AF6000 modular Microscope (Leica Microsystem, Milan, Italy).

3. Results and Discussion

In this study, nanostructured PLLA and PGA carriers for the encapsulation of UA have
been prepared and characterized. The aim of this study was to decrease UA toxicity and
increase UA bioavailability through its encapsulation into polymer nanoparticles. Three
nanostructured polymer systems were prepared based on pure PLLA, pure PGA, or a
PLLA-PGA 50/50 blend. PLLA is a linear, crystalline aliphatic polyester, while PGA is a
partially branched, amorphous polyester bearing hydroxyl groups. Both polyesters have
been shown to be suitable for drug delivery applications. However, due to its hydrophobic
and crystalline nature, PLLA may not be suitable for all types of drugs and shows a slow
degradation rate. To overcome these issues, PLLA was blended with PGA in a 50/50 weight
ratio to investigate the effect of blending on drug encapsulation, degradation, and cytotoxi-
city of the polymer system. It was hypothesized that the amorphous component, PGA, may
facilitate drug loading and contribute to the stabilization of the polymer nanosuspension in
water due to the presence of hydroxyl groups in the polymer side chain. Meanwhile, the
crystalline PLLA may contribute to structural integrity.
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3.1. Polyglycerol Adipate Synthesis

PGA has been produced enzymatically following the well-established literature proto-
col as shown in Figure 1 [43,44]. From the 1H-NMR, the absence of the divinyl peaks at 7.30,
4.87, and 4.59 ppm related to the monomer DVA confirmed the success of polymerization.
In the spectrum, the signals of the CH2 groups of the adipate unit are at 2.4 e 1.6 ppm,
while the glycerol CH is at 4.1 ppm when linked to the free OH group (linear structure
1,3-functionalisation) and at 5.1 and 5.3 when 1,2,3-trisubstituted. These last signals are
only traces confirming, as for protocol, the linearity of the macromolecule. The end-group
methylene groups are at 3.7 ppm and the CH near the end-group at 3.8 ppm. The signals at
3.5 ppm and 4.4 ppm are related to the CH2 bonded to the free OH group or to the adipate
ester oxygen, which is related to glycerol esterification in the 1,2 position rather than 1,3.
The glycerol CH2 groups, either in the main chain or as end groups, are at 4, 4.2 ppm.
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Figure 1. Scheme of PGA polymerization and 1H-NMR of PGA.

3.2. FTIR Spectroscopy and Thermal Properties of Polymers Alone and Blended

The plain polymers and the PLLA-PGA blend were characterized using FTIR-ATR
(Figure 2A). The PLLA spectrum showed CH stretching of the methyl group in the range
3000–2800 cm−1, the ester C=O stretching band at 1748 cm−1, while the peaks located at
1450 cm−1 and 1080 cm−1 were due to C–H bending in the methyl groups and C-O-C
stretching, respectively. The PGA spectrum showed the presence of stretching -OH (3700 to
3100 cm−1), the stretching of CH groups (3100 and 2800 cm−1), and the C=O of the ester
bond at 1728 cm−1. The PLLA-PGA blend showed the characteristic peaks of the two pure
polymers. A lower intensity of the OH band of the PGA in the PLLA-PGA blend could be
due to formation of intra- and inter-molecular H bonding with the PLLA.
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In order to investigate the compatibility of PLLA and PGA in the 50/50 blend, the
thermal properties of the pure polymers and of the blend were investigated via DSC
(Figure 2B), similarly to what had been performed in the past [45]. In Table 1, the glass
transition temperature (Tg), variation in specific heat (∆Cp), crystallization temperature
(Tc), crystallization enthalpy (∆Hc), melting temperature (Tm), and melting enthalpy (∆Hm)
of the polymers are reported.

Table 1. Thermal properties of polymers obtained using DSC: glass transition temperature (Tg),
variation in specific heat (∆Cp), crystallization temperature (Tc), crystallization enthalpy (∆Hc)
melting temperature (Tm), melting enthalpy (∆Hm), and degree of crystallization (χc).

