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Abstract: Compensating nitrogen input and increasing nitrogen utilization efficiency (NUtE) are
necessary for sustainable crop production. Research studies on the co-application of biochar and
nitrogen to promote rapeseed growth, soil fertility, and improve nutrient utilization efficiency are found
to be limited. This study aims to examine the integral effects of biochar and nitrogen over soil fertility,
rapeseed growth and nitrogen utilization efficiency. The experiment was conducted in a completely
randomized design to assess various morphological, physiological and biochemical traits of rapeseed
and soil chemical properties under the application of four nitrogen levels (0, 75, 225, and 450 kg ha−1

equivalent to 0, 133, 400 and 800 mg nitrogen pot−1) and four biochar levels (0, 5, 10, and 15 MT ha−1

equivalent to 0, 10, 20 and 30 g biochar pot−1 soil by weight basis). The results of this study showed
that the integral application of biochar at 30 g pot−1 and nitrogen at 800 mg pot−1 at 45 days after
sowing (DAS) and 60 days after sowing (DAS) compensated the amount of nitrogen and increased
soil organic carbon (SOC 69%), total nitrogen accumulation (TNA) (93% and 62%), leaf biomass
(60% and 33%), stem biomass (20% and 22%) and photosynthesis (20% and 17%) at 45 DAS and
60 DAS, respectively as compared to a single application of nitrogen. However, under the conditions
of no nitrogen or 75 kg ha−1 nitrogen application, the application of biochar to promote the growth of
rapeseed plants is limited due to the less nitrogen supply. In contrast, the application of nitrogen at
800 mg pot−1 and biochar at 10 or 20 g pot−1 showed that the growth of early seedlings was adversely
affected due to high nitrogen concentration in soil. The findings of the present study imply that
within the appropriate nitrogen application range, the interaction of biochar and nitrogen might have
an economical approach towards better utilization of nitrogen and sustainable crop production.

Keywords: soil organic matter; photosynthesis; total nitrogen accumulation; sustainable crop
production

1. Introduction

An increase up to 34% in world’s population by 2050 is predicted to increase demand of food
production [1], and various developing countries with less nitrogen use efficiency and declined soil
fertility raising many problems for food security and less crop production [2,3]. Rapeseed is the first
oilseed and fourth major crop after rice, maize, and wheat in China. China has become one of the top
rapeseed producers around the world since 1980, except for 2011 [3]. Yangtze River Basin is the largest
rapeseed production region in China, with about 90% of the total national rapeseed production [4].
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The yield of rapeseed is closely related to the application of fertilizer, especially the supply
of available nitrogen. However, compared with the world’s major rapeseed producing countries,
China’s rapeseed nitrogen fertilizer consumption is significantly higher than Australia, Germany,
and other countries, in contrast, the agronomic efficiency of nitrogen fertilizer is only about
1.63–8.08 kg kg−1 N, that is much lower than Australia and Germany’s 8.32–8.80 kg kg−1 N,
respectively [5]. High-level application of nitrogen fertilizer will not only reduce the nitrogen
fertilizer use efficiency due to ammonia volatilization and nitrate (NO−3-N) leaching [6] but also
cause soil acidification [7] and environmental pollution problems [8]. At the same time, the yield,
quality, and efficiency of plants will be reduced due to excessive vegetative growth, reduced stress
resistance, and increased lodging [9]. Thus, increasing the nitrogen utilization efficiency (NUtE) of
rapeseed through the integrated use of biochar and nitrogen is of significant importance to mitigate the
problems of fertilizer consumption, environmental contamination, and economic cost of the production
of rapeseed, while maintaining the crop yield and quality.

Biochar which is prepared through pyrolysis of plant biomass is a carbon-rich organic compound,
and its application has been described as a low-cost method, which enhances soil physio-chemical
properties, crop yield and decreases inorganic fertilizer application which will increase availability
and utilization of the nutrients, farm productivity and income [10]. Biochar contains organic matter,
ash, and various nutrients [11], which enhance soil organic carbon, soil pH, electrical conductivity
and cation-exchange capacity [12], which will further minimize the volatilization of ammonium
and enhance the immobilization and availability of nitrogen and other nutrients for field crops [13].
The presence of oxygen-containing functional groups on the surface of biochar helps to adhere more
water particles to improves water holding capacity (WHC) and water use efficiency (WUE) of soil, hence,
increasing water and nutrients retention and thus enhancing the soil fertility and crop productivity [14].
The addition of biochar has a strong effect on root growth and root morphology due to high surface
area and high porosity of biochar [15]. The presence of hydroxyl and carboxyl groups in biochar [16]
established an adhesion and cohesion forces that are resulting in nutrients conservation to enhance
slowly and gradual supply of nutrients through roots for better growth of plants [17].

Many research studies on biochar have been focused on studying the biochar effects on total
biomass production. However, little observations are available about the role of biochar in plant
physiology, improving NUtE, and soil fertility, respectively. Therefore, it is necessary to systematically
explore the effects of biochar over morphological and physiological parameters of crop and examined
the soil chemical properties under different nitrogen levels to observe better results and the role
of biochar in crop production. Integrated application of biochar and nitrogen could be one of the
primary game-changer in nitrogen transformation, soil fertility, and long-term sustainable production
of rapeseed. Therefore, we made a complete focus in our research study to explore the positive
effects of the integrated application of biochar and nitrogen amendments on NUtE, soil fertility,
and morphological and physiological status of rapeseed growth.

