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Abstract: Phosphorus (P) deficiency is a major constraint in highly weathered tropical soils.
Although phosphorous rock reserves may last for several hundred years, there exists an urgent need
to research efficient P management for sustainable agriculture. Plant hormones play an important
role in regulating plant growth, development, and reproduction. Humic substances (HS) are not
only considered an essential component of soil organic carbon (SOC), but also well known as a
biostimulant which can perform phytohormone-like activities to induce nutrient uptake. This review
paper presents an overview of the scientific outputs in the relationship between HS and plant
hormones. Special attention will be paid to the interaction between HS and plant hormones for
nutrient uptake under P-deficient conditions.
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1. Introduction

Phosphorous (P) is an essential nutrient for all cellular processes of plant growth, including
development and reproduction [1]. P is a crucial component of biomolecules, including adenosine
triphosphate (ATP), nucleic acids and phospholipids. Mineral resources required for manufacturing P
chemical fertilizer may last for 300–400 years [2]. However, world population is expected to grow from
7.3 billion inhabitants in 2015 to 9.7 billion by 2050 [3], placing these reserves and estimates under
increased demand and uncertainty.

Additionally, more than 40% of the planet’s soils are P-deficient [4]. Acid-weathered soils in
subtropical and tropical regions such as Southern Africa [5] and Sub-Saharan Africa [6] are especially
prone to deficiency and require higher P input due to P absorption by the mineral complex Al/Fe.
Future sustainable agriculture therefore demands the optimization of P management and improved P
use efficiency [5,7].

Part of this optimization requires a better understanding of plant physiological adaptation
mechanisms under P deficiency, in interaction with both soil microorganisms and the soil itself [8].
Phytohormone signaling of P starvation is one of the main pathways which modulates plant response
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to abiotic stress through cross-talk with other stress signaling pathways [9]. Plant hormones play a
vital role in linking gene transcription to P starvation response mechanisms. Auxins (AUXs) [10],
cytokinins (CKs) [11–13], gibberellin (GAs) [14], ethylene (ET) [15], abscisic acid (ABA) [16,17],
and strigolactones (SLs) [18–20] are the main hormones which regulate the P starvation response.

Organic matter also forms an essential component in the P cycle and alters the efficiency of plant
uptake by: (1) providing a source of organic P in soil [21], (2) enhancing the microbial activity of
P-solubilizing microbes [22,23] (e.g., Azospirillum), (3) solubilizing fixated phosphate by increasing
organic acid levels in soil [24], and (4) increasing P availability in soil by interlinking with complexes
of humic substances (HS) and metal ions (Fe/Al) [25–27]. Additionally, the phytohormone-like activity
of humic substances can act as a biostimulant. Typical plant morphological changes by HS include the
elongation of lateral roots and increasing H+-ATPase activity in root tissue [28].

Current literature on the interaction between HS and nutrient deficiency has focused on Fe [29]
and N [30]. However, little attention has been paid to the impact of HS on the P cycle or plant growth
under P deficiency. In this work, we present an outline of the phytohormonal effect of humified organic
matter on P uptake, with special attention paid to the P cycle.

2. Hormonal-Like Actions of Humic Substances

HS are complex and heterogeneous fractions of stable organic matter resulting from the
transformation of plant and animal waste by microbial activities and chemical reactions [31].
HS fractions are operationally defined into humic acid (HA), fulvic acid (FA) and humin (HM) based
on their respective solubility in acid/alkaline solutions [31]. HAs are high molecular-weight chemical
structures formed by small molecules with weak bonds [32]. Their supramolecular arrangement
supports HA-bioactivity properties by releasing bioactive compounds, such as phytohormones and
derivatives phytohormonal compounds, which can then bind to plant cell receptors to stimulate plant
growth and stress tolerance responses [33,34].

Biostimulation effects of HS have been described in a wide range of plant species in both laboratory
and field studies [35,36]. Plant response differs depending on the origin of HA, concentration, method of
application and stage of plant development. Concomitantly, the effect of HS varies with plant species
in terms of developmental pattern alteration resembling hormonal modulation such as increased
germination rate, root elongation, shoot biomass, stem diameter, leaf area, and accelerated reproductive
cycle [34,37–40]. This section will cover the relationship between HS application and biostimulation
effects related to the main plant hormone classes.

