
Polymers 2014, 6, 995-1007; doi:10.3390/polym6040995 
 

polymers 
ISSN 2073-4360 

www.mdpi.com/journal/polymers 

Article 

New Guanidine-Pyridine Copper Complexes and Their 
Application in ATRP 

Alexander Hoffmann 1, Olga Bienemann 2, Ines dos Santos Vieira 2 and Sonja Herres-Pawlis 1,*  

1 Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13,  

81377 München, Germany; E-Mail: alexander.hoffmann@cup.uni-muenchen.de 
2 Anorganische Chemie II, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, 

Germany; E-Mails: olga.bienemann@tu-dortmund.de (O.B.); ines.vieira@tu-dortmund.de (I.S.V.) 

* Author to whom correspondence should be addressed;  

E-Mail: Sonja.Herres-Pawlis@cup.uni-muenchen.de; Tel.: +49 (0)89-2180-77486;  

Fax: +49 (0)89-2180-77904.  

Received: 27 February 2014; in revised form: 14 March 2014 / Accepted: 24 March 2014 /  

Published: 1 April 2014 

 

Abstract: The guanidine hybrid ligands, (tetramethylguanidine)methylenepyridine (TMGpy) 

and (dimethylethyleneguanidine)methylenepyridine (DMEGpy), were proven to be able to 

stabilize copper complexes active in the solvent-free polymerization of styrene at 110 °C 

using 1-phenylethylbromide as the initiator. The polymerization proceeded after first-order 

kinetics, and polystyrenes with polydispersities around 1.2 could be obtained. Using the 

ligand, DMEGpy, three new copper guanidine-pyridine complexes could be synthesized 

and structurally characterized. Their structural characteristics are discussed. 
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1. Introduction 

Atom transfer radical polymerization (ATRP) is one of the most important and most efficient 

controlled radical polymerization methods, which combines the advantages of radical  

polymerization (high tolerance towards functional groups and impurities, many possible monomers and 

mild conditions) with the controlled character of a living polymerization. The living character of the 

controlled-radical polymerization methods can be obtained through suppression of termination and 

side reactions. This is achieved by a fast dynamic equilibrium between a very small number of 
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growing free radicals (active species) and a large number of non-reactive so-called dormant  

species [1]. Since the development of ATRP by K.Matyjaszewski in 1995, this field has run through a 

rapid progress in catalyst development, but also in the application to modern polymer technology [2,3]. 

In ATRP, the dormant species is an alkyl halide, which gives the active species after activation by 

atom transfer to a transition metal complex. Numerous transition metal systems on the basis of Cu, Fe, 

Ru and other transition metals of Groups 6 to 11 can be used, but Cu complexes dominate the field, 

due to the fast and clean polymerization. Mostly, polyfunctionalized N donor ligands are used for the 

stabilization of suited activator complexes [4]. Besides the classical ATRP, which starts with Cu(I), new 

ATRP methods have evolved that start with Cu(II) (e.g., Activators ReGenerated by Electron  

Transfer (ARGET)ATRP, Initiators for Continuous Activator Regeneration (ICAR)-ATRP [5,6] 

electrochemically mediated (e)ATRP [7,8]). Taking into account the idea of sustainability, intensive 

efforts have been undertaken to minimize the copper catalyst content. Here, there are still fundamental 

principles of the polymerization mechanism under discussion [9]. New ligands can significantly 

contribute to fundamental mechanistical understanding. Tailored ligand design enables the ideal 

adjustment of ligand properties to requests. By the choice of donor function and bridging units, the 

denticity and ligand geometry can be adapted, which steers the metal coordination and the redox potential. 

As donor functions, mainly amines, imines and pyridines have been tested [10].  

Guanidines represent a further class of N donor ligands with a highly basic and nucleophilic imine 

function. The modular synthetic protocol allows for the combination of different spacers, amine groups 

and guanidine groups for building up a ligand library [11]. The donor properties can be tuned through 

the choice of guanidine substituents, amine and spacers. These ligands have already been intensely 

investigated in bioinorganic coordination chemistry [12–18], but also in the ATRP of styrene [19–24].  

