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Abstract: Naturally derived biopolymers modifying or combining with other components are excel-
lent candidates to promote the full potential of additive manufacturing in biomedicine, cosmetics,
and the food industry. This work aims to develop new photo-cross-linkable alginate-based inks for ex-
trusion 3D printing. Specifically, this work is focused on the effect of the addition of cross-linkers with
different chemical structures (polyethylene glycol diacrylate (PEGDA), N,N′-methylenebisacrylamide
(NMBA), and acrylic acid (AA)) in the potential printability and physical properties of methacrylated
alginate (AlgMe) hydrogels. Although all inks showed maximum photo-curing conversions and
gelation times less than 2 min, only those structures printed with the inks incorporating cross-linking
agents with flexible and long chain structure (PEGDA and AA) displayed acceptable size accuracy
(~0.4–0.5) and printing index (Pr ~1.00). The addition of these cross-linking agents leads to higher
Young’s moduli (from 1.6 to 2.0–2.6 KPa) in the hydrogels, and their different chemical structures
results in variations in their mechanical and rheological properties. However, similar swelling ability
(~15 swelling factor), degradability (~45 days 100% weight loss), and cytocompatibility (~100%) were
assessed in all the systems, which is of great importance for the final applicability of these hydrogels.

Keywords: methacrylated alginate; photo-cross-linking; extrusion printing

1. Introduction

Three-dimensional (3D) printing is a growing technology that could be considered the
future universal mode of manufacturing in different industries, e.g., biomedicine, tissue
engineering, food, or pharmaceuticals [1–5]. This layer-by-layer construction technology
has also been incorporated over the last few years in the fabrication of hydrogels [6]. The
strategy behind the 3D printing of hydrogels is that the ink remains in the liquid state and
undergoes sol–gel transition through the application of a specific stimulus. In this regard,
thermoinduced, pH/ion-induced, and photoinduced methods can be differentiated. In
the case of photoinduced hydrogels, they remain in a liquid state before the light source
is applied, and when they are exposed to UV or visible light with a specific wavelength,
they can be cured in situ and become photopolymerized/photo-cross-linked hydrogels [7].
According to the delivery mode, extrusion-mediated printing, due to its simplicity, is one
of the most relevant 3D printing techniques that employs photo-cross-linkable inks [8].
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Extrusion-based 3D printing is founded on a dispensing head that moves in an au-
tomatically controlled way and allows a continuous deposition of the ink onto a surface
according to a previously designed digital pattern.

Undoubtedly, due to their chemical and physical properties, hydrogels are the best
candidates for printable materials in both the biomedicine and food industries. On the
one hand, they resemble soft, living tissue, and on the other hand, they endow food with
distinctive textures, allowing them to act as active matrices for nutrients [9].

In this context, the development of hydrogel-based inks obtained from renewable
sources is a current challenge. In this sense, there are many biopolymers to be consid-
ered as hydrogel-forming inks for 3D printing. This is the case for algae-based materials
such as alginate, which is one of the most widely studied biopolymers due to its ease of
chemical functionalization and biological properties. Alginate, composed of (1–4)-linked
β-D-mannuronic (M) and α-L-guluronic (G) acids, is typically used in the form of hydrogel
in biomedicine and the food industry [10]. Chemical and/or physical cross-linking has
been exploited for the extrusion-mediated 3D printing of alginate. In the case of physi-
cal cross-linking, the most common printing methodology is based on the association of
alginate G units with divalent cations [11]. However, one critical drawback of ionically
cross-linked alginate gels is their limited long-term stability due to exchange reactions with
monovalent cations and polyanions [12]. Consequently, a growing interest in covalently
cross-linked alginate hydrogels has developed.

