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Abstract: Compaction due to traffic is a major threat to soil functions and ecosystem services as it
decreases both soil pore volume and continuity. The effects of roots on soil structure have previously
been investigated as a solution to alleviate compaction. Roots have been identified as a major
actor in soil reinforcement and aggregation through the enhancement of soil microbial activity.
However, we still know little about the root’s potential to protect soil from compaction during traffic.
The objective of this study was to investigate the relationships between root traits and soil physical
properties directly after traffic. Twelve crop species with contrasting root traits were grown as
monocultures and trafficked with a tractor pulling a trailer. Root traits, soil bulk density, water content
and specific air permeability were measured after traffic. The results showed a positive correlation
between the specific air permeability and root length density and a negative correlation was found
between bulk density and the root carbon/nitrogen ratio. This study provides first insight into how
root traits could help reduce the consequences of soil compaction on soil functions. Further studies
are needed to identify the most efficient plant species for mitigation of soil compaction during traffic
in the field.
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1. Introduction

Soil compaction is known as one of the three major threats to soil quality in Europe [1,2].
It occurs when mechanical resistance (soil strength) is lower than the force transmitted onto it
(soil stress) [3]. Soil compaction is the consequence of two deformation processes: compression and
shearing. Compression mainly leads to a loss of pore volume, while shearing modifies the shape of the
pore system. Both processes make root penetration more difficult, decrease soil permeability, reduce
the availability of nutrients and, therefore, reduce yields [3-5].

At present, there is an increase in the size and weight of farming equipment that enhances
the magnitude of mechanical stress transmitted to the soil [6]. Technological solutions, such as tyre
innovation, cannot cope alone with this increase [7]. Therefore, agricultural and agroecological practices
that could play a role in the mitigation of traffic-induced soil compaction should be investigated.
The effects of plants in agrosystems have only been examined as a solution to alleviate compaction
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when biopores are formed during the root growth in compacted layers [8]. However, understanding
the role of plants in soil reinforcement as a way of mitigating soil compaction during traffic is still
lacking. Studies showed that roots are able to increase soil shear strength and therefore, its resistance
to landslides [9], water erosion [10], and increase streambank stability [11]. Other effects could be
involved in reducing soil compaction during traffic. These include strengthening the soil through
the uptake of water by the plants [12]; roots increasing soil strength to compression, which was
demonstrated on streambank soil [13]; the effect of plant-soil microorganisms on soil aggregation [14].
The functional trait approach characterises the morphological, architectural, physiological and chemical
root trait responses to soil properties and functions [15]. Traditionally used in semi-natural ecosystems,
the functional trait approach may apply to address key issues in agrosystems [16], such as relationships
between root traits and soil functions after key disturbance associated with traffic. Agrosystems are
characterised by (1) the abundance of annual species presenting specific gradients of root traits;
(2) the very short yet intense vertical and horizontal stresses applied to the soil’s surface by tyres,
which also propagate in the soil profile [17]; (3) the compressive stresses beneath the tyres or tracks are
much greater than the overburden stress [18]; (4) the shallow shearing (<30 cm in depth) [19] of often
unsaturated soils where the roots of annual species are most dense [20]; (5) the distribution of principal
stresses beneath a tyre is uneven and changes during loading [21].

In this context, we aim to examine the relationships between root traits and soil physical properties
directly after traffic to obtain a preview of the potential effects of roots on compaction mitigation.
We hypothesised that root density traits (length or dry matter of roots per soil volume) would positively
influence specific air permeability and bulk density by conserving or improving pore morphology.