In all of these studies, it appeared that the polyfunctional guanidines support the oxidation  

state change from Cu(I) over Cu(II) to Cu(III) and stabilize the corresponding complexes excellently.  

These properties make guanidines ideal ligands for catalysis. Hybrid guanidines combine one 

guanidine function with one different donor function, e.g., pyridine or quinoline [13,17,18].  

Here, we present three new copper guanidine-pyridine complexes and the first styrene ATRP studies 

with the hybrid guanidine ligands, (tetramethylguanidine)methylenepyridine (TMGpy) and 

(dimethylethyleneguanidine)methylenepyridine (DMEGpy). 

2. Experimental Section  

General: Ligand syntheses were performed under argon by using standard Schlenk techniques; 

complexes were prepared in a glove box under nitrogen atmosphere. Solvents were purified according 

to literature procedures and kept under nitrogen [25]. All chemicals were used as purchased,  

besides styrene, which was destabilized by eluting through a column of neutral Al2O3.  

The Vilsmeier salts, N,N′-dimethylethylenechloroformamidinium chloride (DMEG) and  

N,N,N′,N′-tetramethylchloroformamidinium chloride (TMG), were synthesized as described in the 

literature [11,26]. The ligands DMEGpy and TMGpy were synthesized according to the protocol in  

the literature [27]. 

Physical Methods: The following spectrometers were used to record spectra. IR: FT-IR 

spectrometer IFS 28 from Bruker (Ettlingen, Germany). Mass spectra in the ESI-MS (Thermoquest 
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Finnigan, München, Germany) (4.5 kV, 350 °C) were recorded with a Thermoquest Finnigan. Elemental 

analysis: LECO-CHNS-932 (Leco, Mönchengladbach, Germany). NMR: Bruker DRX 400. The signals 

were calibrated to the residual signals of the deuterated solvent (δH(CDCl3) = 7.26 ppm). 

Crystal Structure Analyses: The crystal data for Compounds 1–3 are presented in Table 1. Data for 

these complexes were collected with an Xcalibur S diffractometer from Oxford Diffraction using  

Mo-Kα radiation (λ = 0.71073 Å) and a graphite monochromator with the programs, CRYSALIS 

(Oxford Diffraction Ltd., Oxford, UK, 2008) and CRYSALIS RED (Oxford Diffraction Ltd., Oxford, UK, 

2008). The structures were solved by direct methods (SHELXS90) [28] and conventional Fourier 

methods, and all non-hydrogen atoms refined anisotropically with full-matrix least-squares procedures 

based on F2 (SHELXL97) [29]. Hydrogen atoms were derived from difference Fourier maps and 

placed at idealized positions, riding on their parent carbon atoms, with isotropic displacement 

parameters Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C methyl). All methyl groups were allowed to 

rotate, but not to tip. CCDC-987045 (for 1), CCDC-987046 (for 2) and CCDC-987047 (for 3) contain the 

supplementary crystallographic data for this paper. These data can be obtained free of charge from The 

Cambridge Crystallographic Data Centre (CCDC) [30]. 

Gel Permeation Chromatography: The average molecular weights and the weight distributions of 

the obtained polystyrene samples were determined by gel permeation chromatography (GPC) in THF 

as the mobile phase at a flow rate of 1 mL/min. The utilized GPCmax VE-2001 from Viscotek 

(Herrenberg, Germany) is a combination of an HPLC pump, an SDV column (PSS) with a porosity of 

500 Å and a refractive index detector (VE-3580, Malvern, Herrenberg, Germany). The instrument was 

calibrated with standard polystyrene samples. Sample concentrations were 3 mg·mL−1. 

Synthesis of Copper Complexes: To a solution of the copper starting compound (1: 0.5 mmol CuCl2, 

67 mg; 2: 0.5 mmol CuBr2, 112 mg; and 3: 1 mmol CuCl2, 134 mg) and acetonitrile (1 mL) was added 

a solution of DMEGpy (1 mmol, 204 mg) in dry THF (1–2 mL), and the solution was stirred for  

30 min. From the clear solution, crystals suitable for X-ray diffraction were obtained by slow diffusion 

of diethyl ether. 

