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Abstract: Supercapacitors (SCs) are considered as emerging energy storage devices that bridge the
gap between electrolytic capacitors and rechargeable batteries. However, due to their low energy
density, their real-time usage is restricted. Hence, to enhance the energy density of SCs, we prepared
hetero-atom-doped carbon along with bimetallic oxides at different calcination temperatures, viz.,
HC/NiCo@600, HC/NiCo@700, HC/NiCo@800 and HC/NiCo@900. The material produced at
800 ◦C (HC/NiCo@800) exhibits a hierarchical 3D flower-like morphology. The electrochemical
measurement of the prepared materials was performed in a three-electrode system showing an
enhanced specific capacitance for HC/NiCo@600 (Cs = 1515 F g−1) in 1 M KOH, at a current density
of 1 A g−1, among others. An asymmetric SC device was also fabricated using HC/NiCo@800 as
anode and HC as cathode (HC/NiCo@600//HC). The fabricated device had the ability to operate at
a high voltage window (~1.6 V), exhibiting a specific capacitance of 142 F g−1 at a current density of
1 A g−1; power density of 743.11 W kg−1 and energy density of 49.93 Wh kg−1. Altogether, a simple
strategy of hetero-atom doping and bimetallic inclusion into the carbon framework enhances the
energy density of SCs.

Keywords: hetero atom; porous carbon; bimetallic oxide; calcination temperature; electrode materials;
SC application

1. Introduction

In the last few decades, the demand for alternative high-performance energy storage
devices has increased enormously due to the global energy crisis and environmental pol-
lution. Due to this increasing demand, extensive research has been focused on portable
and wearable electronic energy storage technologies, energy harvesting devices and hybrid
electric vehicles [1–4]. In the field of portable electronics, lithium-ion batteries (LIBs) have
been widely used as energy storage materials for several years due to their high energy
density and long cyclic stability. However, they have safety issues as liquid electrolytes
are employed in LIBs. Therefore, developing a stable and reliable energy storage device
without sacrificing the electrochemical performance is of primary concern [5–8]. In recent
years, supercapacitors (SCs) have also been used as important energy storage devices
due to their unique characteristics, including high power density, excellent energy effi-
ciency and extremely long cyclic stability, high charge–discharge rate and environment
friendliness [9–12]. Based on their energy storage and energy delivering capacities, SCs
find themselves superior to capacitors and batteries as they can store higher energy den-
sities than capacitors and can manage higher power densities than batteries. Thus, SC
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devices are an optimal option where short charge/discharge time, moderate charge storage
and high reliability are required [13–15]. Trending today, the world is moving towards the
usage of wearable mini-electronic devices and many research efforts have been focused on
thin, small and flexible SCs with high energy and power densities. In spite of this great
progress, flexible SCs still suffer from poor energy output and long cyclic stability that
limits their application. And therefore, proper design of the structure of electrode materials
in SCs and the stability of electrolytes are the primary criteria in their development [16–21].

There are two ways to increase the energy density of SCs. Firstly, increased energy
density can be obtained by increasing the specific capacitance of the electrode materials,
which could be attained by incorporating both double-layer capacitance and pseudo-
capacitance. Secondly, the energy density of SCs can be improved by increasing the voltage
range of the cell, as is evidenced by the following equation given below,

E = 1/2CV2 (1)

where ‘E’ is the energy density; ‘C’ is the specific capacitance and ‘V’ is the voltage range.
Moreover, in considering the durability of the solid-state SCs, the thickness of the electrode
materials plays an active role as the usage of active materials generally decays to a larger
extent with thick electrodes [22,23].