2. Materials and Methods

The experiment took place on a farm belonging to the Institute Polytechnic UniLaSalle in Beauvais,
France (49°27’44.97"" N, 2°4’23.23"" E). It lasted for four months from April to early August 2018.
During this period, the total rainfall recorded was 299.5 mm. The temperature varied between 6.7 °C
and 28.7 °C with a mean temperature of 17.1 °C (Figure S1). The soil, defined as Luvisol (IUSS Working
Group WRB, 2015), was composed of 20.2% clay, 68.9% silt, 8.9% sand, 1.8% organic matter and
0.2% CaCOj3; with a pH of 7.1. The soil particle density was calculated using the clay and organic
matter content [22]. The soil particle density was 2.54 g.cm™3. The experimental design used was a
complete randomised block design, consisting of three blocks with 16 randomly distributed square
plots with a side length of 2.5 m in each block. These included four plots of bare soil and one plot
for each of the 12 selected crop species (Figure 1). The experiment took place in a barley field in a
barley-rapeseed—wheat cropping system. The barley was destroyed in order to sow crop species.
The experiment was conducted where bulk density was the most homogeneous at a ~0.1 m depth
(measured from the top of the cylinder) in the field (1.24 + 0.046 g.cm_3) after a shallow tillage
(<5 cm depth) that did not disturb the soil at the measurement depth. All plots were protected from
traffic during the growing period. Stress was applied to the soil in August, four months after the
sowing date, by driving a tractor with a trailer used for slurry application over the field at a constant
speed of 1.1 m.s~!. Each plot was driven over once by four wheels—one front and one rear wheel of
the tractor and two wheels of the trailer (Figure 1). The make of the front wheels of the tractor was
600/70 R30 159D and that of the rear wheels was 710/70 R42 179D TL. The make of the trailer wheels
was 600/55 R26.5. The wheel load of the tractor’s front wheel was approximately 2.2 Mg and the rear
wheel was approximately 4 Mg. The wheel load of each trailer wheel was 4.5 Mg. Tyre inflation for
the tractor was 110 kPa for the front wheels and 140 kPa for the rear wheels. Inflation pressure was
290 kPa for the trailer wheels. The plants and soil were sampled directly after the traffic event.
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Blocks

Figure 1. The experiment design included three blocks of 16 square plots with a side length of 2.5 m;
four plots of bare soil; one plot per species for the twelve selected species. Each plot was driven over by
four wheels of the right side of the combination (R) or the left side (L). The red dotted lines represent
the centre of the track. The yellow dots represent the soil cylinders sampled under the middle of the
track. The red dots represent the soil cylinders sampled under the edge of the track, at 0.3 m from the
middle. The green dots represent the cylinder sampled on each plot for the root trait measurements.

2.1. Plant Material

Twelve plant species of interest were selected from cover crop species and of different phylogenetic
families. The plant species selected were frost resistant to avoid loss of species, easily destructible and
were non-invasive to avoid creating problems for the farmer. The twelve species were selected from the
following four families: Poaceae (Avena strigosa Schreb., Secale cereale L.), Brassicaceae (Brassica juncea L.,
Brassica napus L., Brassica rapa L., Raphanus sativus L.), Fabaceae (Lathyrus sativus L., Melilotus officinalis L.,
Pisum sativum L., Trifolium incarnatum L., Vicia faba L.) and Linaceae (Linum usitatissium L.). The objective
was to create gradients of architectural, morphological and chemical root traits.

2.2. Characterisation of Root Traits

After four months of cultivation, five easily measurable root traits were assessed (two architectural,
one morphological and two chemical) (Table 1). In terms of architectural traits, Root Length Density
(RLD) and Root Mass Density (RMD) were used to gather information on the root distribution within
the soil. The morphological trait, Specific Root Length (SRL) was used to obtain information on plant
growth strategies and root type (thinner or thicker roots). Both chemical traits, Carbon/Nitrogen ratio
(C/N) and Dry Matter Content (DMC), were used to analyse root composition. Trait measurements
were examined according to Ristova and Barbez [23]. Soil cylinders of 2 x 1073 m3 (0.1 m height and
0.16 m inner diameter) were collected at ~0.05 m depth (measured on the top of the cylinder) on each
plot containing plants. The cylinder was placed on a representative spot of the plot with a plant at the
centre. Each cylinder was then emptied, and roots were manually separated from the soil. The roots
were washed gently with running water to remove the soil from the cylinders. All roots found in
each soil cylinder were weighted and scanned in a film of water (Epson Perfection V850 Pro) with a
resolution of 600 dpi. The software WinRhizo 2016 (Regent Instrument Inc., Instruments, Québec city,
QC, Canada) was used to measure the total root length. Roots were then dried at 105 °C for 24 h and
weighed to obtain the DMC and the SRL. The dry weight and length were then divided by the total
volume of the soil cylinder to obtain the RLD and RMD.

For each species, determination of C/N was carried out on subsamples of roots that were
representative of the whole root system and reserved for chemical analyses (Table S1). Only Melilotus
officinalis, Brassica rapa, Raphanus sativus and Secale cereale provided enough material for several
subsamples while the other species did not provide enough materiel and only one measurement was
taken. Carbon and nitrogen concentrations were determined using an elemental analyser [24,25].
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Table 1. List of measured traits, their abbreviations, units and the formula used.