Photo-cross-linking is an effective method to prepare covalent networks of alginate,
but requires its prior modification of alginate to incorporate functional groups such as
acrylates or methacrylates. This functionalization can be achieved with the addition
of 2-aminoethylmethacrylate hydrochloride [13–18], glycidyl methacrylate [13,15], or
methacrylic anhydride [15,19–24]. The incorporation of those groups allows free radi-
cal cross-linking in the presence of a photoinitiator and after exposure to low light. It
has been demonstrated that by varying the UV exposure time or the photoinitiator, the
mechanical properties and the swelling of alginate hydrogels can be regulated, which is of
great importance in further application [14,25].

Along these lines, research has focused on employing external cross-linking agents in
methacrylated alginate formulations, such as other acrylated biopolymers [12,15,26] or syn-
thetic polyethylene glycol diacrylate (PEGDA) molecules [27,28]. Indeed, PEGDA polymer
has demonstrated successful photo-curing and enhanced mechanical properties when it is
combined with methacrylated hydrogels [29]. Nevertheless, at this point, investigations
have generally focused on the addition of methacrylated alginate as a cross-linking agent
in PEG-acrylated networks [27,30]. However, even given the extent of investigations into
photo-cross-linkable alginate inks, the accurate 3D printing of stable structures based on
alginate remains a challenging issue that is still in its early stages of exploration.

Taking this into account, the present work aims to analyze the possibilities of different
cross-linking molecules to be included in methacrylated alginate ink formulations for
extrusion-based, light-mediated 3D printing. To this end, polyethylene glycol diacrylate
is compared with a short-chain cross-linker typically employed in hydrogel formulations,
N,N′-methylenebisacrylamide (NMBA), in order to analyze the effect of the chemical struc-
ture of the cross-linker on the printability of the ink. On the other hand, the polymerization
of acrylic acid (AA) in the presence of methacrylated alginate leads to interpenetrating
networks in which carboxylic groups of AA can develop intermolecular interactions, such
as hydrogen bonds and dipole–ion, with alginate [31]. Accordingly, in this work, AA is for
the first time explored as a cross-linking agent for methacrylated alginate ink. Herein, the
printability of a series of three inks was analyzed and compared with pristine methacry-
lated alginate. Moreover, the mechanical and rheological properties, swelling capacity,
degradation profile, and cytotoxicity of printed hydrogels were also studied.
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2. Materials and Methods
2.1. Materials

The synthesis of alginate-based hydrogels was performed by modifying sodium
alginate (Sigma-Aldrich, St. Louis, MO, USA,) with methacrylic anhydride (C8H10O3,
154.16 g/mol, 94%, Sigma Aldrich). For that, solutions of sodium hydroxide (NaOH,
40 g/mol, Panreac AppliChem, Barcelona, Spain) and ethanol (C2H5OH, 46.07 g/mol,
99.5%, Panreac) were prepared. Lithiumphenyl-2,4,6-trimethylbenzoylphosphinate (LAP)
(C16H16LiO3P, 294.21 g/mol, 95.5%, Sigma Aldrich) was used as photoinitiator. Polyethy-
lene glycol diacrylate (PEGDA) (C3H3O(OCH2CH2)nC3H3O2, Mn 700, Sigma Aldrich),
acrylic acid (AA) (C3H4O2, 72.06 g/mol, FlukaTM, Charlotte, NC, USA) and N,N’-methylen-
ebisacrylamide (NMBA) (C7H10O2N2, 154.17 g/mol, 99%, Sigma Aldrich) were used as
cross-linking agents.

2.2. Methacrylation of Alginate
2.2.1. Alginate Methacrylation

Methacrylated alginate (AlgMe) was synthesized following the procedure of Chou
et al. [32]. Briefly, a 2% sodium alginate sample was prepared and a 20% molar excess
of methacrylic anhydride added while adjusting the pH to 7 using an aqueous solution
of NaOH (5 M). The final solution was maintained at 4 ◦C for 24 h, then poured out and
washed with ethanol (30 min × 5) in order to remove excess anhydride. The obtained
product was dissolved in distilled water and purified via dialysis against sterile water for
3 days. Finally, the sample was lyophilized at −50 ◦C and 0.2 mbar.