Presently, most of the commercial electrode materials used in SCs are purely carbon-
based materials and hence, the charge storage mechanism is purely electrostatic, produced
by electrical double-layer capacitance (EDLC). And so, when the electrode materials are
constructed with both EDLC and pseudo-capacitance, a further enhancement in energy
and power density can be obtained, as pseudo-capacitive materials enhance the specific ca-
pacitance of the electrode materials electrochemically (i.e., by interfacial reversible Faradaic
reactions). A variety of organic, inorganic and polymeric substances have been used as
electrode materials for SCs, which includes activated carbons, carbon nanotubes (CNTs),
transition metal oxides/sulfides/hydroxides and conducting polymers. The choice of
these materials is governed by certain factors including specific surface area, pore size, 3D
hierarchical structure, additional redox reactions and electrical conductivity of the electrode
active materials [11,12,23,24].

Transition metal oxides/hydroxides, such as Ni, Co and Mn oxides/hydroxides are
considered promising electrode materials for SCs on account of their reversible oxidation
reduction states, cost effectiveness and environment friendliness. Moreover, bimetallic
oxides are more preferred than their monometallic parts [25], as the former can produce
multiple oxidation states, producing more redox reactions and resulting in high pseudo-
capacitance [10,18,21]. Chen et al. [19] synthesized a composite material containing a
conductive polymer and metal-organic framework through the hydrothermal method.
The synthesized material, PPy@NiCo-CAT (polypyrrole with NiCo-catecholate), when
used as an electrode material in a hybrid supercapacitor, exhibits an energy density of
22 Wh kg−1 and a power density of 400 W kg−1. Xiao et al. [25] used shell-coating
and a controlled etching process to construct a non-spherical hollow bimetal phosphate
nanocage, ZIF-67-LDH-CNP-110. They also showed that the hybrid capacitor ZIF-67-
LDH-CNP-110//AC showed a remarkable energy density of 33.29 Wh kg−1 and a power
density of 150 W kg−1. Khalafallah et al. [26] synthesized WPP (waste potato peel)-derived
hierarchical porous carbon with heteroatom doping derived from hypophosphite and
thioacetamide (S, P/PAC). When used as electrode materials, (S, P/PAC) showed a high
specific capacitance of 323 F g−1 at 1 A g−1, a high energy density of 45.5 Wh kg−1 and a
power density of 800 W kg−1. With respect to carbon materials in SC, several modifications
have been performed to produce hetero-atom-doped carbon for enhanced performance. In
this regard, polybenzoxazine (Pbz), when used as the carbon precursor, can easily induce
nitrogen and oxygen doping into the carbon framework. Polybenzoxazines are an advanced
class of phenol-formaldehyde resin possessing several unique characteristics, including
low surface free energy, low moisture absorption, molecular design flexibility and excellent
mechanical and dimensional stability. The carbon prepared from this Pbz is found to
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be rich in nitrogen and oxygen species that can preferably enhance the electrochemical
performance of the SCs [27–29].

In this work, we propose a strategy to produce electrode materials with carbon mate-
rials (from Pbz) and bimetallic transition metal oxides (oxides of Ni and Co), where their
synergistic effect can produce both EDLC and pseudo-capacitance, which could enhance the
overall performance of SCs. The novelty of the work lies in choosing polybenzoxazine as a
source of carbon so that heteroatoms like nitrogen and oxygen will be incorporated in the
carbon framework. And the inclusion of bimetal oxides into this carbon framework paves
way for increased capacitance due to the double-layer and pseudo-capacitance. Apart from
the inclusion of these materials, the processing temperature, i.e., the activation temperature,
also plays an importance role in the performance of the SC. Hence, four different activation
temperatures (i.e., 600, 700, 800 and 900 ◦C) have been chosen to produce the carbon mate-
rials. The effects of these four different activation temperatures in enhancing the specific
capacitance and electrochemical performance of the electrode material were analyzed in the
three-electrode system. For practical applications, a two-electrode system was assembled
for the best electrode material and its electrochemical performance, including energy and
power density, was calculated and reported.