[Cu(DMEGpy)2Cl][CuCl2] (1): green crystals, yield: 0.353 mg (55%). 

IR (KBr, [cm−1]): 2924 w (ν (CHarom)), 2877 w (ν (CHaliph)), 1589 vs (ν (C=N)), 1570 s (ν (C=N)),  

1508 w, 1479 m, 1435 m, 1400 m, 1358 w, 1294 m, 1281 m, 1230 w, 1107 vw, 1072 w, 1032 w, 964 w,  

866 vw, 791 w, 771 w, 752 w, 656 vw, 627 vw, 577 vw, 550 vw, 482 vw. C22H32N8Cl3Cu2 (641.99 g/mol), 

calcd. C 41.2; H 5.0; N 17.5; found C 40.8; H 5.1; N 17.2%. ESI-MS (DCM, m/z, (%)): 544.1 (10) 

[C22H32N8Cl2Cu + H+], 508.1 (<5) [C22H32N8
37Cl63Cu]+ and [C22H32N8

35Cl65Cu]+, 506.1 (5) 

[C22H32N8
35Cl63Cu]+, 445.2 (16) [C22H32N8 + 2H++ Cl−], 205.1 (100) [C11H16N4 + H+ = DMEGpy + H+]. 

[Cu(DMEGpy)2Br][CuBr2] (2): green crystals, yield: 0.504 mg (65%). 

IR (KBr, [cm-1]): 3041 vw (ν (CHarom)), 2937 w (ν (CHaliph)), 2875 w (ν (CHaliph)), 593 vs (ν (C=N)), 

1567 s (ν (C=N)), 1508 w, 1477 m, 1433 m, 1400 m, 1388 w, 1363 m, 1290 m, 1281 vw, 1232 m, 1151 w, 

1108 w, 1076 w, 1056 w, 1036 m, 964 m, 895 vw, 864 w, 789 m, 777 m, 723 m, 650 w, 627 w, 581 w, 

555 w, 478 w, 434 w. C22H32N8Br3Cu2 (775.37 g/mol), calcd. C 34.1, H 4.2, N 14.5;  

found C 34.4, H 4.2, N 14.9%. ESI(+)-MS (MeOH, m/z, (%)): 552.1 (<5) [C22H32N8BrCu]+, 205.1 (100)  

[C11H16N4 + H+ = DMEGpy + H+].  

[Cu(DMEGpy)Cl2] (3): green crystals, yield: 0.315 g (93%). 

IR (KBr, [cm−1]): 2948 vw (ν (CHarom)), 2877 w (ν (CHaliph)), 1589 vs (ν (C=N)), 1570 s (ν (C=N)), 
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1508 w, 1479 m, 1435 m, 1400 m, 1358 w, 1294 m, 1281 m, 1230 w, 1107 vw, 1072 w, 1032 w, 964 w, 

866 vw, 791 w, 771 w, 752 w, 656 vw, 627 vw, 577 vw, 550 vw, 482 vw. C11H16N4Cl2Cu  

(338.72 g/mol), calcd. C 39.0, H 4.8, N 16.5; found C 39.2, H 4.7, N 16.7%. ESI(+)-MS: not soluble in 

a suitable solvent. 

Polymerization: The components of catalysts for polymerization reactions containing the ligand  

(0.38 mmol, TMGpy: 78.4 mg or DMEGpy: 77.6 mg) and CuBr (0.19 mmol, 27.3 mg) were weighed in a 

Schlenk flask in a glove box. Outside the glove box, styrene (19 mmol, 2.2 mL) was added, and the 

mixture was degassed by three freeze-thaw cycles. Finally, the initiator, 1-PEBr (0.19 mmol, 35.2 mg,  

26 µL), was added through a syringe. The reaction mixture was heated in an oil bath at 110 °C, and 

samples (0.1 mL) were taken at different time intervals and quenched by cooling with liquid nitrogen. 