H-NMR

The degree of methacrylation of alginate was determined from 1H-NMR spectra. For
this, a 1.5% (w/w) methacrylated alginate solution was prepared in deuterated water. 1H-
NMR spectra were taken on a Bruker Advance 500 MHz spectrometer at 85 ◦C. According
to the literature [33] and assuming that in alginate only G units can be methacrylated,
the G ratio in the alginate chain (G%) and the degree of methacrylation (MD%) were
calculated using Equations (1) and (2), respectively. HG and HM represent the integral of
the hydrogen of the anomeric carbon of the guluronic and mannuronic units at 4.8–5.2 and
4.4 ppm, respectively, and Ha and Hb represent the integrals of the two vinyl protons of the
methacrylic group (5.5 and 6.5 ppm), respectively [34]:

G (%) =
HG

HM + HG
× 100 (1)

MD(%) =
Ha+Hb

2
HG

× G (2)

Data correspond to the average of three samples.

2.3. Printing of the Hydrogels

Synthesized methacrylated alginate (AlgMe) was dissolved (8% (w/w)) in distilled
water. Separately, an LAP photoinitiator (1% (w/w)) was dissolved in distilled water
(300 µL) and added to the mixture. The cross-linking agents PEGDA, NMBA, or acrylic
acid (20 mM) were added to the already prepared AlgMe solution. Photo-cross-linking
and printing was carried out on an INKREDIBLE+ Cellink bioprinter (Cellink, Gothenburg,
Sweeden) equipped with UV light LED operating at 405 nm (4 mW/cm2) during the
printing process. Gelation time of the inks under the lamp of the INKREDIBLE+ Cellink
bioprinter was determined following the so-called inverted tube test as the moment when
the solution stopped flowing after inverting the test tube.
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2.3.1. Photo-DSC Analysis

The UV curing process was studied by photo-DSC (isothermal mode at 25 ◦C) using a
DSC (TA Instruments Q2000, Waters Corporation, New Castle, DE, USA) equipped with
a photo-calorimetric accessory with a 200 W mercury lamp operating in an optical range
from 320 to 500 nm and an intensity between 1 and 2 mW/cm2. Heat flow was normalized
with respect to the highest value in each sample from 0 to 1 mW.

2.3.2. Optimization of the Printing

Two different cartridge nozzles were compared, one with an internal diameter of
0.254 mm and the other with an internal diameter of 0.41 mm. The extrusion pressure (10,
15, 20, 25 kPa) and the printing velocity (300, 500, 600 mm/min) were varied and hydrogel
strands were printed three times in order to optimize analyzed printing parameters.

2.3.3. Printing Quality

Using CellInk HeartWare designer software (2.4), apart from strands, square structures
of 40 mm × 40 mm were designed (pore dimensions of 5 mm × 5 mm). A Nikon AZ100
Multizoom microscope was employed to obtain images of the printed structures. The
printing quality of the inks was analyzed by the processing of images (ImageJ 1.49) of three
structures using the comparative parameters (Figure 1) of expansion ratio (α), uniformity
factor (U), size accuracy, and printing index (Pr).

The expansion ratio (Equation (3)) represents the relationship between the diameter of
the printed strand (d) and the theoretical diameter of the nozzle (D):

expansion ratio (α) = d/D (3)

Size accuracy was calculated according to Equation (4), in which At is the theoretical
area of the pore and A is that of printed squares:

Size accuracy = 1 − At − A
At

(4)

The printing index (Pr), was calculated following Equation (5) [35], where L is the
perimeter of the pore and A is the area:

Printing index (Pr) =
L2

16A
(5)
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2.4. Hydrogel Characterization
2.4.1. Mechanical Properties

Compression tests were performed using a Metrotec FTM-50 equipped with a 20 N
load cell applying a deformation speed of 1 mm/min. The elastic moduli of the sam-
ples (10 mm × 5 mm and 1 mm height) was determined from stress–strain diagrams
(12–22% strain). Mean values were calculated from the results obtained for a minimum of
5 different samples.