2. Materials

Eugenol (99%) and paraformaldehyde (95%) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Ethylene diamine (99%), potassium hydroxide (KOH, 85–87%),
sodium hydroxide (NaOH, 97%) and dimethyl sulfoxide (DMSO, 99%) were purchased
from Duksan Chemicals Co., Ltd. Ansan-si, Republic of Korea. Nickel nitrate hexahydrate
(99%) cobalt nitrate tetrahydrate (97%), polyvinylidene fluoride (PVDF, 97%) and N, N-
dimethylformamide (DMF, 99.5%) were purchased from Duksan Chemicals Co., Ltd.,
Ansan-si, Republic of Korea. All chemicals were used without further purification.

3. Methods
3.1. Synthesis of Hetero-Atom-Doped Carbon Materials

The synthesis of hetero-atom-doped carbon materials was performed through four
different processes, viz., benzoxazine monomer synthesis, self-curing polymerization to
form polybenzoxazine, carbonization and, finally, activation. Polybenzoxazine was chosen
as a source to produce carbon materials as polybenzoxazine contains hetero atoms (such as
nitrogen and oxygen) inside the cyclic ring structure, which, when carbonized, resulted
in the formation of hetero-atoms doped inside the carbon framework. The benzoxazine
monomer synthesis followed a Mannich condensation process, where eugenol (phenolic
moiety), ethylene diamine (amine moiety) and paraformaldehyde underwent a condensa-
tion reaction to form eugenol-based benzoxazine (Eu-Bzo). Then, the formed monomer was
subjected to a self-curing process (up to 250 ◦C) where the polymer (polybenzoxazine) was
produced. The polymer was subjected to carbonization (800 ◦C, N2 atm.) and activation in
the presence of KOH (twice the amount of the carbon material) at 800 ◦C in N2 atm., with
a heating rate of 2 ◦C/min and a holding time of 1 h in a tubular furnace to produce the
hetero-atom-doped carbon materials, abbreviated as HC.

3.2. Synthesis of HC/NiCo Materials

The prepared HC materials (10 mg), along with the precursors of Ni [Ni(NO3)2·6H2O]
(12 mM) and Co [Co(NO3)2·4H2O] (6 mM) in a 2:1 ratio were dispersed in a mixture of
solvents containing H2O, DMF and ethanol (equal volumetric ratios) for 1 h to attain
complete dispersion of the materials. The resulting mixture was then subjected to a
solvothermal reaction at 120 ◦C for 24 h, maintaining the volume of the solvents as one-
third the volume of the autoclave, and then washed several times with DMF and ethanol,
before finally being filtered and dried completely to form the HC/NiCo material. The
prepared HC/NiCo material was then calcined at four different temperatures (i.e., 600,
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700, 800 and 900 ◦C) in a tubular furnace under N2 atmosphere to produce HC/NiCo@600,
HC/NiCo@700, HC/NiCo@800 and HC/NiCo@900, respectively (Scheme 1).
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Scheme 1. Schematic diagram of the preparation of HC/NiCo at different temperatures.

3.3. Fabrication of Working Electrode

The working electrodes for the electrochemical measurement were fabricated by
following the method given below. Each of the prepared material(s) [HC/NiCo@600,
HC/NiCo@700, HC/NiCo@800 and HC/NiCo@900] was mixed with PVDF (ratio of carbon
material and PVDF is 95:5) and NMP (up to 5 mL) to form a homogeneous paste. The paste
was then coated uniformly on both sides of the nickel foam and dried completely. These
were used as working electrodes and several electrochemical measurements were taken
with this.

4. Results and Discussion

The 3D hierarchical flower-like morphology of HC/NiCo@800 was obtained in two
different steps. In the first step, a solvothermal reaction at 120 ◦C for 24 h resulted in the
introduction of bimetallic components into the carbon framework. In the second step,
HC/NiCo was converted into an integrative 3D hierarchical flower by calcination at 800 ◦C.
The calcination temperature varied between 600 and 900 ◦C, and we found that 800 ◦C
was suitable to form the proper 3D structure. Hence, the calcination temperature plays an
important role in the formation of the 3D hierarchical structure. The formed HC/NiCo at
different calcination temperatures (say 600, 700, 800 and 900 ◦C) was further characterized
for preliminary analysis of structure and composition. Scheme 1 represents the detailed
synthesis procedure of synthesized-PBz and HC.