2.1. Auxin (AUX)

The AUX-like effect is the most well-known phytohormonal behavior of HS and has been examined
in the literature for over half a century [41]. Root elongation and lateral root emergence are recognized,
as morphological impacts of HA [42,43]. This effect has been associated with the activation of the
plasma membrane (PM) enzyme H+-ATPase by small molecules present in HA endowed with auxinic
activity [42]. These small bioactive molecules in HS, such as IAA, access cell receptors to initiate
cell signaling [33,44]. P-type ATPase enzymes promote H+ extrusion through PM, which acidifies
the apoplast, and activates pH-sensitive enzymes which in turn loosen the cell-wall and strengthen
cell-expansion associated with increased turgor pressure in coordination with vacuolar-type H+-ATPase
anchored at the tonoplast membrane, depending on contact time between HS and plants [45]. The effects
of HS on root morphology appear to mimic those produced by IAA [46,47]. This induction has been
confirmed by using IAA inhibitors in plants treated with HA to block root development of maize [45].
Besides the direct-action of the P-ATPase domain, the induction of genes encoding some enzymes
associated with secondary nutrient transporters (e.g., ZmNrt2.1, a nitrate transporter) have been
considered as candidates for the AUX effect of HS [48]. Furthermore, Russel et al. [49] showed that the
maximum stomatal aperture in the epidermal peel of pea (Pisum sativum L.) when induced by HA was
similar to those treated with IAA (indole acetic acid) and appears to be mediated by phospholipase A2
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(PLA2) and protein kinase C-like activity (PKC). Both enzymes are involved in the signal transduction
pathway, leading to the response of plants to IAA [49].

2.2. Cytokinins (CK)

CK-like effects of HS have been examined since the 1980s [50]. Shoot growth can be positively
influenced by HS soil content through different mechanisms in both roots and shoots, such as
enhancement of PM ATPase related to the production of P-type ATPase gene isoforms. Regulation of
these genes correlates with root-to-shoot mobility of CK and nitrate [38]. Several physiological effects
mediated by HS in the roots are associated with cytokinin activity in the leaves [37]. CK is involved
in the protection of photosynthetic machinery in plants under stress [51], and the physiologically
active concentration of form isopentenyladenosine was found in HS as well as CK-like activity [52].
Physiologically active CK from HS in soil increased the weight of radish cotyledons and consequently
increased leaf growth [52]. Despite an evident effect on the absorption of nutrients by winter
rapeseed [53], low concentrations of this hormone were observed in black peat HA.

Application of HA to plant roots effects the expression of genes involved in shoot CK signaling
pathways, promoting CK accumulation and a significant reduction in the root tissue [38]. Jannin and
co-workers [53] reported interconnectivity between the differential distribution of CK in the root versus
shoot, increased nutrient uptake, and enhanced shoot growth. HA provoked redistribution of CK from
the root to aerial plant parts, which can alter the translocation of nutrients to regions of the plant with
higher metabolic activity [54]. Thus, the CK action of HS on shoot growth is often associated with
increases in plant nutrient concentrations.

2.3. Gibberellin (GA)

GA-like substances and activity in HS have been reported since the 1990s [55–57]. Typical effects of
GAs are hypocotyl elongation, interruption of dormancy, promotion of flower and fruit development,
and amylase induction. Similar effects have been observed with HS soil additions [57–60]. In addition
to the GA-like impacts, HS has been found to up-regulate the metabolism of CKs and GAs by interacting
with genes involved with these hormones [53].

Activity similar to GA has been detected in HA, and FA extracted from the O horizon of alpine soil.
This activity has been attributed to aromatic components and amides in the analyzed fractions [61],
as well as the neutral or basic pH of the extract [26]. Other studies have detected GA in leonardite
HA [58] and forest soils [61]. The application of HA to grapes increased berry size, similar to results
obtained when flowering plants received synthetic GAs [62].

2.4. Abscisic acid (ABA)

Another phytoregulator present in HS, which influences plant hormonal signaling pathways is
abscisic acid [37]. ABA is responsible for the production and regulation of H2O2 and Ca2+, which control
the opening and closing of stomata [63,64]. Additionally, HA-treated plants have displayed increased
root hydraulic conductivity through regulating the expression of plasma membrane intrinsic protein
(PIP) and tonoplast intrinsic aquaporin (TIP), both related to water flow [65].