2. Materials and Methods

2.1. Experimental Design and Materials

The experiment was conducted in pots in the open experimental area to evaluate the
combined effect of biochar and nitrogen over rapeseed growth, nutrients uptake, and soil fertility.
Huayuoza 9 (HZ 9, Hybrid) widely cultivated rapeseed cultivar originated from Huazhong Agricultural
University with≥ 90% germination rate was used as planting material. Pots used in the experiment were
PVC pipes (40 cm length, 10 cm width) equipped with pored bottom and filled with 4 kg sun-dried and
sieved (2 mm) mixed soil of clay and sand (2:1). Biochar was derived by pyrolysis of rice straw at a high
temperature of 600 ◦C produced by Hubei Jinzhi Eco-Energy Co., Ltd., Xiaogan City, Hubei Province,
China. Biochar with a pH of 9.42 containing 0.74% nitrogen, 47.14% carbon, 1.62% hydrogen,
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11.85% oxygen, 0.32% phosphorus, 18.90% potassium and 19.43% ash were used in the experiment
(Table 1).

Table 1. Chemical properties of biochar and soil before the experiment.

Properties of Biochar Values Properties of Soil Values

pH 9.42 pH 5.64
Nitrogen 0.74% Electric conductivity 1.2
Carbon 47.14% Total nitrogen 0.7 g k g−1

Hydrogen 1.62% Available phosphorus 11.27 mg kg−1

Oxygen 11.85% Available potassium 63.43 mg kg−1

Potassium 18.9% Soil organic carbon 7.42 g kg−1

Phosphorus 0.32% Soil organic matter 12.79 g kg−1

Ash 19.43%

The experiment was conducted in a completely randomized design consisting of four nitrogen
levels (0, 75, 225, and 450 kg ha−1 equivalent to 0, 133, 400 and 800 mg nitrogen pot−1) and four biochar
levels (0, 5, 10, and 15 MT ha−1 equivalent to 0, 10, 20 and 30 g biochar pot−1 soil by weight basis)
having sixteen treatments and each treatment was repeated twelve times. The sixteen different
treatments were (B0+N0, B5+N0, B10+N0, B15+N0, B0+N75, B5+N75, B10+N75, B15+N75, B0+N225,
B5+N225, B10+N225, B15+N225, B0+N450, B5+N450, B10+N450, and B15+N450). Biochar and
nitrogen were mixed at 20 cm depth in the soil at the desired rates before the sowing of seeds in pots.
Phosphorus and potassium were applied as P2O5 (550 mg pot−1) and K20 (337 mg pot−1) before sowing
as basal fertilizer. Four seeds of rapeseed were sown per pot and then thinned to one plant after the
establishment of a seedling. All the agronomic practices such as irrigation, weeding, insecticides,
and pesticides were provided to all the pots similarly throughout the experiment duration.

2.2. Samples Measurement and Analysis

Rapeseed seeds were sown at 13 March 2019 and seedlings were sampled at three different
intervals: 30 DAS, 45 DAS, and 60 DAS for measuring various morphological, physiological and
biochemical aspects of rapeseed. Three plants were harvested each time to represent a replicate.
Stem diameter was measured by using a digital Vernier calliper. The chlorophyll content of leaf was
measured by chlorophyll meter SPAD-502 Plus each time in the same leaf used for photosynthesis
measurements at 30 DAS, 45 DAS, and 60 DAS. Samples were separated into leaves, stem, and roots
and oven-dried at 80 ◦C to measure the dry biomass.

2.3. Determination of Physiological Aspects

The physiological processes, photosynthetic rate (A), transpiration rate (E), stomatal
conductance (gs), and intercellular CO2 rate (Ci) were measured at 30 DAS, 45 DAS, and 60 DAS.
Each time, fully expanded the fourth leaf from bottom to top was selected from each pot by using a
portable photosynthesis system (Li-6400, Li-COR Inc., Lincoln, NE, USA). All the measurements were
carried out from 10:00 am to 03:00 pm in full sunshine under these conditions: leaf temperature 23 ◦C,
CO2- 400 µmol mol−1, light intensity 1000 µmol m−2 s−1, and air humidity 70%.

2.4. Soil Chemical Properties Analysis

Initially, three samples of soil were taken before the experiment to measure the basic chemical
properties of test soil. Similarly, three replicated samples of soil from each treatment up to 20 cm depth
were taken after harvesting the seedlings at 60 DAS and oven-dried to measure the chemical properties
of soil. Digital pH meter (B-212, HORIBA, Ltd., Kyoto City, Japan) and EC meter (B-173, HORIBA,
Ltd., Kyoto City, Japan) were used to measure soil pH and electric conductivity by mixing 10 g of dry
soil sample with distilled water at the ratio of 1:2 and shaken at 180 rounds/min for twenty minutes to
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mix properly. 1 g of soil was weighed and digested using perchloric and sulphuric acid, and then TN
was measured through the micro-Kjeldahl procedure [18]. Available K (AK) was measured using the
ammonium acetate solution. Olsen’s method with a 0.5 m NaHCO3 solution of 8.5 pH was used to
extract available P (AP) [19]. NH4

+-N and NO3
−-N were measured by indophenol methods [20] and

the Catalado method [21], respectively. Weighed 0.3 g soil to measure soil organic carbon according to
the standard method mentioned in [22].

2.5. Determination of Shoot and Root Nitrogen Content, NUtE, and TNA

Shoot and root nitrogen contents were measured through the micro-Kjeldahl procedure [18].
Nitrogen utilization efficiency and total nitrogen accumulation were measured using the following
equations [23,24].

NUtE = Plant dry weight/Nitrogen concentration (g2 TDW mg−1 N)

TNA = N concentration × total plant dry weight (mg N)

2.6. Statistical Analysis

Two-way ANOVA and significant differences among various treatments were tested by using
statistix 8.1 software (Analytical Software, Tallahassee, FL, USA). Differences in means of different
treatments were compared by using the least significant difference (LSD). The Figures were drawn
using GraphPad Prism 8.0 software (GraphPad, San Diego, CA, USA).

