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Abstract: Natural and synthetic polymers are a versatile platform for developing biomaterials in the
biomedical and environmental fields. Natural polymers are organic compounds that are found in
nature. The most common natural polymers include polysaccharides, such as alginate, hyaluronic
acid, and starch, proteins, e.g., collagen, silk, and fibrin, and bacterial polyesters. Natural polymers
have already been applied in numerous sectors, such as carriers for drug delivery, tissue engineering,
stem cell morphogenesis, wound healing, regenerative medicine, food packaging, etc. Various
synthetic polymers, including poly(lactic acid), poly(acrylic acid), poly(vinyl alcohol), polyethylene
glycol, etc., are biocompatible and biodegradable; therefore, they are studied and applied in controlled
drug release systems, nano-carriers, tissue engineering, dispersion of bacterial biofilms, gene delivery
systems, bio-ink in 3D-printing, textiles in medicine, agriculture, heavy metals removal, and food
packaging. In the following review, recent advancements in polymer chemistry, which enable the
imparting of specific biomedical functions of polymers, will be discussed in detail, including antiviral,
anticancer, and antimicrobial activities. This work contains the authors’ experimental contributions
to biomedical and environmental polymer applications. This review is a vast overview of natural and
synthetic polymers used in biomedical and environmental fields, polymer synthesis, and isolation
methods, critically assessessing their advantages, limitations, and prospects.
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1. Introduction

Natural polymers extracted from organic sources such as microorganisms, algae,
plants, or animals have been widely used for decades in biomedical applications such as
pharmaceuticals, tissue regeneration scaffolds, drug delivery, and imaging [1]. Polysaccha-
rides, proteins, and polyesters derived from plant and animal kingdoms are part of the
family of natural polymers. Several of these polymers comprise our diet and have been
used in various human applications [2]. These polymers are recognized by the biological
environment and directed into metabolic degradation. Natural polymers are similar to
extracellular matrix (ECM) components, enabling them to avoid chronic immunological
reactions and toxicity, which are frequently observed with synthetic polymers [2].

Natural polymers are components of biological systems responsible for performing
various essential functions [3]. For instance, specific natural polymers, such as cellulose and
chitin, play a vital role in maintaining the structural integrity of cells in plants and animals.
In contrast, others, such as lysozymes, offer biological protection against surrounding
environments [4]. The diversity in their origin and composition provides these natural
polymers with distinct physicochemical and biological properties and are of interest in
various fields, e.g., in the manufacture of paper goods and textiles, as additives in food
products, in the formulation of nutraceuticals and functional foods, and in the biomedical
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field (e.g., in cosmetic treatments and drug delivery) [5]. Their exploitation is favorable
due to the natural abundance, renewability, and intrinsically low carbon footprint of
polymers derived from renewable resources. Such properties are pivotal in developing
advanced materials for films, membranes, coatings, hydrogels, and micro- and nanoparticle
systems [6]. Natural polymers are essential for supporting life and enabling organisms to
adjust to their surroundings through vital biological processes like molecular identification
and genetic information transfer. Examples of natural polymers and their structures can be
seen in Figure 1.
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Figure 1. Examples of the natural polymers and derivatives used for materials [6].

In recent years, natural polymers from marine resources have increasingly attracted
attention, as they are more abundant and biologically active than polymers from other
resources [7]. Marine sources, for instance, crustaceans, seaweeds, and algae, are rich
in polysaccharides such as agar, chitin/chitosan, alginate, and glycosaminoglycans and
thus exhibit exciting features and properties. For instance, chitin is a structural material
in the exoskeletons of crustaceans and insects. Such marine-derived biopolymers consti-
tute a platform for developing valuable advancements with environmental and economic
advantages [7]. Marine polymers are becoming popular in the biomedical field due to
their abundance and inherent features such as biocompatibility, biodegradability, and
biological activity. However, some of these polysaccharides have limitations regarding
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solubility in water and organic solvents due to strong intra- and intermolecular hydrogen-
bonded polymer chains [2]. As a result, this restricts their ability to be processed and
converted into value-added matrices, including fibers, membranes, scaffolds, and nanoma-
terials. Therefore, searching for effective, eco-friendly, and feasible solvents is essential [2,7].
Polysaccharides are made up of sugars, called monosaccharides, that are linked together
by O-glycosidic linkages. Some of their properties, such as solubility, viscosity, gelling
potential, and surface and interfacial properties, are determined by differences in the
composition of monosaccharides, types and patterns of linkages, shapes of chains, and
molecular weight. Additionally, polysaccharides have various physiological functions,
making them highly valuable for applications in tissue engineering and regenerative
medicine [2].

Synthetic polymers are defined as polymers that are artificially produced in laborato-
ries, also known as manufactured polymers [8]. They are classified as thermoplastic and
thermoset polymers and elastomers. Some examples of synthetic polymers are polyethylene
(PE), polystyrene (PS), polyamides (PA), poly (vinyl chloride) (PVC), polytetrafluoroethy-
lene (PTFE), polyisoprene (PI), phenol formaldehyde resins, and many others. Polymers
made from synthetic substances (monomers) derived from petroleum oil are often cre-
ated in a controlled environment, and their backbone usually comprises carbon–carbon
bonds [9]. Specific initiators and catalysts are used to initiate and accelerate the chemical
reactions between monomers. Table 1 compares some of the properties and features of
natural and synthetic polymers [9,10].

Table 1. Comparison between the natural and synthetic polymers’ parameters. Optimized according
to reference [9].

Natural Polymers Synthetic Polymers

In use for millions of years First produced 125 years ago
Similar or nonidentical repeating units Identical repeating unit
Properties are naturally controlled Properties are engineered
Usually biodegradable Some are biodegradable
The backbone structure is carbon, oxygen, and nitrogen The backbone is mostly carbon
Environmentally friendly Some are friendly, and some are toxic to the environment
Limited recyclability Most of them are capable of being recycled multiple times

Synthetic polymers are omnipresent in society as textiles and packaging materials,
in construction, and in medicine, among many other essential applications. Synthetic
polymers are a highly versatile and diverse group of substances, many of which have
been explicitly applied in drug delivery, for example, solubilizing agents, nanoparticulate
formation, surface modification, drug carriers, diagnostic imaging agents, and implants [11].
In addition, some of these polymers show many biological activities in their own right (e.g.,
antitumor, antibiotic, antiviral, and antithrombotic activities, as well as inhibition of efflux
pumps such as P-glycoprotein) [12].

Natural and synthetic polymers have been widely discussed over the years, and
interest in the topic has increased significantly in the last ten years. Figure 2 shows the
increase in publications on natural and synthetic polymers and their use in biomedical and
environmental applications.

Some of the main reviews for natural polymers for biomedical and environmental
applications are [1,6,7,14–36] and for synthetic polymers [8,12,22,30,33–45].
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Figure 2. Scheme displaying four graphs showing the number of publications over ten years (2014–
2024): (A) number of publications found using keywords “natural polymer biomedical application”;
(B) number of publications found using keywords “natural polymer environmental application”;
(C) number of publications found using keywords “synthetic polymer biomedical application”;
(D) number of publications found using keywords “synthetic polymer environmental application”.
Take into consideration that the graphs display only three months of 2024 (January, February, and
March). The publications for ten years on consider the follwing: natural polymers for biomedical
application (A) increased eight times; natural polymers for environmental application (B) increased
14 times; synthetic polymers for biomedical application (C) increased four times; synthetic polymers
for environmental application (D) increased nine times. Based on the number of publications for
2024 so far (A-64, B-120, C-22, D-37), the tendency is expected to be maintained or even surpass the
peak. The search was conducted using PubMed [13].

2. Natural Polymers for Biomedical Use
2.1. Antibacterial

Antimicrobial medication coatings, antimicrobial gauze or dressings, and medical
tapes containing antimicrobial agents are a few examples of antimicrobial wound healing
techniques. Chi et al. created a patch called the biomass-energetic chitosan microneedle
array (CSMNA) to aid in healing wounds [46]. Due to its exceptional qualities and inherent
antibacterial capabilities, chitosan is often utilized for wound healing [47]. The micronee-
dle’s microstructure also helps to prevent excessive skin and patch adherence while deliv-
ering the drug-carrying agent to the target location. Meanwhile, a temperature-sensitive
hydrogel wraps vascular endothelial growth factor (VEGF) in the CSMNA micropore [46].
As a consequence, the temperature rise brought on by the inflammatory response of the
wound may be exploited to regulate the release of smart drugs. Biomass CSMNA patches
have been proven in studies to support tissue regeneration, angiogenesis, collagen synthe-
sis, and inflammatory control during wound healing [46]. Therefore, this multifunctional
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CSMNA patch may be helpful in clinical applications such as wound healing. A detailed
scheme and explanation of the microneedle patch can be seen in Figure 3.
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Figure 3. Scheme of the fabrication and controllable drug release application of the biomass micronee-
dle patch [46]. No. 1: chitosan derived from the chitin of arthropods. No. 2: construction of chitosan
microneedle array (CSMNA). No. 3: encapsulating active pharmaceutical molecules, vascular en-
dothelial growth factor (VEGF), spotted in red, into the micropores of the CSMNA. No. 4: application
of CSMNA onto an open wound. No. 5: controlled VEGF release from the CSMNA onto the skin,
promoting wound healing.