Increased hydraulic conductivity mediated by aquaporins has been attributed to ABA
accumulation in roots [66]. The use of inhibitors specific to ABA synthesis reduced hydraulic
conductivity and root growth in cucumber [66]. However, the ABA-dependent pathway may also be
related to other hormones. HAs can increase the concentration of ABA in roots, a process which is also
dependent on IAA-NO-ET signaling [67].

2.5. Ethylene (ET)

Beneficial effects of HS have also been associated with ethylene-dependent signaling pathways.
ET is a hormone involved in fruit ripening, as well as seed germination, cell expansion and flower
senescence. However, high concentrations of ET can inhibit root growth [35]. HA applications to
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cucumber were associated with increases in ET production and consequent root development [38,44].
Although HS-mediated effects on root morphology (mainly lateral root emission) involve IAA-ET
crosstalk, other effects (primary root weight, root thickness, and the number of secondary roots) were
not affected after the use of specific inhibitors for these hormones (PCIB for IAA; Cobalt II and STS for
ethylene) [67].

ET is also involved in root hair development in response to environmental conditions [68].
Unlike other mentioned phytohormones, change in root architecture similar to the effect of ethylene
is not observed with HS treatment, although ethylene concentration in root tissue increases by HS
application [44,69].

3. HS Modulation of Primary Plant Metabolism

Farmers may benefit by applying HS to crops in both fields and greenhouses. Crop yield increases
have been observed following HS application of different sources, concentrations, application forms
and at various stages of plant development [36].

Regarding primary metabolism, HS application triggers alteration of plant gene expression and
the content of chemical compounds [70] which are involved in different processes of plant physiology
(e.g., Krebs cycle, metabolisms and photosynthesis) [71]. While it is generally agreed that HS increases
photosynthetic pigment content [72,73], there is less consensus whether this translates into an increased
rate of photosynthesis [74]. Interestingly, the inverse has also been observed as HS application increased
net photosynthesis rate with no change in photosynthetic pigment concentration [75].

Furthermore, the positive effect on photosynthesis was shown to result from not only increased
chlorophyll content but also increased Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase)
activity [76]. However, foliar application of HA on durum wheat affected neither photosynthesis nor
stomatal conductance, while Rubisco activity and leaf protein content were higher than the control [77].
Overall, HS is not a silver bullet which holistically increases plant growth, grain yield and quality,
and photosynthetic metabolism. However, some comprehensive studies [78] have shown increased
wheat production on sandy soils with HA application, resulting from increases in plastid enzyme
activities involved in photosynthesis, sucrose biosynthesis and starch accumulation.

Glycolysis is the preferential pathway of energy for plant respiration. Additionally, a significant
proportion of carbon entering the plant glycolytic pathway and tricarboxylic acid cycle is not oxidized
to CO2 but is utilized in the biosynthesis of numerous compounds, including those of secondary
metabolism. A previous study [79] observed the effects of different HS applications on enzymatic
activities involved in the glycolytic and respiratory processes of maize seedlings—activities of
responsible enzymes for primary metabolism were increased by HS treatment. Canellas et al. [75]
observed a sharp reduction (approximately 50% compared to control seedlings) of the free carbohydrate
content in leaves of maize treated with HA, indicating an apparent carbon skeleton demand for N
assimilation. In fact, the total amino acid content was increased in fresh maize leaf tissue treated with
HA, as well as activity of the main enzymes responsible for N assimilation, e.g., nitrate reductase
(NR) and glutamine synthetase (GS) [75]. The effect of HS on N assimilation and metabolism has been
reviewed [30]. HS enhances nitrate uptake and assimilation, resulting in increased nitrate reductase
(NR), glutamate dehydrogenase (GDH) and glutamine synthetase (GS) activities. Interactions between
HS and the enzymes of the N assimilation pathway in maize were described in a gene expression study
at the transcriptional level [30]. The work of Trevisan et al. [80] was similar to previous studies and
indicated that HS application increased both the plant metabolic pathways of glycolysis and the Krebs
cycle. Moreover, Jannin and colleagues [53] observed increased N and sulfate uptake in Brassica napus
and increased transcription of genes related to N and S metabolism. In both transcriptional studies with
different plants (Arabidopsis and Brassica), roughly half of the relevant genes were down-regulated after
HA treatment. This result is consistent with the first proteome studies reported by Carletti et al. [81] in
maize seedlings treated with HA. Down-regulation of plasma membrane proteins was further observed
in additional proteome studies involving different seedlings. For example, Roomi et al. [70] reported
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up-regulation of enzymes in the glycolytic pathway, as well as regulation of ribosomal protein which
indicated a stimulating effect of HS on energetic metabolism. They also observed down-regulation of
30 cytoplasmic enzymes, the transcription of which are regulated by several hormones (e.g., AUXs,
CKs, and ABA).