3. Results

3.1. Changes in Physiological Aspects of Rapeseed Seedlings

The current study was performed to measure the adverse effects of low and high nitrogen on
rapeseed growth and physiology through integral application of biochar as evident in (Figure 1).
Photosynthetic (A), transpiration (E), stomatal conductance (gs), and intercellular CO2 rates were
measured at 30 DAS, 45 DAS, and 60 DAS to observe the changes in physiological processes of
rapeseed seedlings due to different treatments of biochar and nitrogen. Application of B15+N450
showed significant increases in photosynthesis rate (A) up to 20% and 17%, transpiration rate (E)
5% and 8%, stomatal conductance (gs) 29% and 11% and intercellular CO2 6% and 5% at 45 DAS
and 60 DAS of intervals respectively as compared to the sole application of N450 (Figures 2 and 3).
However, the application of biochar at 30 DAS of interval did not show a significant response over
the physiological traits of rapeseed seedlings. The interaction between nitrogen and biochar was not
significant for photosynthetic processes. SPAD values also showed a significant response to an integral
application of biochar and nitrogen and increase up to 3% at 45 DAS, and 10% at 60 DAS of interval
for B15+N450 compared to B0+N450 (Table 2). These results suggested that biochar application can
increase chlorophyll contents and photosynthetic rates and, consequently, dry matter production and
rapeseed growth.
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integrated application of biochar and nitrogen. 30 DAS: 30 days after sowing, 45 DAS: 45 days after 
sowing, 60 DAS: 60 days after sowing, B0: 0 g biochar pot−1, B5: 10 g pot−1, B10: 20 g pot−1 and B15: 30 
g pot−1, N0: 0 mg nitrogen pot−1, N75: 133 mg pot−1, N225: 400 mg pot−1and N450: 800 mg pot−1, error 
bars represents standard error of three replicates. Differences in letters indicate significant differences 
according to the LSD test (P < 0.05). 

Figure 1. Integral effect of different nitrogen levels (N0, N75, N225 and N450) with high or without
biochar (B0 and B15) on rapeseed phenotypes.

Agronomy 2020, 10, x FOR PEER REVIEW 5 of 16 

 

 
Figure 1. Integral effect of different nitrogen levels (N0, N75, N225 and N450) with high or without 
biochar (B0 and B15) on rapeseed phenotypes. 

 

 

Figure 2. Effects of integrated application of biochar and nitrogen on rapeseed photosynthesis A (A) 
30 DAS, (B) 45 DAS and (C) 60 DAS and transpiration E (D) 30 DAS, (E) 45 DAS and (F) 60 DAS under 
integrated application of biochar and nitrogen. 30 DAS: 30 days after sowing, 45 DAS: 45 days after 
sowing, 60 DAS: 60 days after sowing, B0: 0 g biochar pot−1, B5: 10 g pot−1, B10: 20 g pot−1 and B15: 30 
g pot−1, N0: 0 mg nitrogen pot−1, N75: 133 mg pot−1, N225: 400 mg pot−1and N450: 800 mg pot−1, error 
bars represents standard error of three replicates. Differences in letters indicate significant differences 
according to the LSD test (P < 0.05). 

Figure 2. Effects of integrated application of biochar and nitrogen on rapeseed photosynthesis
A (A) 30 DAS, (B) 45 DAS and (C) 60 DAS and transpiration E (D) 30 DAS, (E) 45 DAS and (F) 60 DAS
under integrated application of biochar and nitrogen. 30 DAS: 30 days after sowing, 45 DAS: 45 days
after sowing, 60 DAS: 60 days after sowing, B0: 0 g biochar pot−1, B5: 10 g pot−1, B10: 20 g pot−1

and B15: 30 g pot−1, N0: 0 mg nitrogen pot−1, N75: 133 mg pot−1, N225: 400 mg pot−1 and N450:
800 mg pot−1, error bars represents standard error of three replicates. Differences in letters indicate
significant differences according to the LSD test (p < 0.05).
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60 DAS in B15+N450 treatment compared to B0+N450 (Table 3). Similarly, stem dry weight showed 
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Figure 3. Changes in rapeseed stomatal conductance gs (A) 30 DAS, (B) 45 DAS, and (C) 60 DAS and Ci
(D) 30 DAS, (E) 45 DAS and (F) 60 DAS under integrated application of biochar and nitrogen. 30 DAS:
30 days after sowing, 45 DAS: 45 days after sowing, 60 DAS: 60 days after sowing, B0: 0 g biochar pot−1,
B5: 10 g pot−1, B10: 20 g pot−1 and B15: 30 g pot−1, N0: 0 mg nitrogen pot−1, N75: 133 mg pot−1,
N225: 400 mg pot−1 and N450: 800 mg pot−1, error bars represents standard error of three replicates.
Differences in letters indicate significant differences according to the LSD test (p < 0.05).