Monomer conversions were determined by 1H NMR spectroscopy (one drop in CDCl3), and molecular 

weight distributions were determined by GPC with the residual sample volume. For GPC analysis, this 

residual sample volume was eluted with THF (1.5 mL) through a column of neutral Al2O3. 

Table 1. Crystallographic data and parameters.  

 1 
[Cu(DMEGpy)2Cl][CuCl2] 

2 
[Cu(DMEGpy)2Br][CuBr2] 

3 
[Cu(DMEGpy)Cl2] 

Empirical formula C22H32Cl3Cu2N8 C22H32Br3Cu2N8 C11H16Cl2CuN4 
Form. mass/g·mol−1 641.99 775.37 338.72 
Crystal Size/mm 0.25 × 0.13 × 0.12 0.22 × 0.11 × 0.07 0.13 × 0.09 × 0.04 
T/K 173(2) 173(2) 173(2) 
Crystal system  Triclinic Monoclinic Orthorhombic 
Space group P  C2/c Pna21 
a/Å a = 11.265(1) a = 22.783(2) a = 8.783(1) 
b/Å b = 11.777(1) b = 11.613(1) b = 10.793(1) 
c/Å c = 12.135(1) c = 22.834(3) c = 14.605(1) 
α/° α = 114.5(1) α = 90 α = 90 
β/° β = 104.1(1) β = 113.6(2) β = 90 
γ/° γ = 99.6(1) γ = 90 γ = 90 
V/Å3 1,354.0(2) 5,536.4(10) 1,384.5(2) 
Z 2 8 4 
ρcalc./g/cm3 1.575 1.860 1.625 
µ/mm−1 1.894 5.894 1.950 
λ/Å 0.71073 0.71073 0.71073 
F(000) 658 3,064 692 
Range in hkl ±13, ±14, ±14 ±27, −14 ≤ k ≤ 12, −26 ≤ l ≤ 27 ±10, ±13, ±17 
Reflections collected 13,335 15,612 12,453 
Independent reflections 5,037 5,159 2,562 
Rint. 0.0344 0.0532 0.0494 
Reflections observed  5,037  5,159 2,562  
No. parameters 323 320 165 
R1 [I ≥ 2σ(I)] 0.0301 0.0338 0.0251 
wR2 (all data) 0.0631 0.0513 0.0415 
Goodness-of-fit 0.893 0.854 0.893 
Largest difference peak, hole/e·Å−3 0.332 and −0.535 0.957 and −0.803 0.502 and −0.277 
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3. Results and Discussion 

Ahead of polymerization experiments, we conducted complex synthesis and characterization 

experiments in order to structurally characterize our potential ATRP catalysts with the  

guanidine-pyridine ligands, TMGpy and DMEGpy, thoroughly. Hence, in Section 3.1, we firstly 

describe the complex syntheses of bis(chelate) and mono(chelate) copper guanidine-pyridine 

complexes together with their single crystal structure analyses and structural comparison to related 

copper complexes from the literature. With the ligand, TMGpy, we were not successful in preparation 

of single crystals. In Section 3.2, we describe then the ATRP experiments performed with the copper 

bromide catalyst species.  

3.1. Complex Synthesis  

3.1.1. Bis(chelate) Complexes 1 and 2  

The reaction of two equivalents of DMEGpy with CuCl2 or CuBr2 yields the complexes, 

[Cu(DMEGpy)2Cl][CuCl2] (1) and [Cu(DMEGpy)2Br][CuBr2] (2) (Figure 1). 1 crystallizes in the 

triclinic space group P , and 2 in the monoclinic space group C2/c. In both complexes, the unit cell 

contains both isomers of the chiral cations. Selected geometrical data of these complexes are listed in 

Table 2. 

Figure 1. Complex syntheses of [Cu(DMEGpy)2Cl]CuCl2 (1) and [Cu(DMEGpy)2Br]CuBr2 (2). 

