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Abstract: Onion downy mildew (ODM) caused by Peronospora destructor has been increasing 

annually in south-western Québec since the early 2000s, reaching 33% of affected onion fields in 

2014. Using observational data collected over a period of 31 consecutive years, this study aimed to 

investigate the variations in ODM incidence and epidemic onset and identify the meteorological 

variables that influence its polyetic development. A logistic model was fitted to each ODM epidemic 

to estimate and compare the onset of epidemics on a regional basis. Results of this analysis showed 

that the first observation date, 10% epidemic onset (b10) and mid-time (b) were, on average, 30.4, 15.1 

and 11.3 days earlier in 2007–2017 than in 1987–1996. Results of a principal component analysis 

suggested that regional disease incidence was mostly influenced by the precipitation regime, the 

final regional disease incidence the previous year, and warmer temperature during the harvest 

period the previous fall. Subsequently, the data were divided in three periods of 10, 10 and 11 years, 

and a discriminant analysis was performed to classify each year in the correct period. Using a 

sufficient subset of five discriminating variables (temperature and rainfall at harvest the previous 

fall, winter coldness, solar radiation, and disease incidence the previous year), it was possible to 

classify 93.5% of the ODM epidemics in the period where they belong. These results suggest that P. 

destructor may overwinter under northern latitudes and help to highlight the need for more research 

on overwintering and for the development of molecular-based tools enabling the monitoring of 

initial and secondary inoculum. 

Keywords: polyetic development; landscape epidemiology; climate change; long-term disease 

development 

 

1. Introduction 

Over the last 20 years, the world production of onion (Allium cepa L.) more than doubled, moving 

from 2.4 million hectares of land in 1997 to 6.3 million hectares in 2017 [1]. In Canada, the provinces 

of Ontario and Québec grow more than 90% of the national production, with 2460 ha and 1938 ha, 
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respectively, dedicated to the production of dry bulb onions [2]. In Canada and elsewhere, onion 

crops are threatened by several diseases, including Botrytis leaf blight, Stemphylium leaf blight, 

purple blotch and downy mildew. 

Onion downy mildew (ODM), caused by the obligate biotrophic oomycete Peronospora destructor 

(Berk.) Caspary, is a widespread disease that is often difficult to manage and can be destructive, with 

yield losses reaching up to 75% [3–6]. Weather conditions favoring P. destructor sporulation and 

infection were thoroughly studied in the 1980s, following severe disease outbreaks that occurred 

between 1977 and 1980 in Ontario (Canada) and in western and central New York [7,8]. The P. 

destructor sporulation process is dependent on daily cycles of light and darkness and is not initiated 

when infected onions are kept in continuous light or darkness [9]. Relative humidity greater than 

95% and temperatures between 4 °C and 24 °C are required during the night cycle for sporulation [7]. 

When humidity is high from 20:00 onwards, sporulation may occur at temperatures as low as 10 °C, 

whereas the optimal temperature rises to 18 °C when humidity onset is after 3:00 [10]. After infection, 

a latency period of 13 days is observed at warmer temperature (25 °C/17 °C for day/night) and 15 to 

17 days at cooler temperature (18 °C/10 °C for day/night) [11]. Mature sporangia are mostly dispersed 

by wind and there is no active release mechanism per se. However, P. destructor sporangia can be 

vigorously discharged into the air in response to a reduction of relative humidity [12,13]. 

This knowledge of sporulation and infection characteristics led, in the mid-1980s, to the 

development of DownCast, a forecaster for ODM [14,15]. The model provides a dichotomic output 

(0 or 1). Sporulation of P. destructor is predicted when (1) the mean temperature is below 24 °C 

between 08:00 and 20:00 the previous day; (2) the average night temperature is between 4 °C and 24 

°C; (3) the relative humidity is greater than 95% between 02:00 and 06:00; and (4) no rain should occur 

after 02:00 [14]. This rule-based model is still in use in several growing regions, including Québec and 

Ontario, but despite its relative accuracy, the authors suggested that it could be improved. Hence, 

other models such as Onimil, Zwipero, DownCast-deVisser and Milioncast were developed to 

predict the risk of P. destructor sporulation or infection, or both [16–19]. 