Zhang et al. suggested a novel class of controlled responsive particles for the release of
drugs and the healing of wounds [48]. These hybrid particles comprised black phosphorus
quantum dots (BPQDs) loaded with growth stimulants and antimicrobial peptides, gelatin,
agarose, and filipin protein. The BPQDs absorb near-infrared (NIR) light and elevate the
temperature of the particles to gelatin’s melting point when exposed to NIR radiation.
The reversible phase transition (melting of gelatin) causes the enclosed medications to
liberate gradually. BPQD-loaded particles with NIR-responsive characteristics have shown
in vitro and in vivo investigations that they may accomplish the necessary regulated release
of growth factors, hence encouraging neovascularization [48]. The particles were also
antibacterial throughout storage and usage because the antimicrobial peptide was combined
with a secondary hydrogel and enclosed in the scaffold. Due to these characteristics,
BPQD-loaded natural protein hybrid particles are excellent for medication delivery and
wound healing.

Silver nanoparticles (AgNPs) are often employed when making medical products
like wound dressings. However, there is no agreement regarding the efficacy and safety
of AgNPs. To establish the antibacterial impact of nanosilver in vivo and to assess the
wound-healing capacity of silver-doped chitosan membranes, Shao et al. clarified the
effects of proteins and inorganic ions on the antimicrobial characteristics of nanosilver [49].
Their antibacterial qualities and silver ion release patterns were assessed through in vitro
interactions with a phosphate buffer or serum. In vivo tests were conducted to evaluate
the antibacterial efficacy and wound-healing capacity of the systems. The findings demon-
strated that the biological environment significantly impacts silver ions release: proteins
are a barrier to prevent silver release, whereas inorganic ions cause delayed silver release.
To achieve the in vivo antibacterial action, a high quantity of silver nanoparticles must
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be included. Additionally, embedding silver nanoparticles had no impact on the pace of
tissue response or wound healing. It can be concluded that AgNP incorporation enhances
the antimicrobial effect of biomaterials without modifying the wound-healing capacity of
chitosan-based membranes [14].

2.2. Hydrogel Preparation and Application

Hydrogels prepared from natural polymers have attracted extensive attention in many
biomedical fields, such as their use for drug delivery, wound healing, and regenerative
medicine due to their excellent biocompatibility, degradability, and flexibility [15]. Hydro-
gels are three-dimensional networks formed by hydrophilic polymers through chemical
cross-linking (covalent or ionic bonds) or physical cross-linking (hydrogen bonds, van der
Waals forces, and physical entanglement) swollen in water [50,51].

Hydrogels based on natural polymers such as alginate, starch, cellulose derivatives,
chitosan, gelatin, collagen, hyaluronic acid, pectin, and so on show good degradability,
biocompatibility, nontoxic degradation products, good flexibility similar to natural tis-
sue, and have natural abundance, which endows them with widespread applications in
medicinal fields, for instance, as drug carriers, wound dressing for wound healing, sub-
strates for cell culture, cell delivery systems, scaffolds for tissue regeneration, and so on
(Figure 4) [15,16].
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Hydrogels based on natural polymers have emerged as promising alternatives for
the ECM in biomedical applications due to their unique integration of biodegradability,
biocompatibility, mechanical property tunability, biomimicry, and responsiveness, which
could provide microenvironments with the preservation of cellular functions, promotion of
cell health, and encouragement of tissue formation [53].
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2.3. Drug Delivery

Extensive research has been conducted on the use of natural polymers as carriers for
drugs and other bioactive substances, which has garnered a great deal of interest. Natural
polymers have inherent advantages such as marvelous biocompatibility, controlled enzyme
degradation, specific interactions with some biomolecules [54], and easy modification,
which make them versatile for drug delivery applications. In this context, drug delivery
systems (DDSs) constructed using representative natural polymers such as polysaccha-
rides (chitosan and hyaluronic acid) and proteins (silk fibroin and collagen) are generally
summarized. These DDS systems are used to deliver payloads, which mainly include low
molecular weight drugs, proteins, and DNA, and are employed for various applications
such as tissue engineering, wound healing, or anticancer therapy [55,56]. Moreover, a DDS
constructed by modified biopolymers has also been presented, focusing on the chemical
and morphological modifications, the additions of smart stimuli-triggered or targeted
motifs, and so on, which promoted delivery and therapy efficiency.

Polysaccharides and protein-based materials show more similarities to the extracellular
matrix, thus endowing natural polymer-based drug carriers with minimally invasive
properties [17]. Moreover, polymer chains are abundant in some groups with accessibility
to modification, including amino groups, carboxyl groups, hydroxyl groups, and so on,
enabling easy accessibility for further modifications [17]. Finally, with more profound
research into life science, more and more specific interaction behaviors between native
polymers and organs or cells have been pointed out. Some natural polymers have shown a
higher affinity to the receptors of cells and regulate cellular processes, including adhesion,
proliferation, and migration, which provides promising potential for designing more
specific target usages of high efficiency [57]. Moreover, their degradation behavior in
the presence of enzymes in vivo also ensures their ability to construct stimuli-responsive
systems for the delivery of drugs in the local sites. This perspective sheds light on the
following two kinds of polysaccharides (chitosan and hyaluronic acid) and the other two
types of proteins (silk fibroin and collagen) involving the delivery systems constructed by
the original polymers and their derivatives [57].

Polymer/metal-organic frameworks (MOFs) are a class of crystalline materials pos-
sessing structures formed from the coordination of metal ions to multidentate organic
groups. The main characteristics of MOFs are the high degree of porosity and the tun-
able architecture of the structure obtained by selecting appropriate metal ions and linkers.
Furthermore, the surface of MOFs can be modified additionally, thereby increasing their
functionality [58]. The high surface areas and large pore sizes of MOFs favor the encapsu-
lation of high drug loadings. In contrast, MOFs’ high structural and functional flexibility
allow their adaption to the drug molecules’ shape, size, and functionality. When a MOF is
combined with a polymer, its colloidal stability is enhanced without loss of crystallinity.
However, a recurrent issue is the decrease of porosity due to the polymer obstructing the
entrance to the pores or the penetration of the polymer chains inside the MOF cavities [58].
In addition to increasing the stability, the polymer coating offers the possibility of adding
targeting functionalities or introducing a stimuli-responsive release, allowing for the prepa-
ration of improved drug delivery or imaging devices. Some of the natural polymers used
are hyaluronic acid, gelatin, chitosan, and alginate. Hyaluronic acid, for example, has been
used to increase the binding affinity of nanoparticles selectively for the surface of cancer
cells and was found to mediate the targeting recognition of CD44 over-expressing cancer
cells [58]. Hyaluronic acid has incomparable chemical–physical properties, and numerous
biological functions characterize it [18,19]. Also, hyaluronic acid has excellent antioxidants,
good viscoelastic properties, excellent gelling properties, anti-inflammatory properties,
wound-healing activity, excellent cosmetic properties, and drug carrier ability. Therefore,
it is widely used in pharmaceutical, cosmetic, and biomaterials production industries.
Hyaluronic acid has also recently been explored as a drug-delivery agent via different
methods, such as nasal, oral, pulmonary, ophthalmic, topical, and parenteral [18,19].
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2.4. Stem Cell Morphogenesis

Polymeric materials have great potential in tissue engineering thanks to their biodegrad-
ability, processing, and property design flexibility [59]. Moreover, polymers may be used to
regulate cell function. Stem cells are a promising option for tissue engineering since they
uniquely self-renew and differentiate into various lineages, such as neurogenic, osteogenic,
chondrogenic, and myogenic, under proper stimulation from extracellular components [59].
Due to their properties, stem cells and polymeric materials are critical design choices.
Stem cells can self-renew and commit to specific cell lineages under appropriate stimuli.
Polymeric materials are biocompatible, degradable, and flexible in processing and property
design. Therefore, a significant focus of tissue engineering is to utilize polymers, or soft ma-
terials, to control stem cell function via physical, chemical, mechanical, and biological cues
“communicated” from the polymer to the cells [60]. Examples of natural polymers include
collagen, fibrin, and polysaccharides, such as hyaluronic acid and alginate [60]. Polymers
found in nature consist of diverse biological cues that include sequences for cell adhesion.
Consequently, they are capable of being identified by cells. However, natural polymers
are subject to batch-to-batch variation due to their structure and chemical composition
complexity, leading to variations in tissue engineering outcomes [60].

There are at least two advantages of using biopolymeric materials for tissue regener-
ation. First, the structure and composition of polymers can be easily tailored to give rise
to various physical and chemical properties that can promote certain cellular functions,
including proliferation and differentiation, in a controlled manner [60]. Second, many poly-
mers are biodegradable through either hydrolysis or enzymes secreted by cells. Therefore,
over a prescribed time, the scaffold can be replaced by newly formed tissue. Thus, with
degrading polymers, secondary surgery is unnecessary to remove the scaffold after implan-
tation [60]. Polymeric materials are usually encapsulated by a layer of fibroblasts, collagen,
and inflammatory cells in vivo, which is suboptimal for tissue formation. However, the
biocompatibility of polymer materials can be improved by engineering the functionality of
these materials. The behavior of stem cells can be controlled by engineering functionality
into a biomaterial, such as via immobilization of adhesion peptides, modification of surface
chemistry, and mineralizing polymer surfaces [60].

2.5. Wound Healing

Natural polymers play significant roles in different skin wound healing processes,
contributing to the overall effectiveness of wound management and tissue repair. Natural
polymers such as chitosan and hyaluronic acid can help reduce inflammation in the early
inflammation phase of wound healing. With its anti-inflammatory properties, chitosan
can minimize the inflammatory response, while hyaluronic acid contributes to a balanced
immune response, potentially reducing excessive inflammation [14].