4. P Uptake by HS Application Due to Phytohormonal Activity

The impact of HS on P uptake has been researched previously. Nearly all studies indicate
that HS treatment increases P levels in plant tissue [27,82–84]. Underlying mechanisms include
the multiple functions of HS as: (1) a chelator, making P more available in soil solution [27,84,85],
and (2) a stimulator of root PM-ATPase (referred to as an “auxin-like effect”), which alters root growth
and architecture [33,80]. In the latter mechanism, other hormones, ET [44], nitric oxide (NO) [45,86] and
ABA [39,87] are mediated by HA. Shah and colleagues [88] describe three growth-triggering pathways
which involve the link between HS treatment, gene expression of the aforementioned hormones, and
NO modulation.

Following soil uptake, nutrients in root tissues move toward aerial plant parts. CKs play a vital
role in regulating root-shoot translocation. Mora and colleagues [38] studied the enhancement of
shoot growth following HA treatment in association with CK by comparing mineral content between
the root and aerial plant parts. P content in shoots was significantly increased after four hours of
HA treatment, along with a gradual reduction of all macronutrients in root tissue. In addition to CK
as a regulator of root-shoot nutrient distribution, ABA also regulates shoot growth by altering root
hydraulic conductivity. Several studies by Olaetxea et al. [39,66,87,89] revealed that high shoot growth
resulted from increased ABA concentration in root following HA treatment, consequently enhancing
root hydraulic conductivity.

5. Effect of HS on Secondary Metabolism under Abiotic Stress Conditions

Interlinking nutrient and energy availability is fundamental to drive cell proliferation [90].
This process requires checkpoints which either halt or permit cell growth when nutrients and energy
are limited or sufficient.

The target of rapamycin (TOR) kinase is as a sensor of cell nutrient levels. This enzyme complex
is upregulated at a high level of cytosolic amino acid and sugar concentration, allowing for cell
growth [90]. In conditions of cell starvation, the TOR complex functions as an off-switch restraining
growth and therefore forms a connection between environmental information and plant metabolism [91].
Canellas and colleagues [92] reported no evidence of a direct relationship between the differential
expression of TOR and metabolite levels (amino acids, sugars, or organic acids) in the shoot or
root tissues in plants treated with HA. Likely, HS disturbs the perception of cell nutrient status on
maize seedlings producing a high level of TOR transcription, probably caused by enhanced auxin
activity when amino acids and sugars were in low levels, changing the signaling pathway involved in
nutrient sensing.

Drought stress may decrease photosynthetic rate, however this effect was shown to be mitigated
in sugarcane plants treated with HA [93]. Lofti and colleagues [94] found that the application of HA
improved net photosynthesis of rapeseed plants under water stress via increasing the rate of gas
exchange and electron transport flux. Russel and colleagues [49] proposed that HS application to pea
resulted in higher net photosynthesis by increasing the stomatal opening of epidermal peels through
activation of phospholipase A2. This effect was also observed in IAA treated plants.

Phenolic compounds, along with other secondary metabolites, can protect plants against certain
stresses [95]. For example, the phenylpropanoid pathway is a well-known generator of secondary
metabolites related to nutrient deficiency [96]. The interaction of HS with the phenylpropanoid
pathway has been reported in previous works [70,97,98]. Schiavon et al. [99] showed that HA not only
increases phenol content but also induces phenylalanine ammonia-lyase activity, an enzyme involved
in the phenylpropanoid pathway at the level of gene expression. The authors highlight the similarity
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to other studies in which phenylpropanoid synthesis was enhanced at the transcriptional level by
fungal elicitors and hormones. This enzyme acts as a catalyser in the biosynthesis of phenolics by
converting phenylalanine to trans-cinnamic acid. High levels of cinnamic acids derivatives as well as
shikimic acid in sugarcane and maize tissues were found in metabolomic studies in plants treated with
HAs [100,101].