Root Traits Studied Abbreviation Unit Formula
Root Length Density RLD mm™ RLD = root length/soil volume
Root Mass Density RMD g.m‘3 RMD = root dry mass/soil volume
Specific Root Length SRL m.g~! SRL = root length/root dry mass
Carbon/Nitrogen ratio C/N g.g‘1 C/N = g of carbon/g of nitrogen
Dry Matter Content DMC g.g*1 DMC = root dry mass/root fresh mass

2.3. Characterisation of Soil Physical Properties

As the stress induced could be heterogeneous in type and in range under the tyre [19], two different
locations (the centre of the track and 0.3 m from the centre) at the same depth were observed. At each
plot, six undisturbed 100 cm? soil cores (inner diameter 0.05 m, height 0.051 m) were sampled at ~0.1 m
depth (measured on the top of the cylinder). Three soil cores were sampled beneath the centre and three
at 0.3 m from the centre (Figure 1). Air permeability (k,, tm?) was measured for each soil core using
the method described by Iversen et al. [26] with a pressure gradient of 5 hPa. Bulk density (pp, g.cm™>)
and soil water content (6, g.g™!) were then calculated using the gravimetric method. Air filled porosity
(€2, m®.m~3) was then calculated as follows:

We\  (We
p =100 =) -2 1
=15 g

where Wi; is the dry weight of the soil (g), ps is the soil particle density (g.cm™3), Wy, is the weight of
the soil water (g), and py, is the water density (g.cm™2). Finally, specific air permeability (k,s, tm?)
was calculated by dividing k, by ¢,, as suggested by Groenevelt et al. [27], which provided an indicator
of air-filled pore continuity (Table S1).

2.4. Statistics

A Generalised Linear Mixed Model (GLMM) was used to examine the fixed effects of the species,
distance to the tyre’s centre and their interactions with the physical properties of the soil with block as
a random effect. The geometric means of the soil properties were calculated on each plot. One-way
Analysis of Variance (ANOVA) was used to test the species” effects on each trait measured to check if
gradients were produced with the selected species. Pearson correlation was then used to identify the
relation between root traits and soil properties.

Finally, Generalised Linear Models (GLMs) were used to check the effects of trait combinations on
pb. The second order of Akaike’s Information Criterion (AICc) was used to identify whether the models
using trait combinations as predictors were better than the model using a single trait. The model with
the lowest AICc was considered the best model [28].

3. Results

3.1. Species and Distance Effects on Soil Physical Properties

GLMM showed a significant effect of species on water content (p-value < 0.001) while
non-significant effects were found for bulk density (p-value = 0.64) and specific air permeability
(p-value = 0.93). Non-significant effects of distance were found on water content (p-value = 0.89),
bulk density (p-value = 0.78) and specific air permeability (p-value = 0.54). Non-significant effects of the
species—distance interactions were found on water content (p-value = 0.31), bulk density (p-value = 0.77)
and specific air permeability (p-value = 0.99). Soil physical properties were thus pooled from both
track positions according to the GLMM results for each species (Table 2).
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Table 2. Soil physical properties value per species.

pp (g.cm=3) 0(g.g™) kas (um?)

Bare soil 1.38 £0.022 0.18 +0.024 83.24 +£12.66%

Avena strigosa 1.3+0.062 0.13 +0.03 bd 99.3 + 60.61 2
Brassica juncea 1.32+£0.062 0.08 +0.01 2P 80.44 +£13.26 2
Brassica napus 1.32£0.052 0.08 +0.01 2P 106.51 +26.43 2
Brassica rapa 1.37+012 0.1 +0.022P 68.14 + 16.34 °
Lathyrus sativus 1.37 £0.07 2 0.16 + 0.01 <4 7222 +3.18%2
Linum usitatissium 1.34+0.01° 0.1 +0.022P 99.19 +19.54 2
Melilotus officinalis 1.36 £0.022 0.07+0? 116.55 + 53.98 2
Pisum sativum 1.37+£0.042 0.13 +0.03 b< 104.62 + 51.04 2
Raphanus sativus 1.37£0.052 0.1+0.012P 91.26 +46.2°
Secale cereale 1.37 +0.07 2 0.1+0.022b 85.37 +52.32°
Trifolium incarnatum 1.34+0.02° 0.08 +0.01 2P 94.18 +49.98 2
Vicia faba 1.36 £0.09 2 0.12 +0.02 b< 72.31 £37.322

kas = specific permeability, p, = soil bulk density, O = soil water content. Soil physical properties” values are the mean
and standard error of three replicates. Means with the same letter within the same column were not significantly
different at a 5% level based on the Pairwise Tukey test.