Natural polymers like collagen, chitosan, and keratin provide a scaffold for cell mi-
gration and proliferation. Collagen-based dressings act as a structural framework for cells
to move into the wound area and stimulate cell division, promoting granulation tissue
formation [14]. As a primary component of the extracellular matrix, collagen facilitates
the formation of this supportive network. It guides fibroblasts to synthesize new colla-
gen, helping reestablish tissue integrity. Hyaluronic acid and alginate maintain a moist
wound environment conducive to cell proliferation and migration. This wet environment
also helps prevent the formation of scabs, promoting faster healing. Collagen and gelatin
contribute to collagen deposition and organization during the remodeling phase [14,46].
Collagen-based dressings and scaffolds help ensure the proper alignment and bundling
of collagen fibers, improving the tensile strength of the healing tissue. Specific natural
polymers, such as keratin, have been found to minimize scarring and promote a more
natural appearance of healed tissue [14,15]. This is particularly valuable in aesthetic ar-
eas or where scar formation could impair function. Chitosan has inherent antimicrobial
properties, helping prevent infections in the wound area. Chitosan dressings can inhibit
the growth of bacteria, making them suitable for wounds at risk of infection. Alginate
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dressings, composed of seaweed-derived alginic acid, absorb excess exudate from the
wound. This maintains a moist environment and helps prevent bacterial proliferation in
overly damp conditions [61].

Some natural polymers can enhance their bioavailability and activity when used
as carriers for growth factors. This can further stimulate cell proliferation and tissue
regeneration. For instance, hyaluronic acid can be a carrier for growth factors like epidermal
growth factor (EGF). Natural polymers can stimulate angiogenesis (forming new blood
vessels) by influencing growth factors and cell behavior. This is vital for ensuring adequate
blood supply to the healing tissue. Polymers like pectin and chitosan, which can be used
in wound dressings, create a protective barrier over the wound, allowing for oxygen and
nutrient exchange (Figures 3 and 5) [61].
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This can help prevent external contaminants from entering the wound. Natural
polymers play multifaceted roles in different phases of skin wound healing. They support
and optimize the processes of inflammation, proliferation, and tissue remodeling, promote
a favorable wound environment, reduce inflammation, prevent infections, and enhance
tissue regeneration. Their biocompatibility and biodegradability make them valuable
components of wound care strategies, with applications in various types of skin wounds,
ranging from acute injuries to chronic ulcers and surgical incisions [14,61].

2.6. Skin Tissue Engineering

Due to their excellent biocompatibility, biodegradability, and low cytotoxicity, as
compared to synthetic polymers, natural polymers find extensive application in skin
tissue engineering [62]. Polysaccharides and protein-based materials are the two primary
categories of natural polymers employed in hydrogels for this purpose. Dermal substitutes
comprising collagen or hyaluronic acid serve as scaffolds for cellular growth. On the
other hand, epidermal substitutes, consisting of keratinocytes and fibroblasts, replace the
outermost layer of the skin [21].
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2.7. Bone Tissue Engineering

Natural polymers, including alginates, collagens, hyaluronic acid, and gelatin, are
commonly used in bone tissue engineering. These polymers are employed in three primary
forms: nanofibrous scaffolds, hydrogels, and microspheres. Biocomposites have also been
developed for bone tissue engineering by combining natural polymers with hydroxyapatite.
Bone scaffolds serve as a crucial application of natural polymers and provide a supportive
structure for cellular growth [21]. Osteogenic differentiation, involving transforming
mesenchymal stem cells into bone-forming osteoblasts, is another essential aspect of natural
polymer utilization. Additionally, natural polymers are used in bone regeneration strategies,
acting as scaffolds or carriers for growth factors to promote the restoration of damaged or
lost bone tissue [21,22].

2.8. Cartilage Tissue Engineering

Cartilage is composed of thick proteoglycans and collagen. This thick and lubricated
structure presents particular challenges for adhesives and bonding strategies. Furthermore,
cartilage defects lack a regenerative capacity, as they lack blood vessels/neural tubes.
Natural polymers, such as collagen, chitosan, gelatin alginate, silk fibroin, and hyaluronan,
have extensive applications in cartilage tissue engineering [21]. Cartilage scaffolds serve as
primary natural polymers in cartilage tissue engineering, providing a supportive structure
for cellular growth. Various materials can fabricate these scaffolds, including chitosan,
collagen, alginate, silk fibroin, hyaluronan, and gelatin. Chondrogenic differentiation is
another significant application of natural polymers involving transforming mesenchymal
stem cells into chondrocytes, contributing to cartilage formation. Furthermore, natural
polymers are being investigated for repair and regeneration techniques to promote the
restoration of damaged or lost cartilage tissue. These techniques often employ natural
polymers as scaffolds or carriers for growth factors [21].

2.9. Heart Valve Tissue Engineering

Polysaccharides are the most abundant biomaterials in nature and meet several criteria
for eligibility for tissue engineering, which include biocompatibility, biodegradation, and
the ability to support cell development. Due to their biological properties and structural
and functional similarities to ECM, it is reasonable to use them in tissue engineering [23].
Polysaccharides become essential to promote heart valve tissue regeneration in combination
with appropriate cells or bioactive molecules. Their applications for heart valve tissue
engineering are vast and varied, and approximately 70% of all studies in this field focus on
chitosan, alginate, hyaluronic acid, and cellulose, respectively [23].

2.10. Cell Encapsulation

Cell encapsulation instead of therapeutic product encapsulation leads to longer deliv-
ery times, as cells continuously release encapsulated products. Moreover, cell encapsulation
allows for the transplantation of non-human cells, which may be considered an alternative
to the limited supply of donor tissues. In addition, genetically modified cells could also be
immobilized to express any desired protein in vivo without host genome modifications [63].
Cell immobilization displays a significant advantage compared to protein encapsulation, al-
lowing for the sustained and controlled delivery of de novo-produced therapeutic products
at constant rates, leading to physiological concentrations. The versatility of this approach
has adapted its use in treating diabetes, cancer, central nervous system diseases, heart
diseases, and endocrinological disorders, among others. Hydrogels are among the most
promising biomaterials for recreating native extracellular matrix (ECM) properties due to
their high water content, biological compatibility, and moldability (Figure 6) [24].
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Alginate is the most studied material for cell encapsulation and has been adopted
for many biomedical applications. Alginate has historically been used as a protective
barrier to enhance cell therapies for immunoprotection of pancreatic islets, treatment of
brain tumors, treatment of anemia, and cryopreservation [64]. Current treatments include
surgery, immunotherapy, chemotherapy, targeted therapy, hormone therapy, and radiation
therapy and result in numerous adverse effects affecting the patient’s health, making the
search for alternative therapies an emerging need [24,64]. Another critical study reported
that liposomes, vesicles formed by phospholipids encapsulated in an alginate matrix, were
transported directly and could release drugs directly to the colon cancer target, reaching
higher drug concentrations in the tumor. Thus, in addition to comprising an alternative to
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cancer treatment, one of the most common diseases worldwide with high mortality rates,
the alginate biopolymer may also be used as a carrier agent for targeted drugs [24].

2.11. Biofabrication

Recent advancements in biofabrication techniques allow the production of a polymer
matrix biophysically and structurally similar to the ECM. Combined with different cell lines,
this matrix can proliferate and differentiate into the desired tissue. Moreover, incorporating
different growth factors or other biomolecules can improve the cells’ migration, growth,
and differentiation [1,15].

Numerous research studies for polymer matrix biofabrication follow two different
strategies for cell incorporation: (i) cell implantation on a previously formed polymer
matrix and (ii) fabrication of a polymer matrix with encapsulated cells.

The first strategy has been used for the last decade and is restricted to cell implantation.
Typically, these techniques do not enable effective assimilation between cells and the
polymer matrix. The success of these methods in regenerating tissues depends on the
polymer matrix’s physical characteristics, such as its degradation rate, hydrophobicity, and
stiffness. The most used techniques are layer-by-layer melt molding, photolithography,
and self-assembly [1].

The second strategy has been implemented in recent years as it allows the fabrication
of advanced cell-laden structures with complex cellular microenvironments. Recently,
advanced techniques, such as microfluidics, electrospinning, and 3D bioprinting, have
permitted the integration of cells directly into the polymer matrix with accurate physical
and biological properties to match the ECM of the desired tissue [1].

2.12. Bio-Based Monomers

Itaconic acid, a promising bio-based monomer material, can be obtained using fermen-
tation. Baup discovered it in 1836 while conducting the pyrolysis of citric acid. However, it
was only in 1932 that it was reported as a biological product synthesized by Aspergillus ita-
conicus [18]. Due to its non-toxicity, biocompatibility, biodegradability, chemical reactivity,
and microbe resistance, it has excellent potential for various scientific uses in biomedical,
food, agricultural, pharmaceutical, and other industries [18,25].

Georgius Agricola discovered succinic acid in 1546 [18]. Succinic acid is a C-4 dicar-
boxylic acid, considered one of the most promising bio-based monomers for producing
microbial fermentation. It has been used in the food industry and is derived from vari-
ous microorganisms and agricultural carbohydrates; it is non-toxic, biocompatible, and
biodegradable. Thus, it is widely used in developing biomedical products, food addi-
tives, pharmaceutical products, surfactants, detergents, microbe-resistant products, green
solvents, and biodegradable plastics [18,65].