3.2. Integrated Application of Biochar and Nitrogen Improved Morphology and Biomass of Rapeseed Seedling

Different biochar and nitrogen fertilizer rates were applied to measure the changes in various
morphological contents of rapeseed seedlings at 30 DAS, 45 DAS, and 60 DAS of intervals.
Biochar application at 30 DAS of interval increased the morphological traits; however, the effect
was not significant as compared to 45 DAS or 60 DAS of intervals. The leaf area showed significant
differences in treating biochar with nitrogen and increased leaf area by 29% at 45 DAS and 7% at
60 DAS for B15+N450 treatment compared to the application of nitrogen fertilizers without biochar
(B0+N450) (Table 2). Plants treated with biochar application along with nitrogen (B15+N450) also
increased stem diameter 15% at 45 DAS and 4% at 60 DAS compared to the sole application of nitrogen
N450 (Table 2). Significant changes were observed in biomass of rapeseed seedlings, but only root dry
weight was increased with biochar application at 30 DAS of the interval, which shows that biochar has
a more prominent effect directly on root growth. Leaves dry weight increased by 60% at 45 DAS and
33% at 60 DAS in B15+N450 treatment compared to B0+N450 (Table 3). Similarly, stem dry weight
showed a significant response to biochar application along with nitrogen fertilizer and enhanced stem
dry weight by 20% at 45 DAS and 22% at 60 DAS in B15+N450 treatment compared to B0+N450
(Table 3). Root dry weight increases along with an integrated application of biochar and nitrogen at
30 DAS, 45 DAS, and 60 DAS. Increases in root dry weight recorded were 4% at 30 DAS, 17% at 45 DAS,
and 32% at 60 DAS for B15+N450 compared to B0+N450 (Table 3). Moreover, the interaction between
biochar and nitrogen was also significant at 45 DAS and 60 DAS intervals for dry leaf weight and only
at 60 DAS for stem and root dry weight. Increments in leaf morphology and biomass of rapeseed
under integral application of biochar and nitrogen showed that biochar enhanced the utilization of
nitrogen and improved rapeseed growth.



Agronomy 2020, 10, 1661 7 of 16

Table 2. Effects of integrated application of biochar and nitrogen on leaf area, stem diameter and SPAD values of rapeseed.

Nitrogen Levels Biochar Application
Leaf Area (cm2) Stem Diameter (mm) SPAD (Chlorophyll Number)

30 DAS 45 DAS 60 DAS 30 DAS 45 DAS 60 DAS 30 DAS 45 DAS 60 DAS

N0 B0 91.17 cd 101.50 e 79.64 f 4.17 cd 6.75 f 7.59 g 37.73 ghi 39.87 e 29.73 f
B5 84.86 d 101.86 e 81.22 f 4.29 cd 6.77 f 7.76 fg 36.33 hi 38.3 ef 35.47 de
B10 93.95 cd 108.95 de 82.22 f 3.88 d 6.78 f 7.77 fg 39.03 fgh 36.33 f 35.9 de
B15 96.83 cd 118.64 de 93.29 f 4.33 cd 6.78 f 8.14 efg 35.80 i 40.27 cde 34.33 ef

N75 B0 116.30 cd 129.63 de 130.31 e 4.25 cd 7.37 ef 7.87 efg 39.43 efg 41.1 cde 37.67 cde
B5 109.15 cd 133.82 de 136.70 e 4.50 cd 7.67 ef 8.44 efg 41.37 bcdef 40.17 de 40.1 bcd
B10 115.58 cd 133.91 de 136.93 e 4.17 cd 7.75 ef 9.01 def 41.13 bcdef 39.83 e 42.33 abc
B15 118.23 c 138.23 d 183.59 d 4.56 cd 8.25 e 9.16 de 40.83 cdef 41.17 cde 42.07 abc

N225 B0 198.10 b 234.76 c 235.43 c 4.71 bcd 8.73 de 10.02 cd 41.80 bcde 43.53 abc 40.27 bcd
B5 217.13 b 253.80 bc 266.20 b 4.65 bcd 8.77 cde 10.81 bc 42.33 bcd 41.57 bcde 40.7 bcd
B10 215.47 b 256.47 bc 285.60 ab 5.44 ab 9.75 bcd 10.84 bc 40.10 defg 43.53 abc 42.7 abc
B15 212.06 b 269.73 b 286.84 ab 4.74 bcd 9.85 bcd 11.13 abc 42.37 bcd 43.3 abcd 42.03 abc

N450 B0 270.84 a 284.50 b 294.56 ab 4.89 bc 10.14 bcd 11.9 ab 42.50 bcd 45.93 a 42.93 abc
B5 274.76 a 341.43 a 298.38 ab 4.92 bc 10.17 bc 12.42 a 43.07 abc 44.73 ab 43.23 ab
B10 293.25 a 362.59 a 304.94 a 6.07 a 10.33 ab 12.44 a 45.60 a 46.1 a 46.1 a
B15 294.05 a 367.39 a 315.48 a 5.46 ab 11.72 a 12.49 a 43.87 ab 46.43 a 46.77 a

F values and Significance levels
Nitrogen 298.81 *** 329.06 *** 2.93.45 *** 9.22 * 17.55 ** 22.89 ** 81.51 *** 19.30 ** 8.19 *
Biochar 1.03 ns 7.85 ** 7.82 ** 1.98 ns 4.63 * 5.56 ** 0.83 ns 3.33 * 7.89 *
Nitrogen × biochar 0.36 ns 2.17 ns 0.25 ns 2.19 ns 0.98 ns 0.43 ns 1.62 ns 1.06 ns 0.79 ns

30 DAS: 30 days after sowing; 45 DAS: 45 days after sowing and 60 DAS: 60 days after sowing. Different letters within the columns show a significant difference between treatments at p =
0.05 according to LSD test, and asterisks indicate a significant difference at * p < 0.05, ** p < 0.01, and *** p < 0.001 level; ns, not-significant.
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Table 3. Effects of integrated application of biochar and nitrogen on the biomass of rapeseed seedlings.