Plant physiological fitness is primarily governed by hormonal balance and antioxidant defense
systems [102]. In this context, reactive oxygen species (ROS) are essential for the regulation
of metabolism under stress [103]. The typical plant response to different abiotic stresses is the
induction of oxidation through the production of ROS [104]. For example, during nutrient starvation
(e.g., P deficiency), ROS serves as a cellular signaling molecule to modulate hormone signaling and
biotic stress responses [105]. ROS interacts with lipids, proteins, and nucleic acids, resulting in lipid
peroxidation, protein denaturation, and DNA mutation, respectively [106]. Enzymatic antioxidants
such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) minimize the
concentration of cell hydrogen peroxide and superoxide. The induction of these antioxidants’ enzymes
by HS have been previously reported [37,65,93,107,108]. Additional authors have recently indicated
the increasing relevancy of the ROS signaling pathway in conditions of plant stress, either dependent
or independent of a hormone signaling pathway [37,70,109].

Phenotypic adaptions are a consequence of molecular and cellular changes that begin after the
onset of stress, information of which is relayed via signal transduction pathways [110]. Although abiotic
stress responses are often specific, signaling pathways leading to the response display considerable
overlap. Figure 1 briefly describes the general sequence of stress perception and physiological response.
Cell membrane receptors perceive abiotic stress cues which trigger a complex response, amplified and
transmitted by secondary messengers. Messengers triggered by HAs includes a pulse of cytosolic
Ca2+, ROS and free H+ [37,47]. For example, most abiotic stresses elicit rises in cytosolic free calcium
levels ([Ca2+]cyt) and involve protein phosphatases and kinases. Increased cell Ca2+ ion uptake via
plasma membrane Ca2+ channels have been observed, resulting in brief Ca2+ cytosolic waves [47].
These authors also noted the enhancement of Ca-transporter and calcium-dependent protein kinase
(CDPK) activity at the transcriptional level. Protein kinases are important components of cell signal
transduction [111].

Plant protein kinases regulate multiple processes [112], shown in Figure 1 adapted from Mahajan
and Tuteja [113], including those of hormone and stress response [114]. Calcium-dependent protein
kinase (CDPK) was the first protein kinase reported to be modulated by HAs, studied by Ramos [47].
Furthermore, Canellas and colleagues [112] observed a high transcriptional level of mitogen-activated
protein kinases (MAPKs) induced by HAs. MAPKs are protein kinases enzymatically activated by
abiotic stress [115]. Following stress perception, secondary messengers switch intracellular signal
transduction cascades and promote gene activation by kinase and phosphatase activities.

Stress-responsive gene expression through either ABA-dependent or ABA-independent pathways
activates physiological and metabolic responses. Generally, stress-responsive genes can be classified as
two types: (i) functional genes encoding essential enzymes and metabolic proteins which directly protect
cells from stresses and (ii) genes encoding various regulatory proteins, including transcription factors
which regulate stress response via signal transduction and gene expression [116]. Transcription factors
(TFs) are proteins that act together with other transcriptional regulators, including chromatin
remodelling/modifying proteins, to enhance or obstruct RNA polymerase access to the DNA
template [116]. These TFs interact with cis-elements in the promoter regions of several stress-related
genes, thus conferring abiotic stress tolerance. High expression of ABA-responsive genes has been
found in maize seedlings treated with HAs, mainly regulated by bZIP TFs, which interact with
ABA-responsive elements (ABREs) [112]. WRKY TFs are a class of DNA-binding proteins involved in
plant defence [117], including activation of secondary metabolism [118]. For example, WRKY23 was
shown to regulate root growth [119], with the involvement in local biosynthesis of polyphenols
responsible for the regulation of endogenous AUX transport.
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Moreover, expression of WRKY33 in maize was altered by different abiotic stresses [120],
including nutrient deficiency [121]. WRKY TFs were involved in regulating a phosphate starvation
response, including the promotion of high-affinity inorganic P (Pi) transporters and lateral root
emergence. HAs induced differential expression of high-affinity Pi transporters [122] even at high
Pi concentration and with changes in P speciation. The activation of high-affinity Pi transporters by
WRKY45 TFs for phosphate acquisition has been reported [123]. Given that the transcriptional level of
WRKY TFs was changed by HA treatment in maize root tissues [112], there is likely an interaction
between WRKY and HS for initiation of a P deficiency response.