2.4.2. Rheology

The dynamic rheological behavior of the hydrogels was analyzed in a Rheometric
Scientific Advanced Rheometric Expansion System (ARES TA instruments with Peltier
oven (APS)) using a parallel plate geometry (25 mm of diameter) with a gap distance of
1 mm. The effect of increasing the angular frequency on the samples was measured in
order to evaluate the storage (G′) and loss modulus (G′′). Angular frequencies from 0.1 to
1000 rad/s at a constant strain of 1% were used for all the measurements.

2.4.3. Morphology

The morphology and pore size of the hydrogels were analyzed by scanning electron mi-
croscopy (SEM) using a Hitachi S-3400N microscope (150 s, 20 mA, 15 kV,×50,000 amplification).
To this end, lyophilized hydrogels (−50 ◦C, 0.1 mbar) were coated thinly with gold. Av-
erage pore size was calculated for each hydrogel after processing SEM photographs with
ImageJ 1.49.

2.4.4. Swelling Behavior

After lyophilization (−50 ◦C and 0.2 mbar) of printed hydrogels (10 × 5 mm and
1 mm height), they were incubated in phosphate-buffered solution (PBS) (pH = 7.4) at 37 ◦C.
The solution was replaced every day, and at predetermined time points, the samples were
removed, rinsed with distilled water, superficially dried and weighed (Wd). Accordingly,
the swelling ratio was measured over time (Equation (6)):

Swelling factor =
Ws − Wd

Wd
(6)

where Ws and Wd are the weights of the swollen and dried hydrogels, respectively.
The data correspond to the average of three samples.

2.5. In Vitro Degradation

Fresh hydrogels (10 mm × 5 mm and 1 mm height) were incubated in phosphate-
buffered solution (PBS) at pH = 7.4 and 37 ◦C. The mass loss of the hydrogels with time in
incubation conditions was registered as a quantification of the in vitro hydrolytic degrada-
tion using Equation (7):

Mass loss(%) =
W0 − Wt

W0
× 100 (7)

where W0 is the weight of the hydrogel at initial time and Wt at t∞. PBS incubation solution
was replaced every day, and at certain times, the samples were removed, rinsed with
distilled water, superficially dried and weighed. Three samples were evaluated for each
data point.

2.6. In Vitro Cytotoxicity Essay

The HEK293 cell line (ATCC: HEK-293 CRL-1573 ™) exhibiting epithelial morphology
isolated from the kidney of a human embryo was used to measure hydrogel biocompatibil-
ity. In sum, 40 × 103 cells were cultured in DMEM supplemented with 10% FBS, 100 µg/mL
of streptomycin, 100 U/mL of penicillin, and L-glutamine in 96-well culture plates with
or without photo-cross-linking to proliferate for 24 and 48 h. After growth, the cells were
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rinsed with PBS and fixed using a 4.5% solution of paraformaldehyde in PBS for 30 min
at room temperature. Postfixation, the cells were rinsed with PBS and then stained with
a 0.5% crystal violet solution for 20 min at room temperature. Following staining, the
cells were washed with water. To each well, 200 µL of 15% acetic acid was added, and the
plates were shaken for 20 min at room temperature. The acetic acid was then moved to a
fresh 96-well plate, and the absorbance was measured at 570 nm using a plate reader. Cell
viability percentages were calculated by comparing the absorbance values of cells in the
hydrogel wells to those directly seeded in the 96-well plates.