The structural characterization of the synthesized materials, HC/NiCo@600; HC/NiCo@700;
HC/NiCo@800 and HC/NiCo@900 at different calcination temperatures, including XRD,
Raman, BET and XPS, are analyzed and discussed in the supporting information.

4.1. Morphological Studies
4.1.1. SEM Analysis

The morphology of HC/NiCo formed at different calcination temperatures was ana-
lyzed using FESEM. Figure 1a–f portrays the SEM images of pristine carbon, HC/NiCo,
at different calcination temperatures and the EDX spectrum of HC/NiCo@800. As can be
seen from the image (Figure 1a), the pristine carbon has a spherical shape with a smooth
texture. It can be visualized that several spherical balls with varying sizes are joined to-
gether. Soon after the incorporation of bimetallic oxides and the calcination process, the
morphology of the materials is completely changed from a spherical shape to a flower
shape (Figure 1b–e). It can be seen that the flower morphology was produced in this way:
the carbon material forms the basic spherical structure, upon which the bimetallic oxides,
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as 2D petals, grow together, forming a 3D hierarchical flower-like structure. The impor-
tance of calcination temperature is clearly evident from the SEM images. A calcination
temperature of 600 and 700 ◦C (Figure 1b,c) is not enough to form a proper 3D structure
as the flowers are not formed properly, resulting in broken petals here and there, whereas
at 800 ◦C (Figure 1d), a complete 3D hierarchical flower is formed, where several petals
are in intact, forming a complete structure. At a still higher calcination temperature (say
900 ◦C), the petals are clubbed together, leaving a lot void space, showing withered flower
morphology (Figure 1e). Moreover, some flower structure have been already destroyed,
with several non-uniformities in their structure. This structural evidence confirms that a
calcination temperature of 800 ◦C is appropriate to form a flower-like morphology. This
kind of entangled porous network structure, consisting of several spheres onto which there
is vertical alignment of 2D petals, facilitates charge transport and ion diffusion without any
interruption. The EDX spectrum of HC/NiCo@800 in Figure 1f also confirms the presence
of all the elements (i.e., C, N, O, Co and Ni) in their respective ratios [10,18,30,31].
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4.1.2. TEM Analysis

A more detailed surface integration of HC/NiCo@800 was further verified using
HRTEM. Figure 2a–i depict the HRTEM images along with the SAED pattern and EDS
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mapping of HC/NiCo@800. The hierarchical structure with two different morphologies
can be clearly seen from the TEM image (Figure 2a). The hierarchical structure consists of
an ultra-thin, porous structure that forms the base, upon which sharp spikes are embedded
throughout uniformly. The porous structure is derived from the spherical shape (of carbon)
and the spike-like structure is derived from the petal shape (of bimetallic oxides), which
is in good agreement with the SEM results. The highly magnified image in Figure 2b
shows that the structure is densely packed without any aggregation. This densely packed
structure, containing conductive carbon material onto which the bimetallic oxides are
tightly anchored, will provide highly active interfaces and redox centers for enhanced
supercapacitor performance. Moreover, the different phases of bimetallic oxides are evident
from the SAED pattern (Figure 2c). The EDS mapping confirms the presence of all elements,
i.e., C, N, O, Co and Ni, with uniform distribution. This further implies that Co and Ni
can be uniformly embedded in the carbon framework (Figure 2d–i). All the preliminary
characterizations confirm that HC/NiCo@800 has been successfully prepared with the
desired morphology suitable for electrode materials in SC applications [10,12,18,22].
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4.2. Electrochemical Results
4.2.1. Three-Electrode System