 

The complex cations in 1 and 2 are trigonal-bipyramidal polyhedra with the coordination of two 

DMEGpy ligands and one halide anion (Figure 2). As counterions, both complexes possess complex 

anions, namely CuCl2
− (1) and CuBr2

− (2), which are formed after the reduction of the copper(II) 

starting compound used. Presumably, the ligands serve as reductants. The observation of bromide 

anions in the ESI-MS spectra gives the hint that in solution, complexes with halide anions are present, 

as well. 
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Figure 2. Molecular structures of the complex cations, [Cu(DMEGpy)2Cl]+ and 

[Cu(DMEGpy)2Br]+, in crystals of 1 and 2. 

 

The pyridine donors reside in the axial positions of the trigonal-bipyramidal coordination 

polyhedra, whereas the guanidine donors and the halide form the equatorial plane. The structural 

parameter, τ5, indicates the characteristic of such a polyhedron in distortion toward the square-pyramid 

(one being indicative of the trigonal-bipyramidal and zero for square-pyramid) [31]. The τ5 values of 

0.77 for 1 and 0.68 for 2 show that a distortion of the ideal trigonal-bipyramidal coordination occurs, 

which becomes clear in the increase in the equatorial angle, Ngua-Cu-Ngua′, with 132.5(1) for 1 and 

136.9(2) for 2. The Npy-Cu-Npy′ angles do not deviate considerably from the ideal angle of 180° 

(178.6(1) for 1 and 177.6(2) for 2. The Cu-Ngua bond lengths in 1 and 2 (2.041(2), 2.133(2) Å in 1; 

2.029(4), 2.065(3) Å in 2) are longer than the Cu-Npy bond lengths (1.988(2), 1.994(2) Å in 1; 1.991(4), 

1.993(1) Å in 2). It is remarkable that the bonds to the axial ligands are shorter than those to the 

equatorial ligands [32,33]. The Cu-Npy bond lengths of both complexes are equal, whereas the Cu-Ngua 

bond lengths deviate significantly between 1 and 2.  

The structural parameter ρ can be used to evaluate in guanidines and their complexes the degree of 

delocalization of the guanidine moiety. The delocalization is important for effective coordination 

behavior towards metals in different oxidation states [18]. This parameter amounts in both complexes 

to 0.95, indicating a low charge delocalization within the CN3 guanidine framework. The  

intra-guanidine torsion is rather small, as expected for DMEG units, with Namin,guaC3,CguaN3 plane 

angles of 14.7(av) (1) and 14.6(av) (2) [12].  
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Table 2. Key geometric parameters of Complexes 1–3. 

 1 
[Cu(DMEGpy)2Cl][CuCl2] 

2 
[Cu(DMEGpy)2Br][CuBr2] 

3 
[Cu(DMEGpy)Cl2] 

Bond lengths (Å)  
Cu-Ngua 2.041(2), 2.133(2) 2.029(4), 2.065(3) 1.956(3) 
Cu-Npy 1.988(2), 1.994(2) 1.991(4), 1.993(1) 2.016(3) 
Cu-X 2.398(2) 2.589(1) 2.210(1), 2.243(1) 
Bond angles (°)  
Ngua-Cu-Npy 81.3(1), 80.7(1) 81.7(2), 81.1(2) 81.7(1) 
Ngua-Cu-Ngua´ 132.5(1) 136.9(2)  
Npy-Cu-Npy´ 178.6(1) 177.6(2)  
Ngua-Cu-X 125.5(1), 102.1(1) 104.3(1), 118.8(1) 97.1(1), 152.6(1) 
Npy-Cu-X 89.8(1), 90.8(1) 87.5(1), 90.1(1) 98.0(1), 138.5(1) 
X-Cu-X   100.8(1) 
Angles between planes (°)  

(CuNax,CuNeq) 85.2(1) 80.3(1)  
(CuN2,CuCl2)   48.3(1) 
(Namine,guaC3,CguaN3) 14.7(av) 14.6(av) 14.8(av) 

Structural parameter ρ and τ5  
ρ 0.95 0.95 0.95 
τ5  0.77 0.68 0.49 

3.1.2. Mono(chelate) Complex 3  

The reaction of one equivalent of DMEGpy with one equivalent of CuCl2 gives the mono(chelate) 

complex, [Cu(DMEGpy)Cl2] (3) (Figure 3). This complex crystallizes in the orthorhombic space group 

Pna21. Selected geometrical data of this complex are listed in Table 2. 