3. Results
3.1. Alginate Methacrylation

Nuclear magnetic resonance 1H-NMR was used to determine the methacrylation
degree of the synthesized AlgMe. As expected, all spectra (Figure 2) displayed characteristic
peaks between 3.50 and 4.50 ppm, corresponding to the saccharide units of the alginate
backbone. In addition, the signals related to the vinyl hydrogens of the methacryloyl group
appeared as two well-defined singlets (5.50–6.50 ppm), which are not observed in pure
alginate, proving that the modification reaction took place successfully. Meanwhile, the
signal of the methyl hydrogens of each methacryloyl group appeared as a well-defined
singlet at 2.20 ppm.
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The G proportion in the alginate chain and the methacrylation degree (DS) were calcu-
lated according to Equations (1) and (2), and was 54.24 ± 0.53% and 8.77 ± 3.54%, respectively.

3.2. Extrusion-Mediated Photoprinting of the Hydrogels

Photo-DSC analysis was employed to study the exothermic profile of the photo-
cross-linking reaction, which provides information about the kinetics of the photo-cross-
linking process, considering that the reaction rate is proportional to the generated heat
flow rate [36]. Accordingly, the maxima of photo-DSC thermograms correspond to the
time at which maximum photo-cross-linking takes place, which is key information in the
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printing process. Figure 3 shows the measured heat flow as a function of the irradiation
time, and demonstrates that the highest photo-cross-linking rate takes place in around
2 min for AlgMe ink and less than 1 min when additional cross-linking agents are added.
Therefore, data evidenced the efficacy of the photo-cross-linking of all the studied inks and
their potential for light-mediated printing with curing times less than 2 min for achieving
the maximum. As can be observed in Figure 3, the introduction of cross-linking agents
in the methacrylated chitosan networks accelerates the photo-curing process enlarging
the potential of the mixtures as inks in comparison with pristine AlgMe solution. This
fact can be ascribed to the higher functionality and mobility of the cross-linking agents in
comparison with the pure methacrylated polymer. These results are in agreement with
the gelation times determined by the inverted vial test under the bioprinter conditions,
being less than 4 sec in all the samples, which provides practical information for the specific
printing process presented here.
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Figure 3. Photo-curing heat flow during photo-DSC measurement of (blue) methacrylated alginate,
and methacrylated alginate ink incorporating (red) polyethylene glycol diacrylate, (black) N,N′-
methylenebisacrylamide, and (green) acrylic acid.

In order to optimize light-mediated extrusion printing, different strands of AlgMe were
printed using the bioprinter by varying the cartridge nozzle diameter, impression velocity,
and extrusion pressure. As depicted in Figure 4, strands with smaller expansion rates
(Equation (3)), i.e., better resolution, were obtained while using the cartridge nozzle with
the lowest internal diameter (0.254 mm), due to the lower mass of ink in each deposition.
However, despite that, the alginate-based inks employed block easily in the 0.254 mm
cartridge nozzle, obtaining poor reproducibility. As shown in Figure 4, as expected, an
increase in the impression velocity and a decrease in the pressure resulted in a lower mass
of deposited ink, leading consequently to lower expansion ratios. As can be observed, the
influence of applied pressure on the expansion ratio is more evident when low deposition
velocities are used. According to these results, the 0.41 mm nozzle, injection pressure
of 10 kPa, and speed of 600 mm/min were selected as the optimum conditions for the
extrusion printing of prepared alginate inks.

In order to compare the printability of the prepared alginate inks, square scaffolds
were printed (0.41 mm, 600 mm/min, and 10 kPa, respectively) and measured size accuracy
and printing index parameters (Equations (4) and (5)) were analyzed (Figure 5).