Sample Tg
(◦C) ∆cp (J/g) Tc

(◦C) ∆Hc (J/g) Tm (◦C) ∆Hm(J/g) χc (%)

PLLA 55 0.16 95 9.51 166 16.61 7.6
PGA −32 0.55 - - - - -

PLLA-PGA −23.4 (PGA)
47 (PLLA)

0.25
0.02 76 7.88 162 31.72 25.6

PLLA is a semicrystalline polymer, as shown by the presence of the melting peak at ca.
165 ◦C in our analyses. Also, the glass transition of the amorphous region was observable
at 55 ◦C. In contrast, PGA showed a sole glass transition at around −32 ◦C, confirming
its amorphous character. The blending of the two polymers slightly changed the thermal
properties of each polymer. Particularly, the PGA glass transition temperature increased to
−23 ◦C, while both the crystallization and melting temperatures of PLLA decreased to ca.
76 ◦C and ca. 166 ◦C, respectively, suggesting a partial interaction (through dipole–dipole
interactions and H-bonding) between the two matrices. The crystallinity of the PLLA in the
blend increased from ca. 8 to 25% with the addition of 50% PGA. Therefore, PGA might
improve PLA’s crystallization behavior. A similar finding was observed in blends of PLLA
with polybutylensuccinate (PBS), where PLLA’s crystallinity increased up to 30% with a
low PBS content and decreased for higher PBS contents [46].

3.3. Size and Zeta Potential of PLLA, PGA, and PLLA-PGA Nanoparticles

PLLA, PGA, and the PLLA-PGA blend were used to prepare nanocarriers for UA by
means of nanoprecipitation in water. In Figure 3A, the DLS curves are shown, while, in
Table 2, the size, polydispersity index (PDI), and zeta potential of the obtained nanoparticles
are reported.
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Table 2. Size, polydispersity index (PDI), and zeta potential of the PLLA, PGA, and PLLA-PGA
nanoparticles, obtained by means of DLS cumulant analysis. Data represent the mean ± standard
deviation on three series of repeated measurements.

Sample Hydrodynamic
Diameter (nm) PDI ς-Potential (mW)

PLLA 140.0 ± 2.0 0.07 ± 0.01 −34.0 ± 1.0
PGA 150.0 ± 1.0 0.19 ± 0.02 −13.0 ± 2.0

PLLA-PGA 111.0 ± 2.0 0.14 ± 0.03 −24.0 ± 2.0

All the samples showed a monomodal distribution of sizes that ranged from 110 to
150 nm. PLLA and PGA showed similar sizes but slightly different PDI values. The higher
PDI observed for PGA may be related to the greater hydrophilicity of this polymer. Among
the three systems, the PLLA-PGA nanoparticles possessed the smallest size, which may
be a result of nanoaggregates with more tightly assembled polymer chains. This is in
agreement with the increase in crystallinity of the PLLA in the blend observed in the DSC
experiments. All the samples possessed a negative zeta potential. This is likely due to the
presence of free hydroxyl groups in the PGA and terminal COOH groups in the PLLA
and the corresponding association of anions to form the outer layers, as shown in case of
pegylated nanoparticles [28].

3.4. Qualitative Degradation Assay of PLLA, PGA, and PLLA-PGA Nanoparticles

In order to study the behavior of the prepared nanocarriers in the presence of a
common lipase, DLS was used as a rapid screening technique, monitoring the change
in nanoparticle size after enzyme addition. This experiment was carried out to provide
a prediction of degradation behavior of the polymer nanoparticles in the presence of a
general lipase rather than a quantitative measure of the degree of degradation. Particularly,
the aim of the analysis was to study if blending PLLA with the amorphous component
PGA would modify the degradation behavior of PLLA nanoparticles.

Figure 4 shows the change in the nanoparticles size over time as the degradation by
lipase progressed.

In all the cases, the nanoparticle size increased during the first 30 min and then
decreased with time. In the case of the PLLA nanoparticles, at 2 h of degradation, a
monomodal size distribution was observed. The size of these aggregates remained al-
most constant up to 24 h, suggesting stability of the hydrophobic core. In contrast, the
PGA and PLLA-PGA nanoparticles showed more complex DLS traces, with multimodal
distributions at all the observed times. In general, the increase in the particle size at the
initial degradation may be attributed to an increase in the swelling capacity related to
the hydrolyzation of the polyester chains with the consequent formation of shorter and
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more hydrophilic chains within the aggregates. On the other hand, the reduced hydropho-
bic character of PGA with increasing degradation time is not sufficient to form stable
nanoparticles. Therefore, the formation of nanoparticle populations with a smaller size
as the degradation proceeds probably occurs upon the dissociation of PGA chains from
the nanoparticles or via the aggregation of the detached chains [47]. Overall, these results
indicated that the amorphous PGA, being more affected by lipase degradation, causes
disassembling of the initial nanoparticles into aggregates of smaller sizes. The formation of
such small aggregates (few nanometers in size) increases the interaction of lipase with the
system and, consequently, the degradation rate. Similar results were found by Akagi et al.
whilst studying the degradation behavior of amphiphilic graft copolymers consisting of
poly(γ-glutamic acid) as the hydrophilic backbone and L-phenylalanine ethylester as the
hydrophobic side chain. In this system, with increasing time (up to 72 h), nanoparticles
began to decrease in size and, finally, disappeared completely [48].
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3.5. Encapsulation of UA into PLLA, PGA, and PLLA-PGA Nanoparticles