Citric acid production on an industrial scale began in 1890, thanks to the Italian citrus
fruit industry. In 1917, James Currie, an American food chemist, discovered a way to
produce citric acid using Aspergillus niger [18]. Two years later, Pfizer, a pharmaceutical
company, started using this technique for industrial production [18]. Citric acid is a
natural organic compound involved in the Krebs cycle. It is multifunctional, nontoxic,
biocompatible, and biodegradable. It finds widespread use in the chemical, food, cleaning,
and biomaterials production industries [18,66]. While the industrial applications of citric
acid are well known, the biomedical applications of chemically and physically modified
citric acid or cross-linked polymer biomaterials have not been thoroughly reviewed.

Microbial fermentation produces glutamic acid, a biodegradable natural bio-based
amino acid monomer. In 1866, Karl Heinrich Ritthausen, a German chemist, discovered
and identified glutamic acid by treating wheat gluten (the substance’s namesake) with
sulfuric acid [18]. Glutamic acid plays a crucial role in the body’s disposal of excess or
waste nitrogen and undergoes oxidative deamination catalyzed by glutamate dehydroge-
nase. Because of its non-toxicity, biodegradability, biocompatibility, and excellent cation
chelating ability, glutamic acid has various applications in various industries, such as
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pharmaceuticals, cosmetics, food, water treatment, and agriculture [18,67]. Poly (glutamic
acid) (PGA) is a natural linear polymer synthesized by bacilli like Bacillus subtilis, formed
by the peptide bonds between the α-amino group and the γ-carboxyl group at the end of
the glutamic acid side chain. Biomaterial development has extensively utilized glutamic
acid due to its excellent bioactive properties, which can be achieved by chemical and
physical modification or cross-linking with natural and synthetic polymers [18,67]. Table 2
summarizes the characteristics of the natural bio-based monomers mentioned.

Table 2. Characteristics of some natural bio-based monomers used in biomedical applications
optimized according to reference [18].

Bio-Based
Monomers Source Characteristics

Itaconic acid Aspergillus itaconicus

Antimicrobial activity, non-toxic, biocompatible, biodegradable, chemical
reactivity, surfactant forming ability, hydrophilic activity, wound-healing
activity, coating forming ability, water uptake ability, drug carrier ability, and
hydrogel-forming ability

Succinic acid
Actinobacillus succinogenes,
Anaerobiospirillum, and
Mannheimia succiniciproducens

Biocompatible, biodegradable, non-toxic, chemical reactivity, food additives
ability, food flavoring ability, surfactant/detergent extender/foaming ability,
drug carrier ability, pH control ability, antimicrobial activity, and corrosion
prevention ability

Citric acid Citrus fruits and
Aspergillus niger

Biocompatible, biodegradable, non-toxic, excellent chelating property,
anti-odor property, chemical reactivity, pH control ability, food additives
ability, food flavoring/preservative ability, and drug carrier ability

Glutamic acid Bacillus subtilis and Bacillus
licheniformis

Biodegradable, biocompatible, non-toxic, excellent chelating property, heavy
metal removal ability, cosmetic property, drug carrier ability, hydrophilic
activity, anionic property, thickener property, aging inhibitor ability, and use as
an additive

3. Natural Polymers for Environmental Use
3.1. Food Packaging

Various natural polymers from renewable sources have been used to develop biobased
food packaging. The primary natural sources used for packaging are derived from polysac-
charides, lipids, proteins, or blends of these polymers. The utilization of these natural
materials is linked to their biodegradability and renewability [26]. However, other advan-
tages are expected when used for food packaging. For example, these materials can act as
carriers of functional substances, add well-being benefits, incorporate flavorings and color-
ings, enhance organoleptic characteristics, improve mechanical and barrier resistance, etc.

Polysaccharides possess suitable oxygen barriers and have sites for hydrogen bonding
formation, which can be used to incorporate functional substances, e.g., coloring, flavoring,
and antioxidant agents. In contrast, these materials do not exhibit an excellent barrier to
water vapor, which can be overcome by blending with other hydrophobic substances, such
as lipids. Polysaccharides have been used to develop natural-based packaging [26,27].

Plant-derived proteins have gained the remarkable attention of food manufacturers
and consumers searching for natural food resources and alternative materials to vegetarian,
vegan, and food allergy diet restrictions. Protein-based film packaging exhibits extraordi-
nary mechanical and barrier properties, especially against oxygen and carbon dioxide gases,
compared to polysaccharides. In addition to being eco-friendly materials, these films can
nutritionally improve food quality and preservation. Moreover, the amphiphilic attribute of
proteins contributes to their utilization as emulsifiers by stabilizing the oil/water interface
due to changes in interfacial tension. Many plant proteins, such as soybean, wheat, corn,
sunflower, and peas, are used in the food industry and packaging [27].

Edible films can be defined as a thin layer of a material coating or placed between
foods, which act as a barrier and that can be consumed without any health risk. Both are
primary food packaging and can be considered similar, although they differ substantially.
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Mainly, films are solid laminates, separately prepared, dried, processed, and then used to
cover food surfaces, placed between food parts, or used as an edible sealed bag. Differently,
coatings are prepared as a solution, directly sprayed or dipped on the food surface, and
then dried. Thus, coatings can be considered part of the food product since they are not
made to be removed. Moreover, films can be prepared as mono, bi, or multilayers. The
latter provide a better water barrier to food but are less commonly used as they need two
or more casting and drying processing steps [20].

Both films and coatings should be composed only of food-grade components, GRAS
(generally recognized as safe), including any additives, such as plasticizers. As with
other packaging, these materials must protect the food’s integrity and quality. Although
edible films are not expected to replace all conventional packaging, they can significantly
reduce the use of petroleum-based plastics, decrease food losses, and reduce environmental
pollution over long periods [28].

3.2. Nano Fertilizers and Micronutrients

Biopolymers such as alginate, cellulose, chitin, chitosan, hemicellulose, lignin, polypep-
tides, and polyesters, used as nanocarriers to encapsulate nutrients and avoid dissolution
and oxidation, are an eco-friendly option due to their natural origins and are biodegradable
when compared to bulk synthetic fertilizers (Figure 7).
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Chitosan is the most accepted biopolymer for agriculture due to its innocuous origin
and ability to protect plant cells. It is also an easy-to-manipulate matrix to program the
adsorption and slow release of the target active ingredient. The cover of nano fertilizers is
designed to be porous for the slow release of the nutrient content. The time and dose of
nutrient release will depend on the plant’s requirement [29,69].

Commercial nano nutrients offer advantages such as controlled release due to the
cover materials of the mentioned fertilizers. Controlled release refers to the slow delivery
of the nutrient over months. Some available products coated with patented biopolymers
are Agrocote (ICL Group Ltd., St. Louis, MO, USA), ESN Smart nitrogen (Nutrien Ltd.,
Joplin, MO, USA and Saskatoon, SK, Canada), Meister (OCP Ltd., Clayton, Australia),
Multicote (Haifa Group Ltd., Israel, with offices in five continents), Nutricote of Florikan
CRF (Florikan Ltd., Sarasota, FL, USA), and Osmocote (ICL Group Ltd.); zeolites are
generally used as fertilizers for fruit trees, coffee beans, bananas, sugar cane, vegetables,
potatoes, rice, corn, and wheat, among others [29].
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Finally, biopolymers as nanocarriers of nano fertilizers or micronutrients have advan-
tages over conventional fertilizers, such as the low amount applied and the controlled
nutrient release, which is more profitable for increasing crop production and fruit qual-
ity. Therefore, the future of nano fertilizers is promising because of the ecological ap-
proach [29]. A scheme of the different types of polymer-based nanocarriers is presented in
Figure 8.
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side of the membrane (dark blue color), thus forming a typical bilayer membrane structure similar
to that of liposomes; Lower right: In polymer micelles, hydrophobic drugs are encapsulated in the
hydrophobic core (yellow/orange color), while the hydrophilic shell (blue color) plays a role in
maintaining particle stability, which makes it suitable for intravenous injection.

3.3. Nanocarriers of Fungicides/Bactericides/Viricides

Although other polymers can be applied in agriculture, chitosan is one of the essential
enhancers of plant defenses, as this biodegradable polysaccharide hydrogel forms protec-
tion barriers in plants and helps the plant develop defense responses against pathogens.
These properties of chitosan-based obstacles have been tested with excellent efficacy against
fungi and oomycetes [29]. Moreover, chitosan can be combined with other materials (e.g.,
montmorillonite) to encapsulate nutrients or active ingredients of pesticides. Addition-
ally, hydrogels containing plant repellents (essential oils) encapsulated in nanoparticles
were fabricated for plant protection. Some reports showed chitosan-based micelles as a
controlled-release formulation for biosafe pesticide delivery [29].
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3.4. Nanocarriers of Insecticides

Polymer-based materials have also been found to be effective insecticide carriers,
mainly by increasing their solubility in water. Microspheres composed of chitosan and
cashew tree gum were developed and loaded with the essential oil of Lippia sidoides, active
against larvae of Aedes aegypti, to use as a bioinsecticide to control larvae proliferation. These
chitosan-based capsules showed a prolonged larvicidal effect. Similarly, microcapsules
of alginate and chitosan were found to be suitable matrices to carry nano imidacloprid
bioinsecticide. Interestingly, this carrier system allowed for up to eight times longer
insecticide release when compared with an insecticide used alone [29].