As Figures 6 and 7 show, square structures could not be printed in the case of pristine
AlgMe ink following specified conditions, and external cross-linking agents were required
to achieve adequate printability. The influence of the molecular structure of the employed
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cross-linker in the printability of the ink is noteworthy. Indeed, the rigid structure of
NMBA does not promote the printing of square scaffolds of AlgMe ink, unlike when
flexible and long-chain cross-linking agents, such as PEGDA and AA, are included in the
formulations. In fact, PEGDA and AA inks lead to high values of the printing index (Pr) (~1)
and acceptable size accuracy values (~0.4–0.5). High-quality impressions are obtained by
cross-linking with PEGDA, the chains of which react more easily with the acryloyl groups
of modified alginate, thus obtaining a more effective cross-linking. Shorter cross-linkers,
instead, can bring the polymeric network closer together, making it less flexible [37]. In fact,
while NMBA is used, the hydrogel becomes more rigid because the cross-linker is a short
molecule [38], thus obtaining poor printability. Acrylic acid monomer is photopolymerized
under UV irradiation, forming polyacrylic chains that act as cross-linkers [39]. In this case,
neither the flexibility of the hydrogel nor the chain length of the polymerized cross-linker
can be controlled; therefore, the AlgMe + AA hydrogel has intermediate printing quality,
but closer to that obtained with the flexible PEGDA cross-linker.
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Figure 6. Microscope photographs of the obtained scaffolds: (a) AlgMe, (b) AlgMe + NMBA,
(c) AlgMe + PEGDA at 1× and 2×, respectively, and (d) AlgMe + AA at 1× and 2×, respectively.

Figure 7a shows the printing index (Pr) and size accuracy parameters when one to
five layers are printed for AlgMe + PEGDA square structures. The printing index and size
accuracy decrease when extra layers are added, the maximum number of layers that allow
the obtaining of pores being four. The obtained heights for one to five layers are presented
in Figure 7b. Considering that values of 1–10 mm are of suitable thickness for in vitro
testing [40], printed structures are adequate to be used for in vitro applications. Due to the
lack of printability of the ink based on NMBA, it was discarded for further characterization.
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3.3. Hydrogel Characterization

Figure 8 shows typical compression stress–strain curves measured for the prepared
hydrogels. The obtained Young’s moduli were similar to those reported in the bibliogra-
phy [34]. The collected data reveal that the incorporation of PEGDA and AA as cross-linking
agents leads to stiffer and brittle hydrogels, resulting in increased Young’s moduli and
decreased breaking strains compared to AlgMe ink, due to the expected increase in cross-
linking density [41]. When selected cross-linkers are compared, it can be observed that
cross-linking with PEGDA results in a higher breaking strain, which can be ascribed to
the flexible nature of the –CH2-O- bonds in the backbone of their chains. In addition,
samples cross-linked with AA showed higher Young’s moduli, which points to additional
interactions between polymerized PAA and the alginate network, such as H-bonds, leading
to an interpenetrating network with enhanced mechanical properties.
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The rheological characteristics of the prepared hydrogels were evaluated by frequency
sweep tests at room temperature (Figure 9). All samples showed gel-like behavior with
a storage modulus (G′) higher than the loss modulus (G′′) in all frequency ranges. This
behavior indicates that the elastic properties of the analyzed materials predominate over
the viscous ones, which is behavior typical of hydrogels.
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Figure 9. Storage (G′, filled circles) and loss moduli (G′′, open circles) of methacrylated alginate
hydrogels (blue) with PEGDA (red) and AA (green) as cross-linking agents (1% strain).

An increase in G′ was observed for the inks with cross-linkers when compared with
the ink composed of pure AlgMe, due to the stiffer nature of obtained hydrogels, which is
endorsed by the increase in the cross-linking density of the network. These results are in
agreement with the analysis of the mechanical properties. The solution of AlgMe + AA also
displayed the highest G′ value, which is in line with its interpenetrating network structure.

The effect of the incorporation of PEGDA and AA as cross-linking agents in AlgMe
ink on the swelling capacity of photo-cross-linked hydrogels was evaluated (Figure 10).
As displayed in Figure 10, a similar swelling behavior was observed in PBS at pH = 7.4
in all the samples, despite the differences evidenced in the study of the mechanical and
rheological properties of the gels. This fact can be explained by the balance of two opposite
effects. On the one hand, the addition of the cross-linking agents leads to a higher cross-
linking density that negatively affects the swelling of produced networks. However, on the
other hand, the highly hydrophilic nature of incorporated cross-linker molecules favors
the swelling of the hydrogels, countering the cross-linking effect. In the case of AA, the
high cross-linking density of the interpenetrating networks observed in the rheological and
mechanical properties analysis is canceled out by the well-known increased swelling ability
of carboxylate polar groups that are ionized at the selected pH values.