UA was entrapped in the polymer nanoparticles by being dissolved into the polymer
solution, followed by nanoprecipitation in water. The first samples were obtained by
dissolving 1.5 mg of the drug into 1 mL of the polymer solution in THF (5 mg/mL) such as
to obtain an UA concentration 20x the UA toxic dose. Figure 5A shows the DLS curves of
PLLA-UA20X, PGA-UA20X, and PLLA-PGA-UA20X nanoparticles, while Table 3 reports
the size, polydispersity index (PDI), and zeta potential of the UA-loaded nanoparticles.
PLLA-UA20X and PLLA-PGA-UA20X showed a monomodal distribution of size, contrarily
to PGA, where two populations coexisted. PLLA-PGA-UA20X showed a size slightly
smaller than PLLA-UA20X and also good stability up to 1 week (Figure 5B).

Table 3. Size, polydispersity index (PDI), and zeta potential of PLLA, PGA, and PLLA-PGA nanopar-
ticles loaded with different amounts of UA, obtained via DLS cumulant analysis. Data represent the
mean ± standard deviation on three series of repeated measurements.

Sample Hydrodynamic
Diameter (nm) PDI ς-Potential (mW)

PLLA-UA20X 188.0 ± 3.0 0.15 ± 0.02 −25.0 ± 1.0
PGA-UA-20X 160.0 ± 20.0 0.40 ± 0.10 −21.0 ± 8.0

PLLA-PGA-UA20X 180.0 ± 20.0 0.30 ± 0.10 −23.0 ± 3.0
PLLA-PGA-UA10X 210.0 ± 20.0 0.29 ± 0.04 −18.0 ± 3.0
PLLA-PGA-UA40X 270.0 ± 40.0 0.37 ± 0.05 −19.0 ± 2.0
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Therefore, PLLA-PGA was chosen for the encapsulation of UA at two other loading
capacities, specifically 10x and 40x. As shown in Table 3, PLLA-PGA-UA20X still showed
the best properties in terms of size, PDI, and zeta potential. Indeed, an increase in size
and a slight decrease in the zeta potential (and a possible consequent instability in an
aqueous environment) value was observed especially for the highest UA-loaded amount
(PLLA-PGA-UA40X).

Furthermore, the drug’s apparent solubility in water, determined as described in
the Materials and Methods section, improved significantly after encapsulation. The best
performing sample was PLLA-PGA-UA20X, for which the UA solubility in water increased
up to 800 times compared to the free drug (Figure 5C).

3.6. Thermal Properties of UA-Loaded Nanoparticles

In order to investigate the physical state of UA once entrapped in the nanocarriers, a
DSC analysis was carried out [49,50]. Indeed, the presence of drug crystallization or melting
peaks gives researchers an indication about the state of a drug, amorphous or crystalline, in
a formulation. In addition, the thermal behavior of a drug/polymer formulation provides
crucial information on the level of interactions between the polymer and the drug within
the formulation itself. This information is critical for optimizing the formulation process
and ensuring the desired drug release characteristics. Specifically, the impact of the drug’s
physical state on drug release has been extensively studied [51–53]. Amorphous drugs
often exhibit a higher water solubility compared to their crystalline counterparts. The
higher solubility and faster dissolution of amorphous drugs can contribute to an improved
bioavailability. This is particularly important for poorly water-soluble drugs, like usnic acid
1 mg/mL, since enhanced dissolution can lead to better absorption in the gastrointestinal
tract. In contrast, crystalline drug formulations may exhibit more sustained release profiles



Polymers 2024, 16, 427 11 of 18

due to the slower dissolution of the drug from the crystal lattice. This can be advantageous
in designing controlled-release or extended-release formulations. At the same time, the
state (amorphous or crystalline) of a polymer can also affect the kinetics of drug release [12].

