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Abstract: Liquid crystalline polymers exhibit a particular richness of behaviors that stems from their
rigidity and their macromolecular nature. On the one hand, the orientational interaction between
liquid-crystalline motifs promotes their alignment, thereby leading to the emergence of nematic
phases. On the other hand, the large number of configurations associated with polymer chains
favors formation of isotropic phases, with chain stiffness becoming the factor that tips the balance.
In this work, a soft coarse-grained model is introduced to explore the interplay of chain stiffness,
molecular weight and orientational coupling, and their role on the isotropic-nematic transition
in homopolymer melts. We also study the structure of polymer mixtures composed of stiff and
flexible polymeric molecules. We consider the effects of blend composition, persistence length,
molecular weight and orientational coupling strength on the melt structure at the nano- and
mesoscopic levels. Conditions are found where the systems separate into two phases, one isotropic
and the other nematic. We confirm the existence of non-equilibrium states that exhibit sought-after
percolating nematic domains, which are of interest for applications in organic photovoltaic and
electronic devices.

Keywords: liquid crystalline polymers; coarse grained models; polymer blends

1. Introduction

The self-assembly of soft matter systems provides a powerful tool to create complex hierarchical
materials [1,2]. The structural organization at different scales, from atomistic to mesoscopic levels,
is controlled by the different interactions between the component molecular units [3,4]. In the particular
case of polymeric systems, such as block copolymers, those interactions are typically weak and
isotropic, with the entropy playing an important role in molecular organization. Even with weak
interactions, a plethora of domain structures, or morphologies, can be obtained by engineering
their molecular architecture and composition [5]. The incorporation of molecular motifs governed
by anisotropic interactions into the polymer backbone can give place to a richer array of phase
behaviors [6,7]. Such anisotropic interactions can promote the long-range orientational organization
of small molecules, and such orientational order can coexist with liquid-like characteristics for
translational order, in nematic phases [8]. Thus, the incorporation of nematic structural units into
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polymer chains provides a rich platform for design of new materials with tunable optical, rheological and
structural properties. The interplay of orientational interactions, phase segregation and entropy can
give rise to new, complex hierarchical structures [9–11].

Liquid crystalline (LC) polymers have been used primarily to create materials that exhibit
interesting mechanical properties [12]. However, in recent years, interest in these materials has
increased due to their optical and transport properties [13–17]. In particular, LC polymers are
common in organic photovoltaic applications and in flexible organic electronics [14]. In both cases,
phase separated materials are required; for example, in the case of photovoltaic devices, one phase
transports electrons and the other transports holes. It is also required that continuous pathways
for transport permeate the entire sample in order to minimize recombination between electrons
and holes [18]. More importantly, due to the very short lifetimes of excitons in organic materials,
interfaces, where charge separation occurs, should be abundant [19]. Co-continuous morphologies
represent a class of mesostructures that satisfy these conditions. Whereas thermodynamically stable
morphologies would be preferred, non-equilibrium structures can also be very useful [20,21] if the
associated relaxation times are sufficiently long. Thus, for example, some of the structures that appear
during spinodal decomposition could be arrested by freezing the sample below the glass transition
temperature, and used for developing photovoltaic devices.

Whereas significant work has been devoted to the study of phase separation in polymer mixtures,
only a limited number of simulation efforts have focused on liquid crystalline polymers. On the
theoretical side, several works have addressed the effect of chain stiffness and orientational coupling
strength and the phase behavior of the corresponding mixtures [22–29]. The approach used in those
reports consisted of approximating the exact free energy function by a Landau-Ginzburg expansion
and, from that, a mapping to the phase diagram was carried out (see for example Ref. [23,25,29]).
Such powerful theoretical tools provide considerable information about the behavior of liquid
crystalline polymer mixtures. However, they entail approximations that are only valid in a certain
regime, for example, large molecular weights or infinite chain stiffness. Recently, new studies
have relied on self-consistent field theory (SCFT) [7,30] and single-chain in a mean field (SCMF)
simulations to explore the physics of these systems [31]. However, most of those reports were focused
on 2D systems [15,32,33] and, in the case of SCFT, fluctuations were neglected by the mean field
approximation. In this work, we use a 3D particle-based coarse grained approach to study the effects of
composition, persistence length, molecular weight and orientational coupling strength on the behavior
of pure polymer systems and mixtures. Our results are summarized in the form of phase diagrams
that could serve as a guide for experimental deployment of the systems considered here and, in future
work, for formulation of polymeric blends for photovoltaic applications.