Moreover, release time depends on the concentration of alginate and chitosan used for
encapsulation. The amphiphilic derivative of chitosan, N-(octadecanol-1-glycidyl ether)-
O-sulfate chitosan, was used to form spherical polymeric micelles (167–204 nm size) for
the encapsulation of insecticide. These nanoparticles were formed by self-assembly in an
aqueous solution, increasing the 1300-fold solubility of rotenone in water and providing
sustained release. The development of carboxymethyl chitosan nanoparticles with ricinoleic
acid as an emulsifier for azadirachtin was helpful as an insecticide agent for agricultural
applications due to the slow release of the active compound. These spherical particles in a
size range of 200–500 nm showed good polydispersion, smooth high zeta potential, and
solubilization in the water of the lipid-soluble azadirachtin [29].

3.5. Bioplastics

A material can be considered a bioplastic if it possesses the following properties, as per
the European Bioplastics Organization (EBO): it is either bio-based, biodegradable, or has
both characteristics. Bio-based refers to materials or products derived wholly or partially
from renewable resources (biomass), thereby replacing the petrochemical resin typical of
conventional plastics with vegetable or animal polymers. Natural fibers, such as wood
fibers, hemp, flax, sisal, and jute, replace compounds like glass carbon fiber or talc. Agro-
polymers-based bioplastics are made from well-known feedstocks such as starch, cellulose,
pectin, and animal and vegetable proteins, such as casein and gluten (Figure 9) [70].
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Polysaccharides such as cellulose and pectin can be obtained from various fruits and
vegetables such as potatoes, corn, rice, tapioca, and apples. These are primarily used in the
manufacture of packaging materials [72]. Protein additives are frequently utilized to create
materials with new or enhanced technological features. The elemental compositions of
proteins (covalent bonds between hundreds of amino acids) and polysaccharides (covalent
bonds between ramifications of monosaccharides) differ. Thus, when mixed, they can
exhibit different physicochemical and rheological properties, resulting in a wide range of
two- and three-dimensional structures.
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In addition, many polymers could be produced by various microorganisms cul-
tured under different nutrient and environmental conditions. Polyhydroxyalkanoates
(PHAs) are linear thermoplastic polymers with hydroxyalkanoic acid as a monomer
unit [31]. They can be synthesized intracellularly as insoluble cytoplasmic inclusions
by heterotrophic bacteria, such as Cupriavidus necator, recombinant Escherichia coli, and
photoautotrophic microorganisms like microalgae. Their synthesis occurs due to excess
carbon when other essential nutrients, such as oxygen, nitrogen, or phosphorus, are
restricted. After their extraction from cell cultures, they can be processed similarly to
polypropylene, including extrusion and injection molding, obtaining a material with similar
properties [31].

Bacteria can also be used to produce biodegradable polymers through the fermentation
of carbohydrates obtained from agricultural by-products such as sugar, corn, wheat, and
corn starch. Poly(lactic acid) (PLA)-based bioplastics are obtained from a fermentative
process that involves converting carbohydrate sources into dextrose, followed by fermen-
tation or conversion into lactic acid. Therefore, lactic acid is isolated and polymerized to
yield a low molecular weight, brittle polymer whose chain length could be increased using
external coupling agents [31].

4. Methods of Isolation and Physicochemical Parameters of Natural Polymers

In earlier days, biopolymers were isolated from agricultural feedstock such as corn,
potatoes, and other food residues by chemical processes. Still, due to biotechnological
developments, the focus has shifted to renewable sources other than food, like cellulosic
biomass, by various enzymatic and bacterial fermentations. In addition to these plant
biopolymers, bio-based polymers from animal sources such as proteins, nucleic acids,
collagen, and chitosan have shown a mammoth increase due to recent technological and
commercial process improvements [73].

Several methods are available to isolate biopolymers from these natural sources. Two
basic principles are followed to make biopolymers from raw sources: acid or alkaline
hydrolysis, the production of monomers by chemical modification/bacterial fermentation,
and enzymatic processes. For the efficient production of biopolymers, it is necessary to
characterize them using different methods. There are different physicochemical charac-
terization methods available for each biopolymer to identify the molecular properties,
morphology, isoelectric points, and functional group by methods such as scanning electron
microscope (SEM), X-ray diffraction (XRD), gel electrophoresis, Fourier transform infrared
(FTIR) spectroscopy, etc. [73].

Polymers derived from plants are obtained by soaking parts of the plant, such as
the leaves, roots, seeds, or fruits, in water at ambient or high temperatures. The gum or
mucilage is then separated from the plant part through filtration methods like a muslin
bag. The mucilage is separated from water by adding alcohol, typically absolute ethanol,
as it provides a higher yield than ethanol: water mixture precipitates faster. Ethanol
is also preferred because it is eco-friendly and FDA-approved [32,74]. Other solvents
like acetone and methanol are also used for mucilage precipitation. The mucilage is
then dried through air-drying or oven-drying. However, instead of precipitation with
alcohol, Ahuja and co-workers decided to dry the mucilage. They macerated Mimosa
pudica seeds in water for ten hours and then dried the obtained mucilage, including
the seeds, in the oven for approximately 4–5 h at 50 ◦C. Later, the dried mucilage was
separated from the seeds by passing it through № 18 mesh, and the seed husks were
removed by winnowing. Some people prefer to freeze-dry the mucilage instead of heating it
(Figure 10) [32,74].
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5. Synthetic Polymers for Biomedical Use
5.1. Antiviral

Polymers are widely used in surface coating applications due to their long chain length
or high molecular weight. They can form many physical bonds with the surface, resulting
in irreversible coating. This makes them an attractive material for antiviral purposes
because they can bond irreversibly with viral glycoproteins, covering and concealing the
viral surface and preventing interaction with host cells [33]. Synthetic polymers offer an
advantage over natural ones since they can be engineered to maximize antiviral activity
against specific viruses. The chemical composition, functional group type and extent of
functionalization, molecular weight, charge density, distribution, degradation, and stability
can all be tailored to enhance antiviral properties. Dendrimers and sialyl-based polymers
are synthetic polymers extensively researched as antiviral agents against infections [33].

5.2. Antibacterial

In a study by Lui et al., nylon-3 polymers were evaluated for inhibitory activity
toward C. difficile [75]. Some of these polymers were previously shown to be active against
other pathogenic bacteria, including methicillin-resistant Staphylococcus aureus (MRSA),
vancomycin-resistant Enterococcus faecium (VREF), Salmonella enterica LT2, Bacillus cereus
ATCC14579, Pseudomonas aeruginosa PA1066, and uropathogenic E. coli CFT073. These
polymers inhibit the growth of the pathogen’s vegetative form and prevent the outgrowth
of the spore form of C. difficile. Preventing the development of vegetative cells is critical
to controlling infection and stopping the production of toxins that lead to human disease.
Preventing the outgrowth of spores has the added advantage of avoiding vegetative growth
entirely (Figure 11) [75].
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In a study by Zhang et al., a novel hydrogel dressing with polyasparthydrazide (PAHy)
nanofibers and silver nanoparticles (AgNPs) demonstrated excellent antibacterial activity
against E. coli and S. aureus. The hydrogel mat also showed a great ability to promote wound
healing in animal studies by promoting re-epithelialization and collagen deposition [76].

5.3. Antifungal

Encapsulating drugs into functionalized polymeric nanoparticles (NPs) is a new al-
ternative to reach the specific therapeutic target with lower doses. However, when NPs
come into contact with physiological media, proteins adsorb on their surfaces, forming
a protein corona (PC) biomolecular layer and acquiring a distinct biological identity that
alters cell interactions. Mejía et al. tested Itraconazole (ITZ), an antifungal agent, encapsu-
lated into PEGylated and functionalized NPs with high specificity for macrophages [77].
Minimum inhibitory concentration (MIC) and colony-forming unit assays demonstrated
that encapsulating ITZ into poly (ethylene glycol) (PEG) NPs improves the antifungal effect
compared to NPs lacking PEG. The improvement can be due to the synergistic effect of the
encapsulated ITZ and NP composition and the reduction of PC formation in PEG NPs [77].

5.4. Antitumor

Our experimental contribution is explained in one of our papers, which reveals that
PEO-b-PnBA-b-PAA triblock terpolymers, comprising a relatively longer PEO and much
shorter PAA outer blocks, are promising precursors for the preparation of multifunctional
nano-carriers foreseen for multi-drug therapy application [78]. The formation of a mul-
tilayer micellar structure, consisting of a hydrophobic PnBA core, a PEO/PAA middle
layer, and a hydrated PEO outer layer, was exploited to load two anti-cancer agents within
the carrier, preserving the colloidal stability of the system. The co-existence of AgNPs
and curcumin significantly increased the agents’ cytotoxic activity compared to individual
drug/AgNP-loaded carriers. The combined administration of two active agents allows
for minimizing the amount of each drug and eventually suppressing the drug resistance
through different action mechanisms [78].

Synthetic biomaterials have also been used to form multicellular tumor spheroid mod-
els (MCTSs). MCTSs are often created as 3D in vitro models that can mimic the microenvi-
ronment of tissues [34]. MCTSs have gained increasing interest in nano-biotechnology as
they can provide easily accessible information on nanoparticle performance without animal
models. Synthetic polymers offer several advantages over natural ECMs, including more
tunable stiffness, cell ligand density, and other biochemical properties. However, these syn-
thetic materials are biologically inactive and thus must be functionalized with cell adhesion
peptide domains to encourage cell adhesion and crosslinked to form biodegradable bonds
for cell remodeling of the ECM [34].
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Lastly, Wang et al. designed a nanomotor with integrated fluorescence and therapeutic
potential based on biodegradable polymersomes equipped with aggregation-induced
emission (AIE) agents [79]. AIE segments provide the polymersomes with autofluorescence,
facilitating the visualization of cell uptake. These polymersomes display fluorescence upon
laser irradiation and produce reactive oxygen species (ROS). As ROS are also used for
cancer cell treatment, polymersomes act as delivery vehicles and therapeutic agents [79].