In Figure 5D, the DSC curves of the free UA and of the nanoparticles loaded with
UA at a 20x concentration are reported. In Table 4, the thermal properties of the samples
are reported.

Table 4. Thermal properties of free UA and of UA-loaded nanoparticles as determined by means of
DSC: glass transition temperature (Tg), variation in specific heat (∆Cp), crystallization temperature
(Tc), crystallization enthalpy (∆Hc), melting temperature (Tm), and melting enthalpy (∆Hm).

Sample Tg
(◦C)

∆cp
(J/g)

Tc
(◦C)

∆Hc
(J/g) Tm (◦C) ∆Hm

(J/g) χc (%) Tc (◦C) ∆Hc
(J/g)

Tm
(◦C)

∆Hm
(J/g)

POLYMER DRUG
UA - - - - - - - - - 195 111.4

PLLA-UA20X −53 0.17 97 27,04 167 33.3 6.7 - - 192 50.2
PGA-UA20X −14 0.40 - - - - - 70 34.5 175 56.8

PLLA-PGA-UA20X ND * ND 162 36.3 ND ND ND 179 21.2

* ND = not determinable because of different overlapping processes.

UA is a crystalline drug showing a sharp melting peak centered at 195 ◦C and an
enthalpy of fusion of 111.4 J/g (Figure 5D). When UA was encapsulated into polymer
nanoparticles, its melting peak broadened and was centered at a lower temperature com-
pared to the free drug. A significant decrease in the drug melting temperature from 195 ◦C
to 175–179 ◦C was observed in presence of PGA, suggesting a preferential interaction of the
drug with this amorphous polymer. Also, the lower values of the UA melting enthalpy in
the polymer nanoparticles, obtained by normalizing the melting enthalpy for the weight of
the drug present in the formulation, compared to the free drug, suggest that UA was par-
tially encapsulated in an amorphous state. The PLLA-PGA-UA20x nanoparticles showed
the lowest value of melting enthalpy. Therefore, it is possible to infer that PLLA-PGA-
UA20x encapsulated the highest fraction of amorphous UA. This finding may partially
explain the high UA apparent water solubility recorded for this system.

3.7. Drug Release from nanoparticles

In Figure 6, the cumulative release of usnic acid is reported. Although the differences
in the drug release profiles among the three systems are low, it is possible to observe that
the PGA-UA20X nanoparticles, obtained with the amorphous polymer PGA, showed the
highest released amounts over time, reaching complete drug release at 120 min. Indeed,
amorphous polymers are characterized by a disordered molecular structure, which often
leads to a higher polymer chain mobility compared to crystalline polymers. When the
amorphous polymer comes into contact with a dissolution medium, polymer swelling
can occur. Then, the swollen matrix allows for the penetration of the dissolution medium
into the polymer, facilitating drug release. Matrix expansion can increase the surface area
available for drug dissolution and diffusion, influencing the overall drug release rate. These
phenomena have been observed for several amorphous polymers used for drug delivery,
including polyvinylpyrrolidone [54] and polylactic-glycolic copolymers [55].

As far as the PLLA-UA20X and PLLA-PGA-UA20X systems are concerned, in the
initial hour, they exhibited comparable drug release profiles. However, over extended
periods, a disparity in the amounts of drug released became evident. Notably, the PLLA-
PGA-UA20X nanoparticles demonstrated a slightly higher release of the drug compared to
PLLA-UA20X. It is presumed that the crystalline phase of PLLA within the PLLA-PGA-
UA20X formulation contributes to the structural integrity of the system. This, in turn,
appears to delay the swelling of the amorphous PGA and the overall drug release.
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Figure 6. Usnic acid release over time from PLLA-20X, PGA-20X, and PLLA-PGA20X nanoparticles.

3.8. In Vitro Cytotoxicity Test

In order to evaluate, in vitro, the minimum hepatotoxic concentration of UA, HEPG2
cells were treated with different concentrations of usnic acid, in a range from 90 to
3.75 µg/mL, for 24, 48, and 72 h. As can be observed in Figure 7, under these experi-
mental conditions, UA showed a hepatotoxic effect at 90 and 60 µg/mL at all the analyzed
times, decreasing by more than 50% the percentage of living cells compared to the untreated
ones. Moreover, a statistically significant decrease was observed after the 72 h treatment in
the presence of 30 and 15 µg/mL of UA, while a consistent decrease was observed after
24 h and, to a greater extent, after the 48 h treatment, even if without statistical significance.
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Figure 7. Cell viability is assessed using the MTS assay. The viability of the HepG2 cells treated with
90, 60, 30, 15, 7.5, and 3.75 µg/mL of UA is evaluated after 24, 48, and 72 h of treatment. The cell
viability of the samples is normalized to that of the untreated cells, which is reported to be 100% and
represented by a horizontal black line. The results are expressed as the mean ± standard deviation
of the data obtained by means of three different experiments. Statistical significance is * p < 0.05 vs.
untreated cells.