2. Model and Simulation Approach

In the interest of generality, we present the model in the context of an A-B polymer blend. The melt
is composed by n = nA + nB polymer chains in a volume V at temperature T. Macromolecules are
modeled as discrete worm-like chains, and each chain consists of Nγ polymer segments of length bγ,
with the index γ denoting one or the other type of polymer, γ = A, B. The conformation of a chain is
described by the position of Nγ + 1 nodes along the polymer backbone. The position of the sth node
in the ith chain is denoted by ri(s). Polymer conformations are governed by a bending Hamiltonian
which reads:

Hb
kBT

= −
n

∑
i=1

Nγ

∑
s=1

κγ b̂i(s + 1) · b̂i(s), (1)

where b̂i(s) = [ri(s + 1)− ri(s)]/bγ is the unit vector connecting nodes s and s + 1, kB is the Boltzmann
constant, and κγ is the parameter that controls the chain stiffness of the corresponding polymer type, γ.
The persistence length, `p, and κ, are related by: b/`p = − ln[L(κ)], where L(x) = coth(x) − 1/x is
the Langevin function [34]. To describe the intermolecular interactions we resort to a field-based
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approach [35]. The incompatibility between unlike segments is represented by a Flory-Huggins term,
where χ parameterizes the strength of these interactions. A second term is included to constrain
density fluctuations and assign a finite compressibility to the melt. This is achieved by using the
Helfand’s quadratic approximation, with the strength of such interactions quantified by κ̄ [36]. Finally,
following [37,38], the orientational coupling is introduced by using a second-order term in the
tensor order parameter Q(r), with the strength of this orientational interaction given by µ. Thus,
the intermolecular interactions are given by the following functional:

Hnb
kBT

= ρo

∫
V

dr
[

χφA(r)φB(r) +
κ̄

2
[1− φA(r)− φB(r)]

2 − µ

3
Q(r) : Q(r)

]
, (2)

where φγ(r) is the local dimensionless density of segments of type γ, and ρo is the segment number
density. The microscopic definitions of these density and tensor fields are given in terms of polymer
conformations by

φγ(r) =
n

∑
i=1

Nγ

∑
s=1

πγ,γi(s)δ(r̄i(s)− r), (3)

where γi(s) is the type of segment s at chain i, and πγ,γi(s) = 1 if γi(s) = γ, and equal to 0 otherwise.
In this expression, r̄i(s) denotes the center of mass of the corresponding segment, and it is given in
terms of the node positions by: r̄i(s) = [ri(s + 1) + ri(s)]/2.

Q(r) = ρ−1
o

n

∑
i=1

Nγ

∑
s=1

δ(r̄i(s)− r)
[

3
2

ui(s)ui(s)−
I
2

]
(4)

Here, the unit vector ui(s) describes the orientation of the corresponding polymer segment, and I is
the unity tensor. In this work, we have used a simple bonded interaction (Equation (1)) and, for this
case, ui(s) and b̂i(s) represent the same object. We have used a different notation to anticipate the use
of more complex intramolecular interactions.

The exploration of the self-assembled morphologies is performed by Monte Carlo simulations [39].
We use a particle-to-mesh technique where a grid is introduced, and local densities as well as local
tensor fields are defined on each grid cell. The size of such cells are denoted by ∆L. The configurations
are sampled according to the Metropolis criteria, Pacc = min[1, exp(−∆H/kBT)], where ∆H is the
energy difference between the original and a trial configuration. Note that it includes both intra- and
inter-molecular contributions. The trial moves considered here include reptation-like displacements
and local moves (end-rotation and flip moves) of the polymer segments. In the present report we focus
on bulk systems; periodic boundary conditions are applied in all directions. We also note here that a
similar approach was used in [37] to explore the case of a pure melt for a particular value of the chain
stiffness parameter. In this work, we build on that work and explore a wider range of parameters as
well as more complex molecular systems, including mixtures.