5.5. Myocardial Tissue Engineering

Synthetic polymeric scaffolds are excellent candidates for cardiac patch tissue engi-
neering because they are easily tailored and fabricated to fit the particular needs of native
tissues [37]. Polymers have a wide range of mechanical properties and good biocom-
patibility, and their degradation rate can be easily manipulated. Additionally, synthetic
polymers are known for their durability, porosity, and microstructure and can be tailored
to meet the specifications of natural cardiac tissues. Though polymers as biomaterials
can lead to reduced cell adhesion and scaffold integration, specific modifications, such
as adding stimuli and growth factors, maintain their popularity as candidates for tissue
scaffolds. Polymer chain variabilities lie in the chemical structures, molecular weights,
molecular weight distribution, and functional groups that can be attached to the poly-
mer [37]. Cardiac scaffolds require a certain degree of elasticity and mechanical strength to
withstand the dynamic nature of the heart. Many cardiac scaffolds developed incorporate
a combination of polymers to achieve these properties. Blending polymers in scaffolds
combines the mechanical properties of different polymers to form a scaffold with many
desirable characteristics. Several biodegradable polymers, such as poly(ε-caprolactone)
(PCL), poly (glycerol sebacate) (PGS), poly (lactic-co-glycolic acid) (PLGA), biodegradable
polyurethane (PU), and poly(l-lactide) (PLLA), are common polymers of interest for cardiac
patch application research [80].

5.6. Insulin Drug Carriers

In another study conducted by us, experimental results and research show that block
copolymer micelles (BCMs) are among the most studied nanocarriers of various low-
molar-mass therapeutic substances and biomacromolecules intended to treat numerous
diseases [81]. The main advantages of BCMs compared to other polymeric carriers are
their small size, high colloid stability in vitro and in vivo, low toxicity, and potential to
effectively dissolve and deliver hydrophobic bioactive substances to target organs/tissue
in a controlled manner (Figure 12).
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Several peptides and proteins have emerged as promising therapeutic agents for
treating cancer, diabetes, anemia, hemophilia, etc. A significant obstacle to the controlled
delivery of these agents to target sites often arises from the large size of molecules, sensi-
tivity to denaturation and degradation, short half-life, and poor bioavailability [81]. One
of the promising strategies to solve these problems is to use polymeric nanocarriers since
they have several advantages over conventional delivery systems (e.g., tablets, capsules,
beads, microparticles, and microemulsions). Incorporation into polymer nanocarriers pro-
tected insulin molecules from degradation in the case of proteins like insulin. It facilitated
their uptake via transcellular and paracellular pathways, increasing therapeutic efficacy.
In addition to the variety of insulin-loaded particles developed in the last two decades
via the complexation of insulin with positively charged polymers, polymeric micelles
have attracted particular attention as highly desirable carriers of insulin because of their
characteristics (nanoscale size, protective shell, and fictional groups), which favor more
extended circulation stability, more straightforward renal clearance, and controlled release
of insulin [81].

5.7. Biofilm

Personal experimental results in this field showing the effectiveness of cationic poly-
mer micelles (CPMs) based on newly synthesized di- and triblock copolymers were
tested to destroy pre-formed biofilms of Gram-negative and Gram-positive bacterial
strains [82]. Block copolymers based on quaternized poly (2-vinylpyridine) (PQVP) and
poly (2-(dimethylamino)ethyl methacrylate) (PDMAEMA) cationic moieties were used.
Biofilms of Escherichia coli 420, Pseudomonas aeruginosa PAO1, Staphylococcus aureus 29213,
and Bacillus subtilis 168 were cultivated for 24 h, then the pre-formed biofilms were treated
with CPMs for 2, 4, or 6 h. Treatment with CPMs resulted in a reduction in the biomass of
the pre-formed biofilms. The promising effects of the tested CPMs have been confirmed
on the model of four single-species biofilms, two Gram-negative and two Gram-positive
strains with good biofilm-forming potential. This implies the applicability of the CPMs to
medically necessary biofilms [82].

The study shows that polymeric cationic micelles can remove bacterial biofilms from
contaminated surfaces in hospitals and the food processing industry, decontaminate medi-
cal devices, and treat surface-exposed biofilm-related skin lesions. Of the tested micelles,
MKPa4 and MKPa12 are applicable against Gram-negative and Gram-positive bacteria,
while PSPQ2VP 35 and PSPQ2VP 115 are effective against Gram-positives only. The
micelles are also expected to have the potential for drug delivery within biofilms [82].

5.8. Gene Delivery

A novel gene delivery system, described in detail in one of our papers, encapsulates
a polyplex between pDNA and cationic micelles with a biodegradable crosslinked shell.
The outer shell can provide additional functionality to the system and protect DNA from
degradation. The encapsulated polyplex exhibits a similar transfection efficiency to the
naked polyplex [83].

In a study by Kaygisiz et al., non-pathogenic viral particles are described as promising
prospective vectors for delivering genetic material into cells in the context of gene therapy
and vaccines [84]. Lentiviruses and γ-retroviruses are the vectors of choice in fundamental
research as well as most clinical trials that are currently underway. However, low con-
centrations of viral vectors must be used to avoid side effects such as cytotoxicity and
immunogenic reactions. Therefore, efficient virion-cell attachment is essential for gene
transduction, which remains a significant challenge in retroviral gene delivery. In ex vivo
clinical applications, preventing exposure to possibly harmful substances to the patient is
paramount. Therefore, any aggregated adjuvants should be removed or degraded after
successful transduction. Transduction-enhancing additives have been reported to overcome
these challenges, including synthetic polymers, lipids, peptides, and others [84].
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5.9. Bioink in 3D Printing

Three-dimensional (3D) printing technologies enable manufacturing processes that
automatically produce complex structures directly from computer-aided design (CAD)
models with high resolution and sophistication [38]. These technologies are based on a lay-
ered manufacturing paradigm that builds solid objects by incremental material deposition
and fusion of thin cross-sectional layers. By breaking down complex 3D shapes into simpler
two-dimensional (2D) layers, assembling very complex structures can be dramatically
simplified under the instructions of CAD models. Three-dimensional printing technologies
are considered the most convenient and reliable technique for manufacturing bioartificial
organs with multiple types of cells and other biomaterials [38].

As the main components of ‘bioinks,’ polymers have played a critical role in organ 3D
printing during layered 3D construction processes. Most ‘bioinks’ are cell-laden polymeric
hydrogels, which are usually formed through physical (reversible), chemical (reversible
or irreversible), or biochemical (irreversible) crosslinking of homopolymer or copolymer
solutions. Cell behaviors within polymeric hydrogels can be controlled by changing the
physical and chemical properties of the employed polymers. Polymeric hydrogels used
for organ 3D printing include natural and synthetic polymers and their combinations.
Natural polymeric chains are entirely bioactive groups that can provide a benign and
stable environment for cells, mainly stem cells, to grow, migrate, increase, and differentiate
inside. Synthetic polymeric networks are comprised of repeatable inert units. They are
usually superior to natural polymers regarding mechanical properties and immunogenic
responses. The most commonly printed synthetic polymers include poly (lactic acid) (PLA),
poly (glycolic acid) (PGA), polylactic-co-glycolic acid (PLGA), polyurethane (PU), and
polycaprolactone (PCL) (Figure 13) [38].
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5.10. Textiles in Medicine

Textiles in medicine, such as non-implantable textiles, are mainly used for external
applications outside the human body for surface wound treatments of different parts of
the human body [40]. They protect against infection, absorb blood and exudates, and
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promote healing. They include wound dressings, bandages, plasters, absorbent pads,
gauze, wadding, pressure garments, orthopedic belts, heating pads, etc. Common types of
medical textiles for wound healing are made from different kinds of fibers, such as cotton
and silk, and natural and synthetic polymers, like polyester, polyamide, PP, polyurethane,
polytetrafluoroethylene, alginates, proteins, poly-glycolic acid, regenerated cellulose, chitin,
and chitosan [40].

Compared with natural polymers, synthetic polymers have good mechanical prop-
erties and thermal stability and can be more easily processed into different forms with
controlled batch-to-batch consistency during production. Depending on their application,
synthetic polymers have high tunability properties, such as strength, flexibility, degrada-
tion rate, resistivity, and chemical inertness. They are cheaper for producing fibers and
yarns. The degree of control over synthetic polymers offers excellent versatility for many
different applications. On the other hand, biopolymers typically have better biofunctions
and biodegradation properties [85]. In some applications, natural–synthetic blends are of
interest, as they can combine the advantages of each polymer type while avoiding their
disadvantages [86,87].

In a recent review by Li et al. [35], surgical suture materials from both synthetic and
natural polymers are discussed, along with their advantages and disadvantages. The review
covers various fiber fabrication strategies and advanced designs for the development
of surgical sutures with multiple functionalization, such as surface-coating and drug-
loading technologies.