Prediction systems are essential to make informed disease management decisions on a short-

term basis. This type of decision-making is often referred to as tactical, because it takes place during 

the cropping seasons with the intention to protect the current crop [20]. In addition to tactical 

decisions, disease management must also be based on strategic decisions made at short, middle and 

very long terms [20]. Middle-term strategic decisions are defined at the field scale and include crop 

rotations, cultivar selection and seed treatments, whereas long-term strategic decisions are defined 

at larger scales in space (region, country, continent) and time (multi-year) [20]. Moreover, the long-

term strategic decision is of most importance, because it allows growers to identify where integrated 

pest management (IPM) is needed for a particular disease and to anticipate when a given disease will 

pose a threat to a crop in a given production area [20]. To prevent or delay the development of plant 

diseases, it is thus recommended to characterize the disease progress on an annual basis and at 

multiple spatial and temporal scales [21,22]. Nevertheless, the epidemiology of plant diseases is 

generally studied over a few consecutive seasons because the available historical data collected over 

appropriate spatial and temporal scales are limited. 

Amongst the epidemiological datasets covering a larger number of seasons, those for potato late 

blight caused by Phytophthora infestans are probably more numerous. In The Netherlands, for 

example, the analysis of a sequence of 47 potato late-blight epidemics has shown that the presence 

and level of late blight the previous year, the number of rainy days and relative humidity were 

important variables allowing for an accurate classification of disease intensity [23]. Similarly, 

historical data collected in Finland from 1933 to 2002 enabled changes in late blight incidence and 

epidemics onset to be linked to the increased frequency of rain and warmer temperature at the 

beginning of the growing season [24]. 

The importance of research on the relationship between climate change and plant diseases 

through studies conducted over an extended period of time is exacerbated by the speed at which 

changes are occurring. The latest forecasts regarding global warming suggest a global temperature 

increase between 1.5 °C and 2 °C over the next 50 years, especially in the northern and southern 
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regions [25]. However, the impact of climate change may vary with the geographic location of the 

production areas. The distribution and severity of late blight caused by P. infestans have increased 

with global warming and precipitation regime changes in the northern area [24], whereas the effect 

of climate change appears to be limited in tropical and subtropical regions [26]. 

In the Province of Québec (eastern Canada), the incidence of ODM has been increasing annually 

since the early 2000s, exceeding 30% of diseased onion fields in 2014. We hypothesize that changes in 

climatic conditions favor the overwintering of P. destructor and, therefore, the duration and precocity 

of ODM epidemics. Observational data collected over a period of 31 consecutive years are used to: (i) 

characterize the seasonal distribution patterns of ODM epidemics, (ii) determine if the onset of 

seasonal epidemics comes earlier and disease incidence is more important and (iii) identify the 

variables influencing the polyetic ODM development. 

2. Material and Methods 

2.1. Onion Production and Study Area 

In Québec as in Canada, 80% of the areas dedicated to the production of alliums are dedicated 

to the production of dry bulb onions, while the remaining 20% are for garlic, leek and green onion. 

Most of the onion is grown from seed, whereas a small share of the production is grown from 

transplants or dry sets. Seeding or transplantation is generally performed in late April to early May, 

when the soil is thawed. Onions are sown about 2–2.5 cm below the soil surface, on 1.8 m wide beds, 

with double rows spaced 45 cm apart. Even though onions can be produced in various types of soil, 

the majority of the production is conducted in muck soils. 

The study site (Municipalité Régionale de Comté des Jardins-de-Napierville) is located on the 

south shore of Montreal, surrounded by the Saint-Lawrence river to the north, the Adirondacks to 

the south and the Richelieu and Châteauguay rivers to the east and west, respectively. The cultivation 

area (~800 km2) is between latitude 45°03′ N and 45°14′ N and between longitude 73°42′ W and 73°20′ 

W. In this area, vegetable crops (mostly onion and lettuce) are grown in muck soil (chernozem), over 

slightly more than 10,000 ha (Figure 1A). 