3. Results

3.1. Pure Systems

We begin by exploring the phase behavior of pure homopolymer melts as the orientational
coupling strength, molecular weight and chain stiffness are varied. We choose χ = 0, ρo = 1/b3,
∆L = 2.5b and κ̄ = 6.0. The latter value ensures that the system doesn’t collapse for the values of
the orientational coupling, µ, studied in this work [37]. The unit length is chosen to be the polymer
segment length, b. To characterize the global orientational order we compute the largest eigenvalue, S,
of the total tensor parameter Qtot =

∫
V Q(r) dr. Note that S is an uniaxial order parameter. We have

performed Monte Carlo simulations on cubic simulation boxes of size Lx,y,z = L. To minimize finite-size
effects we chose L = 5`c (for melts with N = 4 and 8) and L = 3`c (for melts with N = 16 and 24,



Polymers 2017, 9, 88 4 of 11

where `c = Nb is the contour length associated to the specific molecular weight. All simulations were
started from random initial configurations and evolved for 4 × 106 MC steps.

Figure 1 illustrates the behavior of a liquid crystalline polymer melt with N = 8 segments
per chain. For this example, κ = 3.5, which corresponds to a persistence length of approximately
`p ≈ 3b. As can be seen in Figure 1, at small values of the orientational coupling, µ, the system
displays an isotropic phase where chains are in a disordered state, with a global order parameter
S ≈ 0. However, there is a parameter value, µt ≈ 2.7, above which the global order parameter
S 6= 0. The abrupt transition of this order parameter at µ = µt is a signature of a first order phase
transition, in this case between an isotropic and a nematic phase; the insets in Figure 1 show two
instantaneous configurations of such phases. For clarity, we have unwrapped polymer positions from
the simulation box. It should be noted that the isotropic-nematic transition does not entail a high
degree of order (large S values), in agreement with experimental observations [40]. Note that in the
first study our estimation of the orientational coupling at the transition, µt, is not rigorous. Formally,
more demanding free-energy calculations are needed to determine those values accurately as well as
the order of the corresponding phase transition. Given that we use a finite set of equally spaced µ

values, with spacing δµ, we approximate µt as the middle point between the largest value µ+ that gives
S(µ+) ≈ 0, and the smallest value µ− with S(µ−) 6= 0, i.e., µt = (µ−+ µ+)/2± δµ/2. Our simulations
suggest a first order phase transition, and this agrees with the corresponding transition in small
molecule liquid crystals, but more importantly, this also agrees with simulation results for semi-flexible
polymers using a microscopic, Lennard-Jones-type model and mean-field predictions [41,42].

Figure 1. Global order parameter, S, as a function of the orientational coupling µ, obtained by
Monte Carlo simulations (symbols). Polymer chains are composed of N = 8 segments, and κ = 3.5.
Lines are only a guide to the eye. Insets are instantaneous polymer configurations in the isotropic and
nematic phases, different chain colors are used to facilitate visualization.

Next, we explore the effect of molecular weight, orientational coupling strength and chain stiffness
on the phase behavior of liquid crystalline polymer melts. We summarize the results as a phase diagram
on the parameter space (µ, N) for different stiffness, κ. The results are presented in Figure 2. As can be
seen, chain stiffness has a strong effect on the location of the phase boundary between nematic and
isotropic phases. As expected, more flexible chains (low κ values) require larger orientational coupling
strength to induce nematic ordering. This is because conformational entropy is larger for such chains
compared to rigid ones.