In our previous work, we have demonstrated that the incorporation of an UA deriva-
tive into chitosan nanoparticles significantly reduces its cytotoxicity [26]. In this study, the
effect of UA incorporated in three different nanoparticles prepared by synthetic polyesters
PLLA, PGA, and PLLA-PGA on HepG2 cells’ viability has been evaluated. Based on
the result obtained in above experiment (Figure 7), 30 and 15 µg/mL UA concentrations
were taken into consideration as the lowest analyzed toxic doses and 7.5 µg/mL as the
highest non-toxic analyzed concentration. HepG2 cells were, therefore, treated with the
corresponding concentrations of the different polymer nanoparticles diluted up to 30, 15,
and 7.5 µg/mL UA concentrations. A significant increase in cell viability was observed
in all the analyzed conditions and time points, compared to the cells treated with UA
alone. The cell viability of the cells treated with polymer nanoparticles containing UA was
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comparable to the cell viability of the untreated cells (100%, represented by a horizontal
black line) (Figure 8).
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cytoskeleton, the pictures were also acquired at a higher magnification of 63x (Figure 10). 
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cells, mainly in the PLLA-PGA-UA20X sample and after 72 h treatment. The loss of cyto-
skeleton structure was confirmed in the UA-treated cells. The advantages of the admin-
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Figure 8. Cell viability is assessed via the MTS assay. The viability of the HepG2 cells treated with
PLLA-UA20X, PGA-UA20X, and PLLA-PGA-UA10X, 20X, and 40X containing 30, 15, and 7.5 µg/mL
of UA is evaluated after 24, 48, and 72 h of treatment. The cell viability of the samples is normalized
to that of the untreated cells, which is reported to be 100% and represented by a horizontal black line.
The results are expressed as the mean ± standard deviation of the data obtained by means of three
different experiments.

3.9. Morphological Assessment of HepG2 Cells

To evaluate the effects on cytoskeleton morphology of UA compared to UA incorpo-
rated in polymer nanoparticles, the treated cells were analyzed by immunostaining the
actin with Phalloidin. Based on the results obtained measuring cell viability, we chose the
concentration of 30 µg/mL UA and PLLA-UA20X, PGA-UA20X, and PLLA-PGA-UA20X
containing 30 µg/mL UA to perform this analysis. As shown in Figure 9, the cytoskeleton
of the UA-treated HepG2 cells appeared quite disrupted after 24 h (Figure 9A) and com-
pletely disrupted after 72 h (Figure 9B). The nuclei were very small, and the actin filaments
were completely lost, suggesting that UA induced necrosis in the cells. The cells treated
with UA incorporated in PLLA, PGA, and PLLA-PGA showed a cytoskeleton morphology
similar to the untreated cells after 24 h and 72 h (Figure 9). To better highlight the cytoskele-
ton, the pictures were also acquired at a higher magnification of 63x (Figure 10). At this
magnification, the actin filaments were well arranged in all the nanoparticle-treated cells,
mainly in the PLLA-PGA-UA20X sample and after 72 h treatment. The loss of cytoskeleton
structure was confirmed in the UA-treated cells. The advantages of the administration of
UA embedded in polymeric nanoparticles were particularly evident after 72 h treatment.
These cells appeared to be well arranged and they formed a complex network, with several
cell–cell interactions confirming the protective role of UA incorporation in nanoparticles.
Among the three different nanoparticles, the PLLA-PGA-UA20X showed an improved
actin structure with respect to the untreated cells and to cells treated with PLLA-UA20X
and PGA-UA20X (Figure 10B).
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Figure 9. HepG2 cytoskeleton morphology analyses after treatment with UA and UA embedded in
polymeric nanoparticles. The cells are treated with UA (30 µg/mL) and PLLA-UA20X, PGA-UA20X,
and PLLA-PGA-UA20x containing 30 µg/mL UA for 24 h (A) and 72 h (B) and then analyzed via an
immunofluorescence assay using Phalloidin Alexa Fluor 488 to highlight the actin filaments. The
nuclei are stained with DAPI (original magnification 20x, scale bar = 50 µm).
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Figure 10. HepG2 cytoskeleton morphology analyses after treatment with UA and UA embedded in
polymeric nanoparticles. The cells are treated with UA (30 µg/mL) and PLLA-UA20X, PGA-UA20X,
and PLLA-PGA-UA20x containing 30 µg/mL UA for 24 h (A) and 72 h (B) and then analyzed via an
immunofluorescence assay using Phalloidin Alexa Fluor 488 to highlight the actin filaments. The
nuclei are stained with DAPI (original magnification 63x, scale bar = 50 µm).
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4. Conclusions