Nitrogen Levels Biochar Application
Leaf Dry Weight (g) Stem Dry Weight (g) Root Dry Weight (g)

30 DAS 45 DAS 60 DAS 30 DAS 45 DAS 60 DAS 30 DAS 45 DAS 60 DAS

N0 B0 0.93 gh 1.42 h 0.52 e 0.17 fg 0.44 f 1.74 g 0.21 g 0.83 g 1.27 i
B5 0.92 gh 1.43 h 0.54 e 0.15 g 0.45 f 1.79 g 0.24 defg 0.86 g 1.47 hi
B10 0.96 fgh 1.44 h 0.70 e 0.18 efg 0.46 f 1.80 g 0.24 defg 0.87 g 1.69 h
B15 0.88 h 1.52 h 0.77 e 0.18 efg 0.52 f 1.81 g 0.26 abcde 1.10 f 2.1 g

N75 B0 1.05 efg 1.52 h 0.77 e 0.19 cdef 0.77 e 2.25 fg 0.24 defg 1.28 f 2.37 fg
B5 1.07 ef 2.41 g 0.94 e 0.20 bcde 0.87 de 3.6 f 0.23 fg 1.29 f 2.53 fg
B10 1.04 efg 2.41 g 1.00 e 0.19 cdef 0.90 de 3.71 f 0.28 abcd 1.56 e 2.64 ef
B15 1.10 e 2.82 f 1.52 d 0.20 bcde 0.99 cd 5.31 d 0.29 abc 1.64 e 2.86 e

N225 B0 1.40 d 3.54 e 1.57 d 0.20 bcde 1.03 cd 4.50 e 0.28 abcd 2.04 d 3.08 e
B5 1.43 d 4.15 d 1.84 d 0.20 bcde 1.04 cd 4.51 e 0.29 abc 2.17 cd 3.41 d
B10 1.48 d 4.15 d 1.99 d 0.21 abcd 1.19 c 5.37 d 0.28 abcd 2.29 bc 3.64 cd
B15 1.48 d 5.67 c 2.46 c 0.22 abcd 1.43 b 6.09 c 0.30 a 2.40 b 3.97 c

N450 B0 1.90 ab 6.25 b 2.71 bc 0.22 abcd 1.51 b 7.10 b 0.29 abc 2.24 bcd 3.83 cd
B5 1.93 a 6.30 b 2.98 b 0.23 ab 1.54 b 7.17 b 0.25 bcde 2.31 bc 4.04 c
B10 1.81 bc 6.37 b 3.10 b 0.24 a 1.55 b 7.18 b 0.26 abcde 2.40 b 4.58 b
B15 1.74 c 8.34 a 4.35 a 0.23 ab 1.82 a 8.73 a 0.30 a 2.64 a 5.08 a

F values and Significance levels
Nitrogen 248.01 *** 211.34 *** 142.80 *** 13.88 ** 97.66 *** 112.20 *** 20.40 ** 206.23 *** 83.53 ***
Biochar 0.57 ns 109.98 *** 23.88 *** 2.17 ns 13.02 *** 63.01 *** 4.66 * 39.07 *** 66.42 ***
Nitrogen × Biochar 2.08 ns 18.24 ** 2.84 * 0.24 ns 1.40 ns 10.68 ** 1.36 ns 1.45 ns 2.78 *

30 DAS: 30 days after sowing; 45 DAS: 45 days after sowing and 60 DAS: 60 days after sowing. Different letters within the columns show a significant difference between treatments at p =
0.05 according to LSD test, and asterisks indicate significant difference at * p < 0.05, ** p < 0.01, and *** p < 0.001 level; ns, not significant.
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3.3. Response of Soil Chemical Properties to Biochar and Nitrogen

The chemical properties of soil showed a significant response towards biochar and nitrogen
fertilizer levels. Values of NH4

+ NO3
−, total nitrogen (TN), available phosphorus (AP), and available

potassium (AK) were measured to estimate the role of integrated application of biochar and nitrogen
fertilizers in improving soil fertility. Biochar application, in combination with nitrogen fertilizer
significantly affected NH4

+ and NO3
− contents in soil and an increasing trend with the increase in

biochar and nitrogen amount was observed (Table 4). Soil NH4
+ increased up to 20% for B15+N450

treatment compared to B0+N450. Similarly, NO3
− also showed the same response towards biochar

and nitrogen application, and an increase of 19% in soil NO−3 the content was recorded for B15+N450
compared to B0+N450 (Table 4). Nitrogen application, along with biochar, improved the TN content
and availability of AP, while AK was significant only for biochar application (Table 4). TN was
increased by 68% in response to B15+N450 treatment as compared to the application without biochar.
Similarly, the availability of AP was also increased by up to 61% for B15+N450 treatment compared to
the sole application of nitrogen. Available potassium (AK) showed a similar response to increase with
increasing biochar rate, and an increase of 29% was recorded for high biochar treatment (B15+N450).
These results indicated that biochar application can compensate the low and high nitrogen amount
by adsorbing more nitrogen in high nitrogen supply to reduce harmful effects of high nitrogen or
release nitrogen contained in biochar in low nitrogen supply to overcome nitrogen deficiency and also
increase the availability of other essential nutrients (P and K) and as a result increases soil fertility,
growth, and development of rapeseed seedlings.

Application of high biochar revealed significant effects in terms of soil organic carbon (SOC),
soil organic matter (SOM), soil EC and pH while the impact of nitrogen application was not significant.
High biochar treatments (B15) improved the SOC and SOM by 69%, as compared to treatments without
biochar (Table 4). Biochar application caused significant changes in soil pH and electric conductivity,
while nitrogen remained insignificant. However, higher biochar level (B15) along with different
nitrogen levels, enhanced soil pH, and EC (Table 4). Biochar improved soil pH and electric conductivity
by an increase of 25% and 42% for B15+N450 compared to B0+N450 treatment (Table 4). The above
findings showed the prominent role of biochar in increasing soil organic carbon, EC, and pH, which can
improve soil quality, water availability, and nutrients supply, which can yield better rapeseed growth.