Polymers 2017, 9, 88 5 of 11

4 8 12 16 20 24

N

1

1.5

2

2.5

3

3.5

4

4.5

5

µ

κ = 2.0
κ = 3.0 
κ = 3.5
κ = 5.0 

Nematic 

Isotropic

Figure 2. Phase diagram in the parameter space (µ, N) for different degrees of flexibility, parametrized
by κ, obtained by Monte Carlo simulations. Symbols indicate the transition values, µt, at which the
isotropic-nematic transition occurs. Lines are only a guide to the eye. The associated persistence
lengths, from small to large κ values, are: `p/b ≈ 1.6, 2.5, 3.0 and 4.5.

The polymerization index, N, also affects the transition µt values, although weakly. The larger N,
the lower µt must be in order to induce orientational order. We should note here that Warner et al. [23]
developed a mean field theory for nematic polymers and found that, in the limit of very large molecular
weight, N, the orientational coupling at the isotropic-nematic transition, µt, and the chain flexibility
are related by µt ∼ κ−1. A simple argument to understand how this relationship arises can be written
as follows: let’s consider the continuum limit of a worm-like chain in the presence of an “external”
orientational potential µ f [t(s)], where t(s) is the normalized tangent vector at the contour position s.
The total Hamiltonian describing this chain is: Hwl/kBT =

∫ N
0 ds

[
κ (dt(s)/ds)2 + µ f [t(s)]

]
. In the case

of very large κ (� 1), the persistence length is given by `p = κb (see Section 2 or Ref. [34]), thus it
is possible to rescale the contour parameter s in terms of ξ = sb/`p. Then, the energy of the chain

is written as Hwl/kBT =
∫ Nb/`p

0 dξ
[
(dt/dξ)2 + µκ f [t]

]
; thus, in the limit of N → ∞, the only parameter

controlling the behavior is the product µκ. For a given value of this product, a, the free energy is
well defined and µκ = a is satisfied. In order to compare such a prediction with our MC simulation
results, using the data plotted in Figure 2, we can see that the cases with N = 24 seem to have
reached a constant value; we have used those values and plotted µt vs κ, in Figure 3. As can be seen,
the simulation results deviate from the Warner et al. mean field predictions. The MC results follow a
power law µt ∼ κ−α, with α ≈ 0.84; we ascribe such deviations in the scaling exponent to the effect
of fluctuations that are included in our approach, but not present in the mean field approximation.
Note, in particular, that the limits N → ∞ and κ � 1, are critical to deduce that µt ∼ κ−1, and neither
of these conditions are strictly satisfied in our calculations.

Now, as can be seen in Figure 2, the curves for different chain stiffness exhibit similar shapes,
so it is tempting to renormalize both the orientational coupling and polymerization index in search
of a master curve. To that end, note that Figure 3 suggests that the important parameter, at large N,
is the product µκα, and on the other hand, what is important is the effective molecular length Nb/`p,
as opposed to the bare polymerization index. Therefore, we use these renormalized parameters to
replot the phase diagrams in Figure 2. As can be seen in Figure 4, although the collapse is not perfect,
all data points seem to accumulate around a common phase boundary.
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Figure 3. Relationship between the orientational coupling at the I-N transition, µt, and the
degree of flexibility, parametrized by κ, obtained by Monte Carlo simulations (symbols) at N = 24.
Green (dashed) line is the mean field prediction in the limit of very large N, µt ∼ κ−1. The red
(continuous) line is a fit to a power law µt ∼ κ−α, with exponent α ≈ 0.84± 0.05.
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Figure 4. Phase diagrams in Figure 2 in terms of the renormalized parameters µκα and Nb/`p.

A detailed comparison between mean field predictions regarding other properties is interesting
but it is not main goal of the present work. We simply wish to highlight the fact that the simulation
results agree with previous works and the approach is physically well defined. Thus, we proceed to
use the model to exploring the behavior of more complex macromolecular systems.