This study investigated the use of nanostructured PLLA and PGA carriers for the
encapsulation of UA. Overall, the FTIR-ATR and DSC results suggested that the PLLA-PGA
(50/50) blend is a partially miscible system. The hydroxyl groups in PGA may interact with
PLLA through hydrogen bonding. The presence of PGA also increases the crystallinity of
PLLA in the blend. The DLS and zeta potential measurements showed that all three types of
nanoparticles are well-dispersed and stable in an aqueous solution. Enzymatic degradation
was carried out in lipase solution, indicating that the presence of PGA in the blend promotes
the degradation of PLLA nanoparticles. All three prepared nanoformulations were able
to encapsulate UA effectively. In particular, the PLLA-PGA blend system self-assembled
in water, providing nanoparticles with smaller sizes than those of pure polymers. After
encapsulation in PLLA-PGA, the apparent solubility of UA increased up to 800 times
compared to the free drug. The DSC measurements evidenced that UA was partially
encapsulated in an amorphous state; this may contribute to the observed UA increased
solubility. The cell viability of cells treated with UA-loaded nanoparticles was found to
be comparable to the cell viability of the untreated cells. Therefore, a significant decrease
in cytotoxicity was observed in all the analyzed polymer formulations, compared to the
cells treated with free UA. The observation of cell cytoskeleton morphology evidenced
that the cells treated with UA-loaded nanoparticles were well arranged and formed a
complex network, with several cell–cell interactions confirming the protective role of UA
incorporation in nanoparticles. Overall, encapsulating UA in PLLA-PGA nanoparticles can
significantly reduce its cytotoxic effects on the HepG2 cell line and protect the cytoskeleton.

Author Contributions: Conceptualization, I.F. and S.V.C.; methodology, I.F., L.G., A.S.d. and V.T.;
validation, A.P., L.G. and V.T.; formal analysis, B.B., G.P., E.A., S.A. and A.M.; data curation, I.F., S.V.C.
and V.T.; writing—original draft preparation, I.F.; writing—review and editing, S.V.C., V.T. and A.P.;
funding acquisition, I.F. All authors have read and agreed to the published version of the manuscript.

Funding: Sapienza University of Rome supported the work (Project n. RG12218166483FFD).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: V.T. would like to thank the University of Nottingham for his Nottingham
Research Fellowship.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for

drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [CrossRef]
2. Niculescu, A.G.; Grumezescu, A.M. Polymer-Based Nanosystems—A Versatile Delivery Approach. Materials 2021, 14, 6812.

[CrossRef] [PubMed]
3. Machtakova, M.; Thérien-Aubin, H.; Landfester, K. Polymer nano-systems for the encapsulation and delivery of active biomacro-

molecular therapeutic agents. Chem. Soc. Rev. 2022, 51, 128–152. [CrossRef] [PubMed]
4. Preman, N.K.; Jain, S.; Johnson, R.P. “Smart” Polymer Nanogels as Pharmaceutical Carriers: A Versatile Platform for Programmed

Delivery and Diagnostics. ACS Omega 2021, 6, 5075–5090. [CrossRef] [PubMed]
5. Sturabotti, E.; Moldoveanu, V.G.; Camilli, A.; Martinelli, A.; Simonetti, G.; Valletta, A.; Serangeli, I.; Giustini, A.; Miranda, E.;

Migneco, L.M.; et al. Thymol-Functionalized Hyaluronic Acid as Promising Preservative Biomaterial for the Inhibition of Candida
albicans Biofilm Formation. ACS Macro Lett. 2023, 12, 1079–1084. [CrossRef] [PubMed]
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