Figure 3. Synthesis of the complex, [Cu(DMEGpy)Cl2] (3). 

 

The molecular structure of 3 is depicted in Figure 4. 3 is a four-coordinate complex with the 

coordination by one bidentate ligand and two chloride anions. Here, the τ4-value can give a measurement of 

the degree of distortion between tetrahedral and square-planar coordination (square-planar: zero; 

tetrahedral: one) [34]. With a τ4-value of 0.49, the observed coordination geometry of 3 lies in the 

middle between both polyhedra. This is in accordance with the angle between the CuN2- and the 

CuCl2-planes of 48.3(1).  
  

∠
∠
∠
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Figure 4. Molecular structure of [Cu(DMEGpy)Cl2] (3) in the solid state. 

 

The Cu-Ngua bond is with 1.956(3) Å considerably shorter than the Cu-Npy bond (2.016(3) Å). The 

ρ-value of 0.95 shows a small degree of charge delocalization within the guanidine unit. The  

intra-guanidine torsion is small (14.8°(av)), as expected for a DMEG unit [12]. 

3.1.3. Comparative Structural Discussion 

In this section, we compare the presented complexes, 1 and 2, with five-coordinate copper(II) 

complexes with the symmetric ligand, 2,2′-bipyridine (bpy): [Cu(bpy)2Cl]Cl·6H2O (4) [35] and 

[Cu(bpy)2Br]Br (5) [36] (Figure 5 and Table 3). 

Figure 5. Comparative complexes [Cu(bpy)2Cl]Cl·6H2O (4) [35] and [Cu(bpy)2Br]Br·(5) [36]. 

 

Table 3. Key geometric parameters of 4 [35] and 5 [36]. 

 4 

[Cu(bpy)2Cl]Cl·6H2O 
5 

[Cu(bpy)2Br]Br 

Bond lengths (Å) 
Cu-Nax 1.989(10),1.970(10) 1.977(6), 1.978(6) 
Cu-Neq 2.077(10), 2.087(10) 2.075(8), 2.085(7) 
Cu-X 2.361(4) 2.429(2) 
Bond angles (°) 
N-Cu-N  79.3(4), 79.8(4) 80.4(3), 80.3(3) 
Nax-Cu-Nax 178.3(4) 177.3(3) 
Neq-Cu-Cl 118.7(3), 118.6(3) 128.6(2), 124.7(2) 
Neq-Cu-Neq 122.8(4) 106.7(3) 
Structural parameter τ5 
τ5  0.93 0.81 
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The bonds to the axial ligands are shorter than the bonds to the equatorial ligands in the  

guanidine-pyridine complexes, 1 and 2, as well as in the comparative bipyridine complexes, 4 and 5. 

Hence, the metal bonding influence is as strong as the donor difference. The angles of the coordination 

polyhedra of 4 and 5 are very similar to those of 1 and 2. Interestingly, the Cu-halide distances in 1 and 2 

are longer than those in 4 and 5, which might be indicative of the larger donor strength of the 

guanidine functions.  

3.2. Atom Transfer Radical Polymerization of Styrene 

The ligands, TMGpy and DMEGpy, together with CuBr as the copper source, have been 

investigated towards their activity in styrene ATRP with the initiator 1-phenylethylbromide (PEBr). 

The ratio of styrene/ligand/CuBr/PEBr was 100/2/1/1. The reaction temperature was 110 °C, and 

samples were drawn in equidistant time intervals and plotted semilogarithmically (Figure 6). It has to 

be noted that the polymerization occurs in a homogeneous solution of the in situ formed complexes in 

the styrene bulk. The styrene-ATRP with the catalysts 2, TMGpy/CuBr and 2 DMEGpy/CuBr, follows 

a first-order kinetics, which indicates a constant radical concentration and, thus, the living character of 

the polymerization. After a polymerization time of 35 min, the conversion reaches a value of 57% with  