3.4. Changes in Shoot and Root Nitrogen Content, TNA and NUtE

Shoot and root nitrogen contents, total nitrogen accumulation (TNA), and nitrogen utilization
efficiency (NUtE) of rapeseed seedlings were measured to reveal the role of biochar in retention,
adsorption, and utilization of applied nitrogen and soil nutrients. The integration of biochar with
nitrogen significantly improved the TNA, NUtE, and nitrogen content in shoot and root at the intervals
of 45 DAS and 60 DAS. Nitrogen content of shoot increased with increasing biochar and nitrogen
levels, and an increase of 42% at 45 DAS and 22% at 60 DAS was recorded in shoot nitrogen content for
B15+N450 treatment compared to B0+N450 (Figure 4). Root nitrogen content also showed a positive
response towards an increase in biochar and nitrogen integral application. B15+N450, the treatment
improved the root nitrogen content by 48% at 45 DAS and 22% at 60 DAS compared to B0+N450
treatment (Figure 4). Interaction between biochar and nitrogen was also significant for shoot and root
N content, TNA and NUtE at 45 and 60 DAS (Table 5). B15+N450 treatment increased NUtE by 2% at
45 DAS and 9% at 60 DAS compared to B0+N450 (Figure 5). Similarly, increase up to 93% at 45 DAS,
and 62% at 60 DAS was observed for TNA in B15+N450 treatment compared to B0+N450 treatment
(Figure 5). Additionally, a significant interaction was also found between biochar and nitrogen at
45 DAS and 60 DAS intervals for the shoot and root nitrogen contents, total nitrogen accumulation
(TNA), and nitrogen utilization efficiency (NUtE). These results indicated that biochar could increase
the accumulation of nitrogen by roots and shoots to enhance the utilization of applied nitrogen and
improve rapeseed performance.
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Table 4. Integrated effect of biochar and nitrogen application on chemical properties of soil.

Nitrogen Levels Biochar Levels Soil pH Soil EC SOC
(g kg−1)

SOM
(g kg−1)

NH4+
(mg kg−1)

NO3-
(mg kg−1)

T N
(g kg−1)

A P
(mg kg−1)

AK
(mg kg−1)

N0 B0 6.30 h 1.30 d 7.21 f 12.43 f 1.27 g 12.08 e 0.88 e 16.76 f 79.70 g
B5 7.24 fg 1.33 d 9.14 de 15.75 de 2.26 f 14.18 e 0.99 de 19.31 ef 84.04 fg
B10 7.37 defg 1.33 d 11.30 bc 19.48 bc 2.28 f 16.53 e 1.03 de 19.63 ef 90.10 def
B15 7.72 ab 1.78 a 13.38 a 23.07 a 3.16 ef 22.82 de 1.11 de 21.01 e 92.64 cde

N75 B0 6.45 h 1.35 d 7.74 ef 13.34 ef 3.36 de 25.04 de 1.11 de 18.65 ef 87.27 defg
B5 7.22 fg 1.65 ab 9.99 cd 17.23 cd 3.56 cde 25.17 de 1.18 cde 20.49 e 90.05 def
B10 7.42 cdef 1.71 a 10.92 c 18.83 c 4.05 abcde 28.29 bcde 1.26 bcde 21.55 de 99.34 bc
B15 7.64 abc 1.81 a 13.47 a 23.22 a 4.25 abcd 32.25 abcd 1.45 bcd 24.53 cd 109.66 a

N225 B0 6.39 h 1.36 cd 7.44 f 12.83 f 3.37 de 27.12 cde 1.10 de 18.74 ef 86.82 efg
B5 7.26 efg 1.41 bcd 10.01 c 17.26 c 3.68 bcde 30.89 abcd 1.40 bcde 25.14 bc 92.47 cde
B10 7.35 defg 1.65 ab 10.74 c 18.52 c 4.52 ab 33.12 abc 1.53 abcd 26.15 bc 94.46 bcde
B15 7.50 bcde 1.74 a 13.10 a 22.58 a 4.55 ab 34.51 ab 1.69 abc 28.05 ab 109.46 a

N450 B0 6.23 h 1.26 d 7.61 ef 13.12 ef 4.06 abcde 30.33 abcd 1.22 cde 18.91 ef 90.63 def
B5 7.16 g 1.60 abc 9.89 cd 17.05 cd 4.48 abc 32.29 abcd 1.41 bcde 25.41 bc 95.15 bcd
B10 7.59 abcd 1.65 ab 11.03 c 19.02 c 4.52 ab 33.26 abc 1.78 ab 27.86 abc 101.23 b
B15 7.80 a 1.79 a 12.91 ab 22.26 ab 4.89 a 36.11 a 2.06 a 30.50 a 109.72 a

F values and Significance levels
Nitrogen 1.64 ns 3.2 ns 1.20 ns 1.20 ns 226.81 *** 104.06 *** 25.09 *** 21.68 * 4.39 ns
Biochar 163.95 *** 25.50 ** 218.16 *** 218.16 *** 35.69 ** 37.11 ** 23.87 *** 36.27 *** 87.45 ***
Nitrogen × Biochar 1.46 ns 1.63 ns 0.93 ns 0.93 ns 2.24 ns 1.37ns 2.26 ns 0.06 ns 2.17 ns