To investigate the charge-storage kinetics, the as-synthesized materials, i.e., HC/NiCo,
at different calcination temperatures were used as electrode materials and their electrochem-
ical behavior was investigated by cyclic voltammetry (CV), galvanostatic charge–discharge
(GCD) and electrochemical impedance spectra (EIS) in a three-electrode system in a 1M
KOH electrolyte, using Hg/HgO as a reference electrode and Pt as a counter electrode.
A detailed fabrication of the working electrode is given in supplementary information.
Figure 3a–d represent the CV curves of all the prepared electrode materials at different
scan rates from 5 to 200 mV s−1. The CV curves of HC/NiCo@600, HC/NiCo@700 and
HC/NiCo@900 (Figure 3a,b,d) show a quasi-rectangular shape at a high scan rate and a
very small redox peak at lower scan rates, whereas for HC/NiCo@800 (Figure 3c), a redox
peak was observed with an oxidation peak at 0.4 V and a reduction peak at 0.2 V at all
scan rates. The significant redox peak even at a high scan rate of 200 mV s−1, indicates the
pseudo-capacitance behavior of the electrode materials [32–36]. This clearly shows that a
calcination temperature of 800 ◦C is suitable for the incorporation of bimetallic oxide into
the carbon material, as evidenced by XRD and Raman analyses (Figure S1a,b). Moreover,
the shape of the CV curve is well maintained with an increasing scan rate (Figure 3c),
indicating reversible and fast ion and charge transfer capability collectively due to the
porous structure (Figure S1c,d) and flower-like morphology (Figure 1). Figure 4a–d show
the CV curves at a scan rate of 30 mV s−1, GCD at a current density of 1 A g−1, specific
capacity at various current densities (1–10 A g−1) and impedance spectra of the prepared
materials. As can be seen from the figure (Figure 4a), the area within the CV curve is much
larger for the samples HC/NiCo@800 and HC/NiCo@900, indicating high capacitance in
the form of EDLC (electrical double-layer capacitance) and pseudo-capacitance. This large
CV area is very much reciprocated in their GCD curves. All the GCD curves possess non-
equilateral triangles due to the presence of Faraday behavior, in addition to double-layer
behavior [37–42] (Figure 4b). As expected, HC/NiCo@800 exhibits the longest discharge
time at 1 A g−1, when compared with the other three materials. The specific capacitance
(Cs) at different current densities was calculated from the GCD curves, using equation [2].

Cs =
I × ∆t

m × ∆V
(2)

where Cs is the specific capacitance of the material; I is the current; m is the mass of the
material; ∆t is the discharge time and ∆V is the voltage range.

The Cs at 1 A g−1 was calculated to be 453 F g−1 for HC/NiCo@600; 760 F g−1

for HC/NiCo@700; 1515 F g−1 for HC/NiCo@800 and 1035 F g−1 for HC/NiCo@900
(Figure 4c). Among the four electrode materials, HC/NiCo@800 has the highest Cs value
that could be maintained up to 644 F g−1 even at a higher current density of 10 A g−1. This
highest Cs value confirms the enhanced electrochemical performance of HC/NiCo@800.