6. Synthetic Polymers for Environmental Use
6.1. Agriculture

Synthetic polymers play an essential role in agriculture, such as structural materials
for creating a climate beneficial to plant growth, e.g., mulches, shelters, or greenhouses,
fumigation, and irrigation in transporting and controlling water distribution. However,
the principle requirement for polymers used in these applications concerns their physical
properties, such as stability, permeability, transmission, or weatherability, as inert materials
rather than active molecules [88]. In recent years, there has been significant interest in the
science and technology of reactive functionalized polymers, considered one of the most
fascinating areas of polymer chemistry. These polymers have gained popularity due to
their ability to produce improved materials. This is because of the active functional groups
and the characteristic properties of polymeric molecules. Reactive functionalized polymers
have found broad applications in various fields, such as solid-phase synthesis, biologically
active systems, and different technological uses [88].

6.2. Food Packaging

Traditional polymers used in food packaging applications include polyethylene (PE),
poly(ethylene terephthalate) (PET), or polystyrene (PS), among others [89]. These polymers
protect against chemical, biological, and physical damage and prevent the loss of flavor,
aroma, and antioxidants. They also ensure an adequate balance of gases and humidity
inside the packaged food, increasing its shelf life and facilitating its handling [41].

6.3. Hazardous Waste Management

Cesium-137 (137Cs), a primary component of intermediate-level radioactive nuclear
waste, poses a significant hazard due to its intense radioactivity and long half-life. In partic-
ular, Cs+ in its ionic form can penetrate organisms and dissolve into natural water bodies,
causing irreversible damage and persistent radioactive pollution. Three-dimensional-
printed geopolymer lattices (3DGPLs) have recently been considered promising for haz-
ardous waste management due to their low cost, porous nature, and excellent environ-
mental stability [90]. Geopolymers (GP) are a class of inorganic polymers composed of a
SiO4/AlO4 tetrahedral framework and countercations. In a study by Siqi Ma et al., the Cs+

adsorption and immobilization properties of 3DGPLs in the presence of competing ions
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and gamma-ray radiation were observed. The results reveal the inhibitory intensity of Cs+’s
adsorption capacity by five common metal cations in seawater, ranked in the following
order: Na+ > K+ > Ca2+ > Mg2+ > Sr2+ [90].

Water and wastewater treatment have also been possible using molecularly im-
printed polymers (MIPs), custom-made materials with specific recognition sites for a
target molecule. Their specificity and the variety of materials and physical shapes in
which they can be fabricated make them ideal components for sensing platforms. Before
polymerization, the target analyte, or template, is combined with a functional monomer
to form a precursor structure by covalent, semi-covalent, or non-covalent bonding [42].
Then, they are polymerized in the presence of a crosslinker and an initiator in a poro-
genic solvent. Afterward, the template is eluted by extraction with a proper solvent
or chemical cleavage to create empty recognition cavities in the polymer matrix, whose
morphology and functionality complement the template molecule. In addition to wa-
ter and wastewater treatment, MIPs have also been fabricated for solid-phase extrac-
tion, chromatographic separation, catalysis, drug delivery, the study of the structure
and function of proteins, environmental and biomedical sensing, and membrane-based
separations [42].

6.4. Phenol Degradation

Phenol and its numerous derivatives are widely exploited in the chemical industry,
agriculture, and wood processing. They are highly toxic, mutagenic, and teratogenic,
and some of them have been reported as potential carcinogens. Phenol is a primary raw
material in the chemical industry and a byproduct of benzene processing. The chem-
ical, wood, textile, and oil-processing industries release it into the environment. The
world’s production reaches seven million tons per year [91]. Many bacteria belonging
to the genera Pseudomonas, Acinetobacter, Alcaligenes, Bacillus, Sphyngomonas, and Geobac-
ter, as well as some fungal species that belong to Aspergillus, Trichosporon, or Candida,
are known to degrade phenol. Few studies have been reported on phenol degradation
by immobilized bacteria. These include reports on immobilizing microbes on polymers
such as polyacrylamide, polyurethane, polyamide, polyacrylonitrile, or polyvinyl alco-
hol. Recent investigations demonstrated that synthetic polymers are the most appropriate
materials for microbial immobilization, especially for biotechnological applications [91].
Our study showed that two environmental strains, Pseudomonas rhodesiae, KCM R5, and
Bacillus subtilis, RG5, were successfully entrapped in PEO cryogels. The strains were
isolated from heavy metal and pesticide-polluted soils and showed phenol removal at
concentrations of 1000 mg L−1 for a period of 30 days for Pseudomonas rhodesiae, KCM
R5/PEO cryogel, and 600 mg L−1 for a period of 17 days for Bacillus subtilis, RG5/PEO
cryogel [91].

Immobilized bacteria possess some advantages over free-swimming or planktonic
cells. They harbor higher genetic capability due to the increased plasmid transfer in
the microbial biofilms produced during cell immobilization. Also, cell immobilization is
biotechnologically easier because of facilitated process control.

Among synthetic polymers, poly (ethylene oxide) (PEO) hydrogels are excellent can-
didates for bacterial immobilization because they are nontoxic, biocompatible materials
and meet all strength, absorbance, flexibility, and adhesiveness requirements [91]. PEO
hydrogels were first obtained in situ by γ-irradiation of dilute aqueous solutions and later
via methods based on chemical cross-linking. Hydrogels of high molecular weight (MW)
PEO are also easy to synthesize in situ by ultraviolet (UV) cross-linking of PEO in aqueous
solution. Moreover, when UV cross-linking is carried out in a frozen aqueous system,
super-macroporous hydrogels (cryogels) with a very high yield of gel fraction (GF) and
high cross-linking density can be obtained [91].
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6.5. Soil Stabilizers

Soil is a common element in geotechnical works, exhibiting significant variation and
stratification among regions, often necessitating stabilization and, consequently, improve-
ment of the underlying substrate [92]. Many geotechnical projects aim at soil stabilization,
wherein the success of soil enhancement procedures is evaluated, striving to promote soil
stability, strength, resistance to erosion, and economic viability. This holds for stabilization,
improvement, or reinforcement of diverse geotechnical structures.

Synthetic polymers, being artificial, can be manipulated to acquire desired character-
istics. Consequently, many synthetic polymers are being developed to be less harmful to
the environment (from production to use), more durable, and economically viable for soil
stabilization [93].

The prioritization of environmentally friendly materials to enhance soil quality has
become widespread, driven by increasing environmental awareness. With growing concern
about environmental impact, various investigations are being conducted into new “eco-
friendly” materials. Using polymers as modifiers of soil structures appears promising,
improving mixtures’ microstructure and enhancing composites’ durability [94,95].

7. Methods of Synthesis and Physicochemical Parameters of Synthetic Polymers

Chemically synthesized polymers, including polylactide (PLA), polyurethane (PU),
poly (lactic-co-glycolic acid) (PLGA), poly (methyl methacrylate), silicone rubber, polyester,
polyvinyl alcohol, polyvinyl pyrrolidone, and so on, are utilized as materials in the biomed-
ical field and have been developed via chemical techniques.

PLA and its copolymers are biodegradable and biocompatible and can be acquired
from a broad range of raw material sources. PLA is non-toxic, renewable, and biodegrad-
able and possesses good thermal formability, mechanical strength, and elastic modulus [96].
It is utilized in cartilage regeneration, repairing cartilage, bone tissue engineering, and
controlled drug release formulations that function as carriers. A continuous drug-releasing
system based on PLA provides gradual drug release through its moderate degradation rate
in vivo. The PU material comprises excellent fatigue resistance, good compatibility (blood,
biological, and tissue compatibility), high elasticity, high strength, and wear resistance
compared to other polymeric materials. Therefore, in the biomedical field, materials such as
PU are widely utilized for the fabrication of polymeric capsules of drugs, the development
of artificial organs, and catheter interventions. The essential properties of PU are low toxic-
ity, excellent clotting, nonallergic, noncarcinogenic, and nonteratogenic. PLGA has good
biodegradability and biocompatibility and is used broadly in preparing NPs, microspheres,
pellets, microcapsules, films, and implants [43]. As another kind of controlled drug release
material, copolymers of PLGA have been broadly utilized in the controlled release of an-
tibiotic drugs, chemotherapeutic agents, peptides, proteins, polysaccharides, and different
drugs [97]. Table 3 summarizes some synthetic polymers, their methods of synthesis, and
their application.

Hydrogel fabrication is needed to design drug-delivery systems, which are carried
out using natural or synthetic polymers and applying various techniques to accomplish
the objective of established crosslinking [44]. Crosslinking methods used in hydrogel
fabrication are divided into physical and chemical and are presented in Figure 14. Physical
crosslinking refers to noncovalent interaction and/or entanglement between the polymer
chains, while chemical crosslinking occurs through covalent bond formation [44].
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Table 3. Synthetic polymers, including their methods of synthesis and application.