SOC: soil organic carbon, SOM: soil organic matter, EC: electric conductivity, TN: total nitrogen, AP: available phosphorus, AK: available potassium, NH4+: ammonium nitrogen, NO3-:
nitrate nitrogen. Different letters within the columns show a significant difference between treatments at p = 0.05 according to LSD test, and asterisks indicate a significant difference at * p <
0.05, ** p < 0.01, and *** p < 0.001 level; ns, not-significant.
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Figure 4. Changes in rapeseed shoot nitrogen content (%) (A) 30 DAS, (B) 45 DAS and (C) 60 DAS and
root nitrogen content (%) (D) 30 DAS, (E) 45 DAS and (F) 60 DAS under integrated application of biochar
and nitrogen. 30 DAS: 30 days after sowing, 45 DAS: 45 days after sowing, 60 DAS: 60 days after sowing,
B0: 0 g biochar pot−1, B5: 10 g pot−1, B10: 20 g pot−1 and B15: 30 g pot−1, N0: 0 mg nitrogen pot−1,
N75: 133 mg pot−1, N225: 400 mg pot−1 and N450: 800 mg pot−1, error bars represents standard
error of three replicates. Differences in letters indicate significant differences according to the LSD test
(p < 0.05).

Table 5. Significance levels and values of two-way ANOVA are comparing differences in rapeseed
physio-chemical parameters.

Parameters DAS Nitrogen Biochar Nitrogen × Biochar

Photosynthesis (A) 30 314.73 *** 0.66 ns 0.92 ns
45 123.44 *** 33.70 *** 0.38 ns
60 314.25 *** 26.36 *** 0.74 ns

Transpiration (E) 30 82.23 *** 1.14 ns 2.16 ns
45 118.68 *** 10.52 *** 1.92 ns
60 110.68 *** 3.78 * 0.33 ns

Stomatal conductance (gs) 30 481.49 *** 2.78 ns 0.88 ns
45 44.54 *** 19.81 *** 1.98 ns
60 49.85 *** 3.11 * 1.06 ns

CO2 Ci (ppm) 30 33.78 *** 2.04 ns 1.16 ns
45 28.85 *** 16.44 ** 1.06 ns
60 15.92 ** 5.28 ** 0.14 ns

Shoot nitrogen content (%) 30 333.96 *** 2.14 ns 1.99 ns
45 127.14 *** 96.70 *** 3.34 **
60 299.20 *** 73.52 *** 2.48 *

Root nitrogen content (%) 30 594.46 *** 1.15 ns 0.99 ns
45 80.03 *** 28.59 *** 2.82 *
60 148.49 *** 90.99 *** 3.07 *

Total nitrogen accumulation (TNA) 30 468.81 *** 0.51 ns 2.22 ns
45 189.11 *** 210.31 *** 33.52 ***
60 30.62 *** 18.67 *** 16.91 ***

Nitrogen utilization efficiency (NUtE) 30 131.67 *** 2.52 ns 2.18 ns
45 107.65 *** 4.68 * 7.04 ***
60 30.62 *** 18.67 *** 16.91 ***

DAS; Days after sowing. According to LSD test, asterisks indicate a significant difference at * p < 0.05, ** p < 0.01,
and *** p < 0.001 level; ns, not-significant.
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Figure 5. Changes in rapeseed total nitrogen accumulation TNA (mg N) (A) 30 DAS, (B) 45 DAS and
(C) 60 DAS and nitrogen utilization efficiency (g2 TDW mg−1 N) (D) 30 DAS, (E) 45 DAS and (F) 60 DAS
under integrated application of biochar and nitrogen. 30 DAS: 30 days after sowing, 45 DAS: 45 days
after sowing, 60 DAS: 60 days after sowing, B0: 0 g biochar pot−1, B5: 10 g pot−1, B10: 20 g pot−1

and B15: 30 g pot−1, N0: 0 mg nitrogen pot−1, N75: 133 mg pot−1, N225: 400 mg pot−1 and N450:
800 mg pot−1, error bars represents standard error of three replicates. Differences in letters indicate
significant differences according to the LSD test (p < 0.05).

4. Discussion

Application of rice straw biochar significantly promoted soil chemical properties, nitrogen
utilization efficiency, photosynthesis, and rapeseed growth. Only the application of nitrogen fertilizer
could result in adverse growth of rapeseed, lower nitrogen utilization efficiency, and soil acidity,
which can be compensated through the supplement of organic carbon, nitrogen, phosphorus, potassium,
nutrients retention due to porous surface structure, and liming effect of biochar, respectively. The biochar
applied to the soil is an organic fertilizer with high carbon content. The rice straw charcoal used in
this study contained 47.14% carbon. Under the condition of sole application of rice straw biochar,
the application of 5–30 g pot−1 straw charcoal increased the organic matter content by 3.32–10.64 g kg−1

as compared to soil without straw biochar (Table 4). Soil organic carbon (SOC) improves soil fertility
and quality through its prominent effects on the physio-chemical and biological properties of soil.
This positive response of SOC in biochar amended pots is because of pronounced adsorption of soluble
elements in organic matter and release of labile carbon to soil by rice straw biochar. In addition,
biochar has the potential to improve the porosity and moisture content of the soil to facilitate the
microorganisms, which can increase the accumulation of organic carbon [25–27].