The impedance of the electrode materials at different frequencies from 0.01 Hz to
100 kHz was measured and is presented in Figure 4d. All the EIS spectra show Nyquist
plots showing a semi-circle in the medium- to high-frequency region and a straight line
in the low-frequency region. The solution resistance (RS, starting point for the semi-circle)
and the charge-transfer resistance (RCT, diameter of the semi-circle) are obtained from
the Nyquist plots. The RS and RCT of the prepared electrode materials were found to be
8.09 and 7.31 Ω for HC/NiCo@600; 3.13 and 2.84 Ω for HC/NiCo@700; 2.43 and 1.15 Ω
for HC/NiCo@800 and 5.05 and 4.91 Ω for HC/NiCo@900. The lowest value of RS and
RCT for HC/NiCo@800 (2.43 and 1.15 Ω) indicates an efficient electrolyte diffusion and
faster ion-transport rate that significantly improves the electronic conductivity. Moreover,
the angle formed between the semi-circle and Warburg impedance is more inclined for
HC/NiCo@800 with an angle of 75◦, when compared with the other electrodes, indicating
the faster diffusion rate of the cationic species [43,44].
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As the HC/NiCo@800 electrode possess the highest Cs, its stability is verified by
the cyclic rate performance. Figure 5a,b depict the stability of the HC/NiCo@800 elec-
trode at different current densities and Figure 5c displays the capacitance retention of the
HC/NiCo@800 electrode at a current density of 1 A g−1 for over 5000 cycles. The capac-
itance retention of the electrode was found to be 78.5% even after 5000 cycles, implying
remarkable cyclic stability. The morphology of the electrode slightly collapsed after stability
measurements, as evidenced by the SEM images (Figure S3). The EIS was carried out for the
1st and 5000th cycle and is displayed in Figure 5d. A slight increase in RS value from 1.89
to 3.27 Ω and RCT value from 1.76 to 2.95 Ω was observed, indicating excellent capacitance
retention [12,17].
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4.2.2. Performance of Asymmetric Supercapacitor Device

To further explore the practical application of HC/NiCo@800, we constructed an asym-
metric supercapacitor (ASC) device, i.e., HC/NiCo@800//HC, in which HC/NiCo@800
was employed as a positive electrode and HC was employed as a negative electrode. Both
the electrodes were coated separately onto a Ni foam and separated using a tissue paper.
These electrodes were well wetted with 1 M KOH electrolyte solution. The electrochemical
measurements, including CV, GCD, cyclic stability and EIS, for this device were measured
and its energy and power density were calculated.

Figure 6a shows the CV curves of the ASC device at different scan rates from 5 to
200 mV s−1. The operating voltage of ASC was fixed between 0 and 1.6 V, as the HC
negative electrode showed potential range between −1.0 and 0 V and the HC/NiCo@900
positive electrode showed potential range between 0 and 0.6 V in a three electrode system
(Figure S4). Noticeable redox peaks were observed for the ASC device due to the oxidation
(at 1.25 V) and reduction (at 0.63 V) reactions. These redox peaks are attributed to the
pseudo-capacitance produced from both the hetero-atom-doped carbon and bimetal oxides.
Good shape retention of the CV curves was obtained even at high scan rates, suggest-
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ing excellent stability and fast charge/discharge performance of the electrode materials.
Moreover, the area within the CV curve was also increased with increasing scan rates, and
the voltage window was also increased up to 1.6 V, which could contribute to enhanced
capacitance performance. Figure 6b depicts the GCD curves of the ASC device at different
current densities from 1 to 10 A g−1. All the GCD curves are non-linear, suggesting both
pseudo-capacitance and EDLC [45–47]. Obviously, the corresponding voltage plateaus of
GCD are almost identical to the CV curves, indicating good agreement between the two.
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The Cs calculated from the discharge time of GCD was found to be 132 F g−1 at a
current density of 1 A g−1. A specific capacitance of 76 F g−1 was obtained even at a higher
current density of 10 A g−1 (Figure 6c). The decreased Cs value at the high current density
is due to the fact that there is difficulty in the adsorption and diffusion of ions into the
small pores at higher currents. The durability of the device was examined through GCD
measurements over 5000 cycles, at a current density of 1 A g−1. The obtained Cs values
for over 5000 cycles are displayed in Figure 6d. The ASC device displayed good cyclic
stability, maintaining a Cs of 103 F g−1 after 5000 cycles, showing a capacitance retention
of 78.48%. The EIS was performed before and after the cyclic stability and is displayed in
Figure 6e. The Nyquist plot shows a semicircle in the high-frequency region, in which both
the solution and charge-transfer resistance have been increased (RS from 2.10 to 3.37 Ω
and RCT from 1.96 to 3.37 Ω) after the cyclic stability measurements. The semicircle at the
high-frequency region is due to the combination of solution resistance and charge-transfer
resistance, whereas the linear region in the low frequency region is due to the Warburg
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diffusion process. The energy density and power density of the ASC device were calculated
using Equations (3) and (4), and a Ragone plot was constructed (Figure 6f).