Climate in the study area is humid continental (Dfb, according to the Köppen classification), 

characterized by wet and warm summers (i.e., total precipitation from June to August is 293 mm on 

average, average temperature during the same months is 19.3 °C), cold and snowy winters (average 

temperature for December–March is −4.72 °C and average snow precipitation is 144.3 cm), with 

annual mean temperature of 6.6 °C, total precipitation of 799.6 mm and total snow precipitation of 

169.3 cm. These climate statistics were compiled and published by the climate monitoring working 

group of the Ministère de l’Environnement et de la Lutte contre les changements climatiques du 

Québec (MELCC), for the Hemmingford Four Winds weather station (45°04′21″ N, 73°39′29″ W, 70 

m). 

 

Figure 1. Location of onion fields included in the study over the years (A) and regional disease 

incidence (RDI) of onion downy mildew (ODM) epidemics observed in the Napierville County for 

each of the 31 years of the dataset at the end of the growing season (B). 
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2.2. Field Sampling, Disease Incidence and Data Aggregation 

The dataset analyzed in this study was constructed from the database of PRISME, a Québec bio-

monitoring not-for-profit organization (www.prisme.ca). The data were collected by agronomists, 

crop specialists and summer scouts from 1987 to 2017. Each year, scouting took place once a week 

from May to August in 122 fields on average per season, which represents ~70% of the total number 

of onion fields in the region. During scouting, observations on pests and diseases were made on at 

least 25 onion plants randomly selected in each field, including the presence/absence of ODM (1/0 

binary data). The weekly data were then combined spatially to obtain a measure of regional disease 

incidence (RDI) expressed in percent, i.e., the percentage of infected fields. Thus, data are considered 

to be counts with an upper bound [27]. Furthermore, each field was given a value from a severity 

index (SEVI) ranging from 0 to 3: 0 = no ODM observation, 1 = less than 1%, 2 = between 1% and 5%, 

and 3 = greater than 5%. The first occurrence of ODM in the region each year was retrieved from the 

raw data and expressed in days since 1 May. To ensure that the dataset is representative of the region 

and there is no missing ODM outbreak, the RDI values were validated with experts from the Québec 

Ministère de l’Agriculture, des Pêcheries et de l’Alimentation and through the Phytosanitary 

Warning Network (Mario Leblanc, personal communication). 

2.3. Weather-Related Variables 

Data collected by the MELCC climate surveillance group at Hemingford Four Winds (45°04′21″ 

N, 73°39′29″ W, 70 m) were used in this study. Weather data from 1986 to 2017 were used to define 

four categories of variables, depending on whether they are: (1) related to sporulation (current 

growing season); (2) related to infection (current growing season); (3) favoring the production of 

overwintering inoculum (previous fall); or (4) related to overwintering (previous winter). The first 

two categories were mostly based on the conditions described by Hildebrand and Sutton 

[7,10,11,15,28]. Due to limited information available on the overwintering of P. destructor, the third 

and fourth categories of variables above were built on more general knowledge about peronosporales 

[23,24,29–32]. All variables used in this study are presented in Table 1. 

Variables related to sporulation: These include the number of DownCast daily sporulation 

periods (DC, the number of days for which DownCast predicts a risk of sporulation) from May to 

August, and the number of hours with temperature between 4 °C and 24 °C at night (between 20:00 

and 6:00) (HT4_24N). Two variables which would prevent sporulation were also considered: the 

number of hours with temperatures greater than 28 °C at night (NHNT_28) and the number of 

precipitation events (with at least 0.1 mm of rain) occurring between 20:00 and 6:00 (NSP). 

Variables related to infection: The number of hours with relative humidity greater than 90% 

during the day (NHR_90), the number of hours with temperature between 4 °C and 24 °C during the 

day (HT4_24IP), the number of precipitation events (characterized by accumulation >0.25 mm) 

between 6:00 and 12:00 (DSP) and the number of precipitation events during the day (NREIP) are 

included in this category, as variables potentially enhancing infection. As two variables that would 

inhibit infection, the average solar radiation (RAD, in J m−2) and the number of hours with 

temperatures above 28 °C between 6:00 and 20:00 (NHDT_28) are included in the same category. 