3.2. Root Traits Gradients and Comparison among Species

RLD values varied between 163.15 m.m™3 for Lathyrus sativus and 776.56 m.m~> for
Linum usitatissium. RMD values varied between 8.4 g.m™ for Lathyrus sativus and 580 g.m™> for
Melilotus officinalis. SRL values varied between 204 cm.g~! for Raphanus sativus and 2890 cm.g~!
for Lathyrus sativus. DMC values varied between 15.7 g.g~! for Pisum sativum and 33.8 g.g~! for

Linum usitatissium (Table 3).

Table 3. Root traits—values per species.

RLD (m.m™3) ** RMD (g.m™3) * SRL (m.g~1) *** C/N(g.g)) DMC (g.g™1) ***
Avena strigosa 4549 +75.8 ¢4 127.65 + 17.7 <4 391 +1.282b 57.16 0.31 +0.034¢
Brassica juncea 540.56 + 66.4 P d 70.11 + 10.2bed 7.77 +0.2224 45.99 0.31+0.034¢
Brassica napus 643.9 + 67.1Pcd 79.4 +10.1bcd 8.46 +1.712d 30.59 0.19 +0.01 2°¢
Brassica rapa 432.01 + 69.4 4 250.82 + 85.6 ¢4 2.08 +0.54 2 19.84+7.81  0.2+0.022¢d
Lathyrus sativus 163.15 + 57.3 841+372 28.9 +10.72 4 21.16 0.17 +0.022P
Linum usitatissium 776.57 + 80.6 24 444 +372d 17.46 + 0.34bcd 39.89 0.34 +0.03
Melilotus officinalis 714.14 + 173.7 4 580.86 + 338.4 4 3.03+1.952 2343+£830  0.32+0019¢
Pisum sativum 302.82 + 55.6 2P 14.85 + 0.6 2P 20.18 +2.87 4 20.01 0.16 +0.02 2
Raphanus sativus 438.53 + 162.8 ¢4 209.21 + 51.7 ¢d 2.04 +0.552 4717099  0.18+0.012¢
Secale cereale 407.86 +79.6 ¢4 183.49 + 64.5°9 246 +042 22.83 + 6.59 0.29 +0.01¢¢
Trifolium incarnatum 456.96 + 412°¢ 329 +282ac 14.23 +2.13bcd 29.55 0.25+0.01 2de
Vicia faba 289.15 + 31 bed 57.92 +10.7bcd 56+1752°¢ 20.56 0.28 £ 0.04bce

DMC = Dry Matter Content, RLD = Root Length Density, RMD = Root Mass Density, SRL = Specific Root Length,
C/N = Carbon/Nitrogen ratio. Root trait values are the mean and standard error of three replicates except for the C/N
value for some species determined by one measurement. The one-way ANOVA test showed significant effects of the
species on the four traits measured: RLD Fy; 3 = 3.575, ** p < 0.01, RMD Fy 53 = 9.542, * p < 0.05, SRL Fy153 = 11.38,
*** p < 0.001 and DMC Fy1 p3 = 8.008, *** p < 0.001. Means with the same letter within the same column were not
significantly different at a 5% level based on the Pairwise Tukey test.

3.3. Relationship between Root Traits and Soil Properties

Root trait correlations with soil properties were reported in Table 4. Notably, 0 was negatively
correlated with both RLD (r = —0.82, *** p < 0.001) and RMD (r = —0.62, * p < 0.05), whereas no significant
correlations were found with other root trait measurements. k;s was only positively correlated with
RLD (r=0.61, * p < 0.05) and p, was only negatively correlated with C/N (r = —0.70, * p < 0.05) (Figure 2).
Correlations between root traits were also found. RLD was positively correlated with RMD (r = 0.61,
*p < 0.05) and DMC (r = 0.58, * p < 0.05), whereas SRL was negatively correlated with RMD (r = —0.94,
et < 0.001).
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Table 4. Pearson correlation matrix of soil physical properties and root traits. All traits and soil
properties were log-transformed.

b 0 kss RLD RMD SRL C/N
0 0.19
Kas ~0.32 ~0.49
RLD -049  -0.82** 061*
RMD  -0.05 —0.62* 011 0.61*
SRL  -0.15 0.38 015 —029  —0.94%
C/N  -070* -0.17 027 040 0.19 ~0.06
DMC  -044 —0.34 014 058* 0.40 022 036