Little scientific work has been reported on the direct impact of HS on plant growth under
low P conditions. A previous study [84] found that low-molecular HA functioned to increase the
concentration of ATP and glucose-6-phosphate in plant cells under low Pi conditions. Graber and
colleagues [124] demonstrated increased root hair growth by application of HS extracted from
biochar under low Pi condition, implying that the activation of ET and AUX may be enhanced by
HS. However, the modulation of P acquisition is not limited to signalling pathways of only ET and
AUX [19]. For a better understanding of biochemical and physiological responses associated with P
starvation, more research is needed regarding how HS relates to crosstalk between plant hormones
and other secondary metabolism mechanisms at multiple levels.

6. Interaction between HS and P-Solubilizing Microorganisms

HS is pivotal in the physical, chemical, and biological attributes of soils which in turn can modulate
soil microbial community structure and activity. In plants treated with HS, changes of root anatomy
and physiology related to phytohormonal actions are also able to influence rhizosphere microbial
community composition [23,34,125,126]. Thus, microorganisms involved with the P cycle are directly
or indirectly affected by HS action in the plant–soil system.

Microorganisms involved in P-dynamics of soil/rhizosphere niches are comprised of two groups,
based on their distinct strategies to enhance plant P availability. The first group includes mineralizing
microorganisms which produce nuclease enzymes, phospholipases, and phytases which hydrolyse
P-organic compounds. In particular, phytase has great importance in the mineralization process,
as 50% of the soil organic P is in the form of phytate (Na-IHP) [127]. After hydrolysis, the resulting
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phosphomonoesters are further hydrolysed by phosphatase enzymes, releasing soluble phosphorus
and other chelated minerals [128].

The second group is comprised of phosphorus solubilizing microorganisms (PSM) [129–131]
which convert sources of inorganic P in mineral lattice complexes into soluble orthophosphate ions
(H2PO4 and HPO4) [132]. Most mineral P content in soils are in a form unavailable for plant uptake,
especially in highly weathered soils [133]. PSM act on these unavailable P sources by proton extrusion
and releases metabolites, including low-molecular-weight organic acids [134–136]. Although less
efficient, other mechanisms are also reported to solubilize Pi such as by the production of hydroxyl
ions and CO2, production of inorganic acids (such as sulfuric, nitric, and carbonic acids) and chelating
substances [137,138].

Although different microbial species are reported as PSM, those which can survive as soil
saprophytes and show exceptional ability to colonize the rhizosphere are often considered the best
candidates for plants as P-nutrition enhancers. For fungi, studies have shown potential for Pi
solubilizing activity in the genera Aspergillus and Penicillium [139,140]. In bacteria, several studies have
indicated the potential for solubilization in the genera Pseudomonas, Serratia, Paraburkholderia, Bacillus,
Rhizobium, Azospirillum, Enterobacter, and Paenibacillus [141–143]. Most of these species are also able to
access organic P forms, indicating their crucial role in the P cycle of soils.

There is a complex relationship between HS and P-bioavailability mediated by soil microbes. Soil
organic matter itself represents a source of P, and bioactive fractions such as HAs can trigger changes
on root architecture and biochemistry, for example by stimulating proton pump activity across plant
cell plasma membranes as well as root exudation [47,144]. Consequently, increased root exudation of
carbon can stimulate growth in the rhizosphere microbial community, with the enhanced production
of AUX and AUX-like compounds leading to an amplification of the positive interaction.

Coordinated interaction between HS and rhizosphere microbiota involving the central component
of the auxinic hormonal pathway has been reported [23]. HS affected the formation of lateral roots
and root hair length and density, consequently increasing the release of root exudates. Among these
exudates were precursor compounds of IAA and other AUX-like compounds including the amino acid
L-Tryptophan. L-Tryptophan acts as a precursor for the biosynthesis of IAA in plants and microbes,
therefore increasing IAA content in the rhizosphere resulting in localized acidification and the release
of Pi into the rhizosphere soil solution [145].