Synthetic Polymer Method of Synthesis Application

Polylactide Ring-opening polymerization of lactide;
Polycondensation of lactic acid

Cartilage regeneration; repairing cartilage; bone tissue
engineering; controlled drug release formulations that
function as carriers; continuous
drug-releasing systems

Polyurethane Polyaddition reaction between diols and
diisocyanates

Fabrication of polymeric capsules of drugs;
myocardial tissue engineering; textiles in medicine;
bioink in 3D-printing; phenol degradation

Poly(lactic-co-glycolic acid)
Ring-opening copolymerization;
Polycondensation of lactic acid and
glycolic acid

Myocardial tissue engineering; bioink in 3D-printing;
drug-releasing systems

Poly (methyl methacrylate) Free-radical polymerization of
methyl methacrylate

Prosthetic dental applications; soft contact lenses; bone
tissue regeneration; drug delivery and controlled
drug-delivery systems

Silicone rubber Crosslinking of poly(dimethyl siloxanes) Medical implants; electrical insulation;
waterproof coating

Poly(vinyl alcohol) Hydrolysis of polyvinyl acetate Used in drug production; textiles

Poly(vinyl pyrrolidone) Free radical polymerization of
vinylpyrrolidone Cartilage regeneration
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8. Advantages and Limitations: Future Perspectives of Natural and Synthetic Polymers

Over the past few decades, natural polymers have resurged as primary bioactive
substances used in the application of medical materials. Biofunctional molecules that
ensure bioactivity, biomimetic nature, and natural restructuring are typically found in
such polymers [45]. Bioactivity, biocompatibility, 3D geometry, antigenicity, non-toxic
byproducts of biodegradation, and intrinsic structural resemblance are the most essential
properties of natural polymers. Conversely, their key disadvantages, microbial contamina-
tion (i.e., endotoxins), decreased tunability, immunogenic reaction, uncontrollable rate of
degradation, and poor mechanical strength, restrict their application for complex tissue
regeneration. Natural polymers are essential to tissue engineering, especially in manu-
facturing scaffolds for therapeutic agent delivery. Novel natural polymeric materials are
aimed at enhancing different therapies due to their inherent bioactivity, biocompatibility,
and bioresorbability [36].

Synthetic polymers are advantageous in a few characteristics, such as tunable proper-
ties, endless forms, and established structures over natural polymers. The support offered
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by synthetic biomaterials can enable the restoration of damaged or diseased tissue structure
and function. Polymerization, interlinkage, and functionality (changed by block structures,
combining them, and copolymerization) of their molecular weight, molecular structure,
and physical and chemical features make them easily synthesized compared to naturally
occurring polymers [98]. The disadvantages of synthetic biomaterials are that they lack
cell adhesion sites and require chemical modifications to enhance cell adhesion. Many
commercially available synthetic polymers exhibit similar physicochemical and mechanical
characteristics to biological tissues. Synthetic polymers are produced from hydrocarbon
building blocks in the laboratory setting. Although the intrinsic cell interaction moieties of
the biopolymers may be lacking, their capacity to be controlled explicitly in structure and
reproducibility make them useful along with natural polymers in biomaterial composites
for tissue engineering applications [36]. Table 4 summarizes some representative natural
and synthetic polymers and their advantages, disadvantages, and perspectives.

Table 4. Naturally occurring and synthetic biopolymers and their advantages, disadvantages, and
perspectives optimized according to reference [36].

Polymer Advantages Disadvantages Perspectives

Collagen *

Good for cell adhesion, proliferation,
differentiation, ECM secretion; excellent
biocompatibility; biodegradability; low
toxicity; rough surface morphology; low
immunogenicity; weak antigenicity

Low mechanical strength; difficult
disinfection; deformation of
collagen-based scaffolds restricts their
use in load-bearing tissues; poor
stability in aqueous environments;
potential for antigenicity
through telopeptides

Drug delivery; wound healing;
tissue engineering

Gelatin *

Infiltration, adhesion, spreading, and
proliferation of cells on resulting scaffolds;
good stability at high temperatures in a
broad pH range; biodegradability;
osteoconductivity; non-immunogenic;
low antigenicity

Low bioactivity in higher-order gelatin
structures in scaffolds; low stability in
physiological conditions

Antibacterial; wound healing;
tissue engineering

Starch *

Biocompatible; thermoplastic; non-cytotoxic;
guides various developmental stages of cells;
hydrophilicity; substrate for cell adhesion;
good biodegradation period

Very high water uptake; low mechanical
strength; unstable for long-term
application; chemical modifications can
lead to toxic byproducts and reduce the
degradation rate

Bioplastics

Chitin/chitosan *

Accelerates tissue repair; prevents the
formation of scar tissue; promotes cell
adhesion; non-toxic and non-allergenic;
bioactivity; anti-inflammatory;
osteoconductivity; hemostatic potential;
scaffolds could be used for a more extended
period; chitosan-based scaffolds can
immobilize growth factors

Poor mechanical strength and stability;
high viscosity and low solubility at
neutral pH; rapid in vivo
degradation rate

Textiles in medicine; nano carriers
used for nano fertilizers and
micronutrients; antibacterial; drug
delivery; wound healing; tissue
engineering

Cellulose *

Stable for tissue engineering applications;
good mechanical strength; hydrophilicity;
biocompatibility;
cytocompatibility; bioactivity

In the human organism, it behaves as a
nondegradable or very slowly
degradable material

Heart valve tissue engineering;
nano carriers used for nano
fertilizers and micronutrients;
bioplastics; textiles in medicine

Polylactic
acid (PLA) **

Biocompatible; cytocompatibility; thermal
stability; excellent mechanical strength;
good degradation rate; non-toxic
degradation products

PLA-based materials lack ideal surface
chemistry for cell adhesion and
proliferation; brittleness; poor thermal
stability; hydrophobicity

Bioplastics; bioink in 3D-printing;
drug-releasing systems

Polylactic-co-
glycolic acid
(PLGA) **

Excellent cell adhesion and proliferation;
good mechanical properties; wide range of
degradation rates

Poor osteoconductivity; may develop
biocompatibility problems

Myocardial tissue engineering;
bioink in 3D-printing;
drug-releasing systems

Polyglycolic acid
(PGA) **

Biocompatible; high tensile modulus; high
melting point; undergoes bulk
degradation; hydrophilicity

High sensitivity to hydrolysis;
challenging to obtain porous PGA
scaffolds without toxic solvents

Bioink in 3D-printing
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Table 4. Cont.

Polymer Advantages Disadvantages Perspectives

Poly(ethylene
glycol) (PEG) **

Bioadhesive; mucoadhesive; hinders protein
adsorption; hydrophilic; can be modified to
different moieties to pass different
requirements of a skin substitute like cell
adhesion, short-term degradation, and
minimum inflammation; non-immunogenic

Lacks cell-interactive character due to its
bio-inert nature; nonreactive, creates
insoluble networks

Antifungal

Polyvinyl alcohol
(PVA) **

Biocompatible, nontoxic, and
noncarcinogenic, it displays a reduced
protein-binding tendency, relatively higher
elasticity, and water content. It is a highly
hydrated water-soluble synthetic polymer
with relatively similar tensile strength to
human articular cartilages and
good lubrication

Lack of cell-adhesive property; less
ingrowth of bone cells Used in drug production; textiles

*—Natural polymer; **—Synthetic polymer.

Various biopolymers compete successfully in the global market due to their unique
characteristic properties, which have a considerable demand in biomedical applications.
Furthermore, it is no surprise that improving human health and lifespan contributes to
one of the fastest-growing markets for tissue engineering and regenerative medicine prod-
ucts. To help with this, the industry has been developing new biomaterial-based products,
including synthetic and naturally derived materials [36]. Also, norbornene derivatives
(NBEs) have recently been used as typical monomers for living ring-opening metathesis
polymerization and yield polymers with low dispersity and diverse functionalities. How-
ever, the all-carbon backbone of poly-NBEs is non-degradable. Researchers have reported
a new method for producing degradable polymers by copolymerizing 2,3-dihydrofuran
with NBEs. This reactivity reduces NBE homoaddition, which leads to the uniform incor-
poration of acid-degradable enol ether linkages throughout the copolymers. As a result,
complete polymer degradation can occur while retaining the favorable characteristics of
living ring-opening metathesis polymerization. These polymers can be broken down into
small molecules or oligomeric species under mildly acidic conditions. This technique is eas-
ily adaptable to the conventional ring-opening metathesis polymerization of widely used
NBEs, making it possible to create easily degradable polymers with adjustable properties
for various applications and environmental sustainability [99].

9. Conclusions

This review provides a comprehensive and extensive overview of natural and syn-
thetic polymers used for biomedical and environmental applications. In contrast to other
reviews on the topic, this paper also describes methods for their isolation and synthesis. In
addition to the extensive and detailed literature overview, this work is valuable as it also
includes the original results of the authors, who published six papers for both biomedical
and environmental contributions. The review describes the vast use of natural polymers
and their application as carriers for drug delivery, tissue engineering, stem cell morpho-
genesis, wound healing, regenerative medicine, food packaging, bioplastics, etc. They
possess numerous essential properties, such as bioactivity, biocompatibility, 3D geometry,
antigenicity, non-toxic byproducts of bio-degradation, and intrinsic structural resemblance,
and thus have promising prospects. On the other hand, some identified problems and limi-
tations of natural polymers include the possibility of microbial contamination, decreased
tunability, immunogenic reaction, uncontrollable rate of degradation, and poor mechanical
strength. Synthetic polymers are also widely applied in controlled drug-release systems,
tissue engineering, nano-carriers, dispersion of bacterial biofilms, gene-delivery systems,
bio-ink in 3D printing, textiles in medicine, agriculture, heavy metals removal, food pack-
aging, etc. Some advantages are their tunable properties and endless forms, which can
restore damaged or diseased tissue structure and function. Polymerization, interlinkage,
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and functionality of their molecular weight, molecular structure, and physical and chemical
features give synthetic polymers promising prospects. Some of their identified problems
are that they lack cell adhesion sites and require chemical modifications to enhance cell
adhesion. Natural and synthetic polymers will continue to be used as they are irreplaceable
resources with diverse benefits. Some of our future work with polymers for biomedical
applications will include synthesis and research on multifunctional nanocarriers, such as
polymer micelles, nanogels, polymerzomes with antimicrobial peptides, enzymes, DNA,
and other biomolecules entrapped in them.
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