Since pore size is one of the most influential factors in swelling, it was comparatively
analyzed by SEM (Figure 11).

The pore size of the hydrogels was analyzed by scanning electron microscopy (SEM),
from it was confirmed that the interactions established between polysaccharide chains led
to interconnected porous three-dimensional structures. Figure 11 shows the representative
SEM micrographs of a cross section of the printed alginate hydrogels. The average pore
size in AlgMe is 0.6 ± 0.4 mm, in AlgMe + PEGDA 0.2 ± 0.1 mm, and in AlgMe + AA
0.6 ± 0.3 mm. PEGDA has a known molecular weight and it is smaller than the expected
polymerized chains of poly acrylic acid; therefore, a shorter distance between chains is
obtained with PEGDA, giving rise to smaller pores. The results obtained of the swelling
behavior (Figure 11) are in agreement with these morphological features. The water uptake
is smaller for the samples with smaller pores.
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3.4. In Vitro Degradation

The study of degradation kinetics is a key factor, since it directly affects the stability of
the materials and therefore their applicability. The hydrolytic degradation of the hydrogels
under physiological conditions (pH = 7.4) is presented in Figure 12. As can be observed, a
similar degradation profile was measured regardless of the addition of cross-linking agents,
which is in agreement with the similar swelling behavior of the hydrogels. In all the cases,
more than 40 days was required to achieve total degradation of the samples, and hydrogel
degradation followed second-order degradation kinetics regardless of the cross-linker.
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Figure 12. Degradation profiles in hydrolytic media (PBS, pH = 7.4) of the prepared hydro-
gels: AlgMe (blue), AlgMe + PEGDA (red) and AlgMe + AA (green). Data shown represent the
average ± standard deviation of three replicates.

3.5. Hydrogel Biocompatibility

In the context of hydrogel biocompatibility, we quantitatively compared the prolifera-
tive activity of HEK293 cultured in 96-well culture plates with or without photo-cross-linked
hydrogels for 24 and 48 h, as described in Materials and Methods. Figure 13 shows a quan-
titative assessment of cellular viability in vitro. The obtained results demonstrated the
biocompatibility of the three hydrogels by comparing cellular viability against control cells
grown in the absence of hydrogel. This indicates that the hydrogels do not adversely affect
cell growth, confirming their biocompatibility in this assay.
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Figure 13. Biocompatibility assessment of hydrogels. Viability of cells cultured with three different
hydrogel formulations—AlgMe (red), AlgMe + AA (black), and AlgMe + PEGDA (blue)—in compar-
ison to control cells grown without hydrogel (green). The similarity in cellular viability among the
groups confirms the noncytotoxic nature of the hydrogels, indicating their biocompatibility. Data
represent mean values ± standard deviations from three independent experiments.
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4. Conclusions

Only ink solutions containing PEGDA and AA were found to be suitable for light-
mediated 3D extrusion printing, showing reasonable size accuracy and printing indices
in the printing of square basic structures, unlike NMBA-containing inks. The addition
of PEGDA and AA as cross-linkers resulted in an improvement in the mechanical and
rheological properties of the hydrogels. Specifically, the interpenetrating network devel-
oped in the photo-cross-linking of AlgMe + AA ink led to higher stiffness in the gels
(2.7 KPa). Despite the differences in the chemical structure of the cross-linking agents
employed, similar swelling and degradation behaviors were observed for all the samples.
Thus, methacrylated alginate inks containing PEGDA and AA have great potential as
printable and nontoxic materials in a wide range of applications in the biomedicine, tissue
engineering, and food fields.
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