3.2. Mixtures

In the previous section we have explored the effect of different parameters on the behavior
of homopolymer melts. In this section, we examine the behavior of mixtures of liquid crystalline
polymers characterized by different stiffness and/or molecular weight. To this end, we consider
mixtures composed of polymers with the same segment length b, and the same orientational coupling µ.
We also consider samples for which the Flory-Huggins parameter is zero and the segment volumes are
identical. Thus, the only chemical feature is encoded into the chain stiffness parameters κstiff and κcoil,
characterizing the stiff and flexible component, respectively. Let fcoil be the volume fraction of the
flexible macromolecule in the mixture and Ncoil the corresponding polymerization index. We consider
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the case where the stiffer macromolecule has a polymerization index Nstiff = 16. Simulations started
from random initial configurations and evolved for 4 × 106 MC steps. The simulation box size was
kept fixed at L = 64b to minimize finite-size effects. We consider the parameter space ( fcoil, Ncoil)
for different systems characterized by several values of the orientational coupling. As before,
the identification of single phase or phase separated morphologies was performed by visual inspection.

Our first results were obtained by considering two highly dissimilar flexibilities with µ = 4.0.
For the latter value the stiff component, which is characterized by a stiffness parameter κstiff = 5.0,
is deep into the nematic phase (see Figure 2). Thus, these macromolecules prefer to organize themselves
into well aligned structures. However, the other component possesses a low stiffness parameter,
we have chosen it to be κcoil = 0.25. Under these conditions, the latter polymer melt is always
in an isotropic phase, within the range of orientational strengths explored here. The chains are so
flexible that configurational entropy overcomes the effect of the preferential alignment of polymer
segments. When these two macromolecules with completely different flexibilities, but otherwise
identical, are mixed together one could expect a strong dependence on the composition over the
behavior of the system as a whole. It is found that the mixtures can be either in a single-phase
where there is a homogeneous distribution of both kinds of polymers, or they can phase separate into
domains, where nematic and isotropic phases coexist in the sample. In Figure 5 the phase behavior
of this mixture in the parameter space ( fcoil, Ncoil) is presented. For these very dissimilar flexibilities,
most of the conditions give rise to macroscopic phase separated morphologies (red circles). However,
there are small regions where a single phase is present (black circles). For the latter case, one can
distinguish two different single-phase states: for low volume fraction, fcoil, and small molecular weight
of the flexible component, the stiff macromolecules are aligned in a nematic phase and induce the
alignment of the flexible chains, even though they would prefer to be in a disordered state in the bulk.
This nematically-induced unfolding is viable if the molecular weight of the flexible macromolecules
is not that large, such that the entropic cost of the unfolding of the coil molecules is compensated by
the orientational interactions. However, as the polymerization index increases there, will be a value
beyond which configurational entropy dominates over the nematic alignment, as it is obtained for
Ncoil ≥ 16 in the current system. On the other hand, for fcoil → 1, the great majority of coil chains
induce coil configurations on the stiff polymers. Again, this disorder induced by disorder is the result
of conformational entropy gains associated with the large numbers of small flexible chains. We should
note here that, theoreticallly, a single phase can still exist for much larger Ncoil, with the width of the
one-phase stability region, ∆→ 0 as the two extremes of the volume fraction are reached, fcoil → 0, 1.
Our modeling does not capture that, as we have considered a finite parameter set to explore the overall
phase behavior.

When macrophase separation occurs the system organizes into nematic and isotropic domains
(this has been also observed experimentally, see for example Ref. [43]). As the initial configurations
were homogeneous, and simulation box sizes are relatively large, we observe the local arrangement of
stiff polymers into bundles with nematic order (nematic domains), without large-scale phase separation.
The orientation of such nematic domains was, as expected, random. When the volume fraction of the
stiff macromolecules was large enough, those nematic domains formed a percolating network through
the whole sample (see Figure 6). To highlight this structure we have computed the local composition
scalar field, ψ(r), defined by

ψ(r) =
〈

φstiff(r)− φcoil(r)
φstiff(r) + φcoil(r)

〉
. (5)
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Figure 5. Phase diagram in the parameter space ( fcoil, Ncoil) for a mixture of rigid and flexible polymers,
obtained by Monte Carlo simulations. Red circles indicate the points in the phase diagram that give
rise to phase separated samples while black circles represent those conditions for which a single phase
is obtained. Lines are only a guide to the eye and highlight the phase boundary, these lines were
obtained by using splines on the simulation data. Symbols and continuous (blue) line are results for
κcoil = 0.25 (`p ≈ 0.44b), κstiff = 5.0 (`p ≈ 4.5b) and µ = 4.0. The dashed green line is the phase
boundary obtained for a sample with less dissimilarity between polymers, characterized by κcoil = 2.0
(`p ≈ 1.6b), κstiff = 5.0 and µ = 3.5.