2 TMGpy/CuBr and of 63% with 2 DMEGpy/CuBr. The apparent rate constant (kapp) amounts to  

4.20 × 10−4 s−1 (2 TMGpy/CuBr) and 4.69 × 10−4 s−1 (2 DMEGpy/CuBr). Hence, we can detect only a 

small amount of activity difference between the two guanidine complexes. The polymerization speed 

is high compared to related systems with pyridine-based copper catalysts, such as CuBr/2bipy or 

CuBr/2dNBipy, which mediate a significantly slower polymerization [37]. Moreover, the bipy system 

was reported to proceed under heterogeneous conditions [37]. 

Figure 6. The semilogarithmic plot of the conversion against time for the styrene atom transfer 

radical polymerization (ATRP) mediated by 2 (tetramethylguanidine)methylenepyridine 

(TMGpy) (blue)/2 DMEGpy (red) and CuBr and 1-phenylethylbromide (PEBr) as the initiator 

at 110 °C. The ratio of styrene:ligand:CuBr:PEBr = 100:2:1:1. 
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The progress of the polymerization as marked by the development of the molecular weight and the 

polydispersities is depicted in Figure 7. Selected polymerization data are given in Table 4.  

Table 4. Conversion, Mn,GPC, Mn,th and Mw/Mn for the kinetics of styrene ATRP with  

2 TMGpy/CuBr and 2 DMEGpy/CuBr and PEBr at 110 °C after 10 and 35 min.  

Catalyst t (min) Conversion (%) Mn,GPC (g/mol) Mn,th (g/mol) Mw/Mn 

2 TMGpy/CuBr 10 22 2900 2200 1.19 
2 TMGpy/CuBr 35 57 8500 4900 1.24 

2 DMEGpy/CuBr 10 16 1900 1700 1.53 
2 DMEGpy/CuBr 35 63 9600 6600 1.25 

Figure 7. Progress of the number-averaged molecular weights (Mn,GPC), the theoretical 

molecular weight (Mn,th) and the polydispersity with the conversion for styrene ATRP with: 

(left) 2 TMGpy and CuBr; (right) 2 DMEGpy and CuBr; and PEBr as the initiator at 110 °C.  

The ratio of styrene:ligand:CuBr:PEBr = 100:2:1:1. 

 

For both polymerizations, the average molecular weights increase linearly, but deviate significantly 

from the theoretical molecular weights at conversion >40%. The initiator efficiency can be calculated 

as the slope of the linear function of Mn,th vs. Mn,GPC [38]. Here, it points towards a small deactivation 

rate (fTMGpy = 0.72; fDMEGpy = 0.76). The polydispersities decrease during polymerization with  

2 TMGpy/CuBr to values under 1.2 and increase again to 1.24, indicating a loss of control by the small 

deactivation rate. Using 2 DMEGpy/CuBr, the polydispersity only decreases to a value of 1.24. In 

summary, the catalysts, 2 TMGpy/CuBr and 2 DMEGpy/CuBr, show a high activity. Due to small 

deviations of the averaged and theoretical molecular weights and the small polydispersities, the 

polymerization control can be rated as medium. We relate the increase in polymerization speed to the 

changed donor situation of the copper complexes with one guanidine and one pyridine donor combined 

within the ligands. 
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4. Conclusions 

Herein, we report three new guanidine-pyridine copper(II) complexes. The bis(chelate) complexes, 

1 and 2, exhibit trigonal-bipyramidal coordination geometries with axial pyridine donors and 

equatorial guanidine and halide ligands. The bonds to the pyridine donors are slightly shorter than to 

the guanidine donors. Overall, the guanidine donor seems to be the stronger donor, as was shown in 

the mono(chelate) complex, 3, with considerably shorter Cu-Ngua bonds. The corresponding  

guanidine-pyridine ligands were shown to mediate with their copper complexes controlled by styrene 

ATRP. Remarkably and in contrast to the bipy systems, the polymerization mixture stayed 

homogeneous. The polymerization proceeds considerably faster than with dNbipy/2CuBr, but with a 

smaller degree of control. 
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