Correlation coefficients were shown using the significance of each correlation with p-value > 0.05=NS,
p-value < 0.05 = *, and p-value < 0.001 = ***. p,= soil bulk density, 0= soil water content, k;s= specific air permeability,
RMD = Root Mass Density, RLD = Root Length Density, SRL = Specific Root Length, C/N = Ratio Carbon/Nitrogen,
DMC = Dry Matter Content.
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Figure 2. Relationships between root traits and soil properties. For each graph, the red line represents
the mean value obtained in bare soil. Red stars represent the significance of each Pearson correlation
with p-value > 0.05 = NS, p-value < 0.05 = *, and p-value < 0.001 =**.  p; = soil bulk density,
C/N = Carbon/Nitrogen ratio, ks = specific air permeability, RMD = Root Mass Density,
RLD = Root Length Density, 0 = soil water content.

The comparison between GLM’s AiCc for pj, and trait combinations is shown in Table 5. Only trait
combinations related to the root density (RLD and RMD) in the soil and C/N were tested. C/N was the
best predictor for p,. None of the trait combinations between RMD, RLD and C/N were better.
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Table 5. Selected models tested for bulk density predictors arranged from the smallest Akaike’s
Information Criterion (AICc) to the highest.

Models AICc

C/N -96.0

C/N + RLD -92.5

Pb C/N + RMD -914
C/N x RMD —-88.3

C/N x RLD —87.6

pp = soil bulk density, C/N = Carbon/Nitrogen, RMD = Root Mass Density, RLD = Root Length Density.

4. Discussion

Several roots’ effects on soil physical properties could be involved in the mitigation of soil
compaction during traffic. As hypothesised, we observed a positive correlation between RLD and
kss (Table 4) that indicated that soils containing plants with long roots were better at transporting
air. Many effects could be involved in this relationship. RLD may directly reinforce the soil’s shear
strength, as observed in a previous study [29], which could reduce soil deformation during traffic
and maintain the soil’s ability to transport air. In addition, the negative relationship between RLD
and 6 suggests an indirect increase in the soil’s shear strength through water uptake, which increases
the soil’s matric suction [30]. RMD and soil water content were also negatively correlated. However,
RMD was not correlated to ks, indicating no significant increase in the soil’s shear strength. The second
effect induced by the RLD could be due to the creation of new biopores during root growth that
enhance the soil’s ability to allow air to flow through it before being exposed to traffic. In this case,
the differences observed could be explained by the soil’s structure formed before the traffic and not by
a conservation of soil properties during traffic. The relationship between RLD and the soil’s ability to
allow air to flow through it after traffic presents an interesting outcome in relation to reduced tillage
practices. More generally, it is relevant to conservation agriculture, where the challenge is to conserve
the hydro-physical properties without tillage and with a permanent soil cover. However, the results
show that any species showed a ks value significantly different than the bare soil. Thus, roots’ effects
on k;s might remain minor. The distinction between the effects before and during traffic should be the
subject of future experimental studies and extensive work should study the importance of the roots’
capacity to mitigate compaction.

Our results showed a negative correlation between the dry bulk density and the C/N ratio.
We suppose that root C/N ratio is not directly related to the soil bulk density as it does not solely reflect
the roots’ ability to colonise soil porosity. We suggest that the effect of the root C/N ratio on soil porosity
is part of a more complex process combining chemical and architectural traits (e.g., RLD and RMD).
However, C/N was a better predictor for p, than the root trait combinations (Table 5). Root density traits
measured seem thus to not affect py, as hypothesised. However, C/N, as a functional trait, relates to
the plant growing strategy and is directly related to other root traits, such as root diameter and root
volume [30]. Lower dry bulk density after traffic could be related to root traits not being quantified in the
present study, such as root volume density (root volume relative to soil volume). Further investigations
should consider the effects of root volume and root mean diameter on soil physical properties.

5. Conclusions

This study provides the first insight into root-soil relationships to mitigate soil compaction during
traffic highlighting the correlation between the root length density and the specific air permeability after
traffic. It encourages the investigations of the different potential effects involved to better understand
the roots’ ability to mitigate compaction during traffic. These investigations could complement existing
solutions and new agroecological practices could be developed by designing cover crop selection that
lessens soil compaction during specific farming operations.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/11/1697/s1,
Figure S1: Climatic conditions between April and August 2018 at the experimental site, Table S1: Root traits and
soil properties raw data.
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