# Supplementary Materials: Luminescence and Magnetic Properties of Two Three-dimensional Terbium and Dysprosium MOFs Based on Azobenzene-4,4'-Dicarboxylic Linker

Belén Fernández, Itziar Oyarzabal, José M. Seco, Eider San Sebastián, David Fairen-Jiménez, Santiago Gómez-Ruiz, Alfonso Salinas-Castillo, Antonio J. Calahorro and Antonio Rodríguez-Diéguez

#### 1. Bond Distances and Angles

| Bond    | Bond distances (Å) | Bond        | Bond angles (°) | Bond        | Bond angles (°) |
|---------|--------------------|-------------|-----------------|-------------|-----------------|
| Tb1–O1B | 2.307(4)           | O1B-Tb1-O1A | 148.16(14)      | O2W-Tb1-O4A | 126.79(12)      |
| Tb1–O1A | 2.317(3)           | O1B-Tb1-O2A | 88.23(13)       | O1B-Tb1-O3W | 78.28(12)       |
| Tb1–O2A | 2.358(3)           | O1A-Tb1-O2A | 98.34(12)       | O1A-Tb1-O3W | 73.60(13)       |
| Tb1–O2B | 2.372(4)           | O1B-Tb1-O2B | 108.51(13)      | O2A-Tb1-O3W | 74.68(12)       |
| Tb1–O2W | 2.386(4)           | O1A-Tb1-O2B | 84.99(13)       | O2B-Tb1-O3W | 140.56(12)      |
| Tb1–O4A | 2.407(3)           | O2A-Tb1-O2B | 142.37(13)      | O2W-Tb1-O3W | 139.35(12)      |
| Tb1–O3W | 2.467(4)           | O1B-Tb1-O2W | 72.84(13)       | O4A-Tb1-O3W | 71.57(12)       |
| Tb1–O1C | 2.497(4)           | O1A-Tb1-O2W | 138.99(13)      | O1B-Tb1-O1C | 143.11(13)      |
|         |                    | O2A-Tb1-O2W | 76.40(13)       | O1A-Tb1-O1C | 68.11(13)       |
|         |                    | O2B-Tb1-O2W | 76.90(13)       | O2A-Tb1-O1C | 75.40(13)       |
|         |                    | O1B-Tb1-O4A | 77.20(12)       | O2B-Tb1-O1C | 71.20(12)       |
|         |                    | O1A-Tb1-O4A | 79.96(12)       | O2W-Tb1-O1C | 71.27(13)       |
|         |                    | O2A-Tb1-O4A | 145.26(13)      | O4A-Tb1-O1C | 132.86(12)      |
|         |                    | O2B-Tb1-O4A | 72.34(13)       | O3W-Tb1-O1C | 126.44(12)      |

| Table S1. Selected bond distances | s (Å | ) and angles | (°) 1 |
|-----------------------------------|------|--------------|-------|
| Table 51. Selected Dond distances | 5 (Л | ) and angles |       |

## 2. LeBail Refinement

Compound **2** is isostructural to **1**. We realized a LeBail refinement (Figure S4) with TOPAS software to establish the purity and the unit cell of the powders pertaining to this material.





**Figure S1.** Lebail Refinement for **2**: *a* = 9.93, *b* = 11.67, *c* = 16.70, *α* = 106.37, *β* = 100.98, *γ* = 100.53, *V* = 1765.77, *sample displacement* = -0.151 mm.

## 3. Pore Size Distribution



Figure S2. Pore size distribution.

4. Magnetic Properties



**Figure S3.** Curie-Weiss fit of the  $\chi_{M^1}$  *vs. T* curves of compounds **1** (top) and **2** (bottom).

### 5. TGA Spectra



Figure S4. TGA spectra of MOFs 1 (green) and 2 (blue).

## 6. UV Spectra

Steady-state measurements were performed using a Hewlett Packard diode array spectrophotometer (model 8453; Nortwalk, CT, USA) interfaced to a Pentium MMX 200 microcomputer via an HP IB interface board for absorption measurement.



Figure S5. UV spectra of compounds 1 (dark blue) and 2 (sky-blue).



© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).