The amendment of biochar can increase the effective mineral nutrients content of the soil.
Biochar itself contains nitrogen, phosphorus, and potassium nutrients, especially the high content
of potassium. This study showed that the application of 5–30 g pot−1 of rice straw charcoal could
increase total nitrogen (TN) to 0.15–0.23 g kg−1, available phosphorus (AP) to 2.55–4.25 mg kg−1 and
available potassium to 4.34–2.94 mg kg−1 as compared to soil with no biochar (Table 4). Simultaneously,
the application of 5–30 g pot−1 rice straw biochar can increase NH4

+ content in the soil by 0.99–1.89 mg kg
and the NO3

− content by 2.10–10.74 mg kg−1 compared with the control without applying biochar
and nitrogen (Table 4). The observations of our study indicated that in rice straw biochar due to the
presence of organic matter decreased the leaching and increased the immobilization of nitrogen and,
thus, increased TN (Table 4). Based on the observed data from this experiment, there was a linear
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relationship between biochar and NH4
+ and NO3

− concentrations, which indicates that rice straw
biochar prepared under high temperature enabled the retention of nutrients by providing micro-pores
and high surface charge area to increased retention of NH+4 and NO−3 [28,29]. Biochar application
increases the cation exchange capacities (CEC) and anion exchange [28] capacities (AEC) of soil particles
to decrease the nitrogen loss from the soil and increased the nitrogen retention and rates of nitrate
(NO3

−-N) and ammonium (NH4
+-N) nitrogen [30–32]. Both the nutrients provided by biochar and

the nutrients retained by the action of biochar increased the nutrient content of nitrogen, phosphorus,
and potassium in the soil and are eventually absorbed and utilized by plants.

The application of biochar is beneficial to acidic soil improvement. The rice straw biochar
used in our study contained 19.43% ash content. Soil EC and pH were positively elevated with
biochar application while the sole application of nitrogen fertilizers remained insignificant (Table 4).
The application of 10–30 g pot−1 biochar can increase the pH value of the soil by 0.94–1.42 and EC
by 0.03–0.48 as compared to soil with zero biochar (Table 4) and consequently has an ameliorative
effect on the improvement of acidic soil and proper utilization of inorganic fertilizer. Biochar having
an alkaline base released high cation concentrations to soil and promotes the consumption reactions
of a proton to reduce the acidity of soil and increase soil pH and EC [33]. This positive response of
biochar could be correlated with the presence of higher ash content in biochar [34].

Using biochar can increase the absorption of nitrogen and utilization capacity of crops.
Compared with a single application of 800 mg pot−1 nitrogen, when rice straw biochar at 30 g pot−1 was
combined with 800 mg pot−1 nitrogen, a significant increase in leaf area, stem diameter, leaf biomass,
stem biomass and root biomass 45 DAS, and 60 DAS was observed respectively, which indicated the
combined ameliorative effect of biochar and nitrogen (Tables 2 and 3). The results of the current study
revealed that amendment of biochar at 30 g pot−1 along with nitrogen at 800 mg pot−1 elevated the
rates of photosynthesis (A), transpiration (E), stomatal conductance (gs), and intercellular carbon
dioxide (Ci) at 45 DAS and 60 DAS respectively, compared to inorganic fertilized pots without biochar
(Figures 2 and 3). Biochar porous particles can absorb a large amount of inorganic nitrogen in the
soil, thus reducing the damage of high-concentration nitrogen in the early planting stage of plants,
and then slowly releasing nitrogen in the middle and late stages of plant growth to meet the necessities
of the crop, thus biochar promoting the continuous nitrogen supply status of the soil to promote
the physiological processes and growth of rapeseed. At the same time, biochar particles containing
oxygen-containing functional groups can increase soil oxidation and water retention [14,35] and
also improve the absorption and utilization of fertilizers by crops, thereby effectively promoting the
photosynthesis capacity and vegetative growth of the crop. Biochar increased the water holding
capacity of the soil and increased the availability of water to roots due to large surface area and
porous structure which results in more hydrated plants with more water content to elevate stomatal
conductance [36].

The addition of biochar significantly improved the nitrogen utilization efficiency of rapeseed.
The integration of 30 g pot−1 rice straw biochar combined with 800 mg pot−1 nitrogen fertilizer
enhanced root nitrogen content, shoot nitrogen content, TNA and NUtE at 45 DAS and 60 DAS
respectively, compared with the single application of nitrogen at 800 mg pot−1 without using biochar
(Figure 4). These results indicate that rice straw biochar produced under high temperature (600 ◦C) is
more stable in retention and adsorption of nitrogen because biochar contains a single and condense
form of aromatic carbon rings, it increases the resistance of biochar to nutrient degradation [37],
improves the retention and adsorption of nitrogen, thereby improving the nitrogen content in the roots
and stem of rapeseed, the accumulation of total nitrogen and the efficiency of nitrogen utilization.
The biochar contains energy substances to acts as a microbial substrate for direct adsorption of nitrogen
applied to increase the TNA and NUtE [38]. Similar ameliorative effects of biochar to enhance the
nitrogen accumulation and utilization were previously reported [8,29]. In summary, the application of
biochar has improved soil quality, nitrogen use efficiency, and plant photosynthesis rates, thus having
a significant impact on the economic and sustainable production of rapeseed [39].
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5. Conclusions

The results showed that when biochar is applied under the conditions of 0 or 133 mg nitrogen pot−1,
the biomass of rapeseed tends to increase, but the observed difference is not significant. This indicates
that the effect of applying biochar under nitrogen deficiency conditions is limited. On the contrary,
the simultaneous application of 800 mg pot−1 nitrogen fertilizer and 5-20 g pot−1 biochar will
adversely affect the initial growth of rapeseed seedlings because of the high nitrogen content in
the soil. Simultaneously, the results of this current research showed that 30 g pot−1 straw biochar
and 800 mg pot−1 nitrogen fertilizer at 45 DAS and 60 DAS can significantly improve soil fertility,
nitrogen utilization efficiency, and promote rapeseed growth. Therefore, further research is needed to
study the long-term effects of this comprehensive application of straw bio-carbon and nitrogen for
sustainable crop production.
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