E =
CV2

2
(3)

P =
E
∆t

(4)

where E and P are the energy and power densities; C is the specific capacitance; V is the
voltage and ∆t is the discharge time. The ASC device exhibits an energy density and power
density of 49.93 Wh kg−1 and 743.11 W kg−1 at a current density of 1 A g−1, and an energy
density and power density of 27.02 Wh kg−1 and 427.89 W kg−1 at a current density of
10 A g−1. The comparison data with respect to energy and power densities are given in
Figure 6f. Hence, the improved electrochemical performance is due to the combined effect of
hetero atoms and bimetallic oxides in the interconnected carbon framework that improves
the wettability of the electrode materials and provides pseudo-capacitance in addition to
EDLC [12,21,48,49]. There is an increase in the voltage window and discharge time, which
further increases the Cs, resulting in increased energy density without sacrificing the power
density, as well.

5. Conclusions

In summary, HC/NiCo@800 was successfully fabricated using a simple and versa-
tile method, i.e., the solvothermal method and calcination. A calcination temperature of
800 ◦C is effective in creating a 3D hierarchical flower-like structure with a uniform porous
structure. The BET analysis showed that the maximum pores are in the microporous
and mesoporous range, which is suitable for electrochemical applications. The prepared
HC/NiCo@800, when used as an electrode material in a three-electrode system showed
enhanced capacitance of 1515 F g−1, which is solely attributed to the pseudo-capacitance in
addition to EDLC. In addition to it, the impedance measurements display a lower solution
resistance (1.89 Ω) and charge-transfer resistance (1.76 Ω), indicating the high conductivity
of the prepared materials. The practical application of this electrode material is demon-
strated by fabricating a two-electrode device with HC/NiCo@800 as the anode and HC
as the cathode. The asymmetric device exhibits a specific capacitance of 132 F g−1 at a
current density of 1 A g−1 and holds a capacitance retention of 78.48% over 5000 cycles.
The interconnected 3D hierarchical porous structure formed from nitrogen and oxygen
containing porous carbon together with bimetallic oxide improves the wettability of the
material and provides additional pseudo-capacitance that leads to enhanced energy and
power densities (49.93 Wh kg−1 and 743.11 W kg−1). Our results illustrate that by slightly
modifying the structure and composition of carbon-derived materials through a simple
and environmentally friendly method, electrode materials exhibiting high-energy-density
SCs could be produced. The synergistic effect provided by both hetero-atom-doped car-
bon and with bimetallic oxides paves way for increasing the energy density of SCs while
maintaining their power density. Obviously, this strategy could be adopted to fabricate
electrochemically active materials that find applications in various fields including in
supercapacitors, sensors and so on.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16030430/s1, Figure S1. (a) XRD; (b) Raman; (c) BET; and
(d) pore size distribution of HC/NiCo at different calcination temperatures. Figure S2. XPS spectra of
HC/NiCo@800 showing the (a) survey spectrum; deconvolution spectrum of (b) C1s; (c) N 1s; (d) O
1s; (e) Co 2p and (f) Ni 2p. Figure S3. SEM images of HC/NiCo@800 after stability test. Figure S4.
CV curves of (a) HC and (b) HC/NiCo@800 in three-electrode system. The details regarding the
instrumentation, electrochemical measurements and structural characterization of the materials are
given in the supplementary information. References [10,12,14,16–18,29,30,32–39] are cited in the
supplementary materials.
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