Several studies have explored the AUX-producing interaction of HS and PSM [146] for use in
soil fertility and plant development. In vermicomposting research [147], there was an observed
increase of phosphatase activity and P availability in parallel with increased HS content in the growth
substrate. HS also has an interesting protective effect against P-fixation in mineral soil fractions. With
soybean plants in a controlled environment [141], HS application combined with P-solubilizing bacteria
increased soil pH and plant-available P, concomitantly reducing exchangeable Al.

A combination of PSM and HS resulted in increased grain yield in maize and barley, a result of
greater available P release and increased absorption of nutrients by plants [148,149]. Benefits from the
combined use of PSM plus HS were also demonstrated in another maize experiment [22], in which
treated plants had higher root and shoot biomass in relation to control plants. However, no increase in P
concentration was observed, suggesting greater P use efficiency in plants treated with the combination
of HS and PSM.

Despite the evidence of the effect of HS on PSM activity and consequent plant growth promotion,
differing Pi solubilization results are obtained in vitro compared to those from field conditions [148,150].
Therefore, further study on the interaction mechanisms between HS and microorganisms is required.

7. Interaction between HS and Mycorrhizal Fungi for P Uptake

Combining microorganisms with organic matter maintains soil fertility and can result in a
beneficial symbiosis for plants. Organic matter allows for the development of soil biota, responsible for
nutrient mineralization and therefore, plant bioavailability [151]. In this sense, combining HS and ecto-
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and endomycorrhizal fungi positively affect plant growth and development [151]. The most studied
plant symbiotic interactions are with arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi
(EMF). These interactions are mediated by a bi-directional transfer of nutrients [152] and differentially
influence the dynamics of organic matter in ecosystems [153].

Several studies have reported that inoculation of AMF-type endomycorrhiza with HS increased
plant growth and yield [154,155]. In non-inoculated plants, P is directly absorbed by nutrient
transporters located in the root epidermis and cortex. When plants are inoculated with AMF, P is
absorbed by hyphae/mycelia via nutrient transporters and subsequently translocated to fungal
structures located inside the cortical cells of the roots [152,156]. These intracellular structures are
called arbuscules and formed by hyphae differentiation. Arbuscules, in turn, exhibit a highly branched
structure modulated by root exudation of strigolactones, a class of plant hormones [152].

Maize treated with HS and inoculated with heterogamous AMF Dentiscutata displayed an increased
P content of 12% [151]. Remarkable absorption of P was also observed in lettuce treated with HS
and Rhizophagus irregulares [157] and in lettuce treated with HA inoculated with AMF Rhizophagus
irregulares and Funneliformis mosseae [158]. A similar result was observed [159] when treating tomato
with Rhizophagus clarus with HS. P levels were also doubled in Lippia alba following inoculation with
AMF [160] in combination with HS and P (200 mg) addition to the soil.

EMF, in association with the surface of tree roots, can access most of the P compartmentalized in
HOM in forest soils [161,162]. These fungi are found mainly in temperate conditions and mobilize
P from the soil based on the following steps: (1) soil import, (2) storage on the soil hyphen
margin, (3) distribution in the mycelium, and (4) vacuolar export at the fungus–plant interface [163].
Additionally, phytases and phosphatases can be used by EMFs to solubilize organic forms of P [164].

8. Conclusions

The present work provides information on the role of HS for P uptake and outlines the
strong association of HS with plant hormones at different levels including morphological effects
(e.g., root elongation). Under conditions of abiotic stress such as P starvation, HS interacts not only with
plant hormones signaling pathways in secondary metabolism systems such as by increasing expression
of ABA-responsive genes and TOR transcription related to “AUX-like activity”, but also with other
pathways including those of ROS and phenylpropanoids. In addition, the synergetic effect between
HS and different types of microorganisms which strengthens phosphorous uptake by modulating root
architecture is beneficial for P management. Further investigation should be conducted to reveal the
function of HSon P uptake and crosstalk mechanisms between phytohormonal signaling pathways
together with other plant functions, and to understand the interaction of HS with microorganisms.
Novel plant hormones, including strigolactones and melatonin, should also be considered for future
research on P uptake.
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