The regions where ψ = −1, 0 or +1 represent the coil-rich domains, the interface between the stiff
and coil regions, and the stiff-rich domains, respectively. Additionally, we have measured the local
orientational ordering by computing the local nematic director n̂(r) and the local scalar order parameter
S(r) associated to the tensor order parameter Q(r). Figure 7 displays this combined information in
a single plot. The interface between nematic and isotropic phases (ψ(r) = 0) is shown as a green
semi-transparent surface. For this example, Ncoil = 16 and fcoil ≈ 0.6, thus the minority phase is
composed by the stiff polymers and the interface bounds such material. As can be seen, such surface
is formed by tube-like regions connected to each other in a percolating network. In the same plot,
we have displayed the local nematic director (short red lines) where the local scalar order parameter
S(r) ≥ 0.7. As can be seen in the Figure 6, those regions of high orientational order correspond to
points bounded by the interface between flexible and rigid macromolecules. This data also supports
the fact that, locally, each tube-like region contains stiff polymers oriented in different directions.
It should be noted here that such percolating structure is a non-equilibrium state; the true equilibrium
should be one in which two macroscopic phases appear in the sample. However, because we use
local and semi-local MC moves, the system gets trapped in this non-equilibrium state, as the stiff
macromolecules form bundles oriented in a random direction, that represents, locally, a minimum
energy state. Reaching equilibrium would require the alignment of all domains in a single uniform
direction, which would take a long-time using the MC method adopted here. By decreasing the
dissimilarity between the polymers in the mixture, the region of macrophase separation shrinks; this is
shown by the phase boundary (green dashed line) displayed in Figure 5 for the case of stiff and flexible
polymers characterized by κcoil = 2.0, κstiff = 5.0 and µ = 3.5. It is important to highlight that recent
experimental results have shown that short-range intermolecular aggregation [17] and high persistence
length [16] are critical to achieve efficient charge transport and high optical absorption, respectively.
Thus, the results presented in this work can serve as useful as a guide for experimental formulation of
these macromolecular materials.

We noted here that in this work we have used the simplest model, where µcoil = µstiff = µ, as its
implementation is straightforward and provides physical insights into the molecular level organization



Polymers 2017, 9, 88 9 of 11

that occurs in these polymer blends. The generalization to dissimilar orientational couplings is
straightforward, and one would expect that in the particular case with µcoil � µstiff, the region of
macrophase separation will be wider (Figure 4). This more realistic case is important, in particular,
for the case of block polymers self-assembly [44]; we are currently pursuing research on this topic.

Figure 6. Three-dimensional cross-section of an instantaneous polymer configurations in the phase
separated state, stiff polymer chains are shown in red and blue, segments of flexible chains are shown
as yellow dots to facilitate visualization [45].

Figure 7. Iso-surface of the composition scalar parameter ψ(r) = 0 corresponding to the interface
between the rigid and flexible domains (green surface). Red lines are the local nematic director n̂(r)
where local ordering S(r) ≥ 0.7 [46].

4. Conclusions

In this work we have used a coarse-grained formalism to study the phase behavior of semi-flexible
nematic polymers in pure melts and mixtures. We have explored the conditions that lead to macrophase
separation in mixtures of stiff and flexible polymers mediated by the orientational interaction in
otherwise identical polymers. We have found that in macroscopic samples the kinetics of phase
separation will lead to formation of non-equilibrium morphologies where nematic domains form a
percolating network that spans the whole sample. The latter structures are of interest for the development
of photovoltaic organic devices. The formalism used in this work should therefore provide a strategy
for systematic coarsening from atomistic simulations to coarse-grained representations and vice versa.
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