Variables related to the production of overwintering inoculum: In this study, it was 

hypothesized that total rainfall during the harvest period (TRH) between 15 August and 15 October 

was amongst the most important variables influencing the formation of survival structures 

(oospores). The average and minimum temperatures during the harvest period (ATH and MTH) 

were also considered to be enhancing the production of oospores because higher temperature at 

harvest may lead to a longer period during which oospore production can occur. 

Variables related to overwintering: Snow cover (SCOV, in cm), calculated from October 15 the 

previous year to 15 March the current year, was considered to contribute to the survival of oospores 

and volunteer plants in soil and cull piles, because snow acts as an insulating layer allowing a certain 

regulation of the soil temperature. Conversely, off season rainfall (OSRF), also calculated from 15 

October to 15 March was considered to affect oospore survival because it may reduce the thickness 

of the snow cover or lead to the formation of ice. To measure winter severity, we use the Hellmann 
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number (HL), calculated as the sum of average daily temperatures below 0 °C from 15 October to 15 

March [23]. The number of hours with temperatures below 0 °C, 5 °C and 10 °C were also used as 

indicators of coldness. Finally, we used the last RDI value the previous year (DS_PY) and that the 

year before the previous year (DS_P2Y), as variables of carryover from one or two years to the next. 

Table 1. Description of the variables considered in this study. 

Category Variables Definition 

Dependent variables 
RDI Regional disease incidence (% of infected fields) 

DSI Disease intensity (from 0 to 3) 

Related to sporulation (Calculated from 1 May to 15 August) 

DC Number of DownCast sporulation periods 

NSP 
Number of night precipitation events (between 

24:00 and 6:00) 

HT4_24N 
Number of hours with temperature between 4 °C 

and 24 °C (between 20:00 and 6:00) 

NHNT_28 
Number of hours with temperatures above 28 °C 

(between 20:00 and 6:00) 

Related to infection (Calculated from 1 May to 15 August) 

RAD Average solar radiation (J m−2) 

DSP 
Number of morning precipitation events 

(between 7:00 and 12:00) 

NREIP 
Number of precipitation events during infection 

period 

NHR_90 
Number of hours with relative humidity above 

90% 

HT4_24IP 
Number of hours with temperature between 4 °C 

and 24 °C (between 6:00 and 20:00) 

NHDT_28 
Number of hours with temperatures above 28 °C 

(between 6:00 and 20:00) 

Related to production of overwintering inoculum (Calculated 

from 15 August to 1 October the previous year) 

ATH Mean temperature during harvest (°C) 

MTH Minimum temperature at harvest (°C) 

TRH Total rainfall at harvest (mm) 

Related to overwintering (HL was calculated from November 

to March) 

SCOV Snow cover (mm) 

DS_PY Final RDI previous year 

DS_P2Y Final RDI the year before previous year 

HL 
Hellmann number (sum of average daily 

temperatures below 0 °C) [23] 

OSRF Off growing season rainfall (mm) 

2.4. Data Analysis 

As changes in RDI are apparent over the 31 years (Figure 1B), the data were grouped into three 

periods of 10, 10 and 11 years (period I: 1987–1996, period II: 1997–2006 and period III: 2007–2017), 

representative of the bimodal distribution of RDI over time. For each of the variables studied, the 

data distribution was first tested for normality using the Shapiro–Wilk statistic. Since the data were 

not normally distributed, differences among mean values of the three periods for RDI and weather-

related variables (Table 1) were assessed with the Kruskal–Wallis non-parametric test, followed by a 

Dwass, Steel and Critchlo–Fligner two-sided multiple pairwise comparison test (significance level α 

= 0.05). 

Then, for each of the 31 years with enough ODM incidence, the seasonal ODM epidemic was 

studied by fitting a logistic model to the disease progress curve built on the cumulative RDI, 

expressed as a proportion of the maximum: 

Y=
K

1+e-r*(t - b)
 (1) 

where the quantity Y is the cumulative RDI, t is the time (in days, for a given season), K is the 

theoretical upper limit (asymptote) for Y, r is the rate of growth and b is a time offset at which Y is 

equal to half of the maximum value (mid-time). The 10% epidemic onset (b10), at which Y is equal to 

10% of the maximum value, was derived from the fitted model. The goodness-of-fit of the model was 
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assessed by the root mean square error (RMSE) and the coefficient of determination (R2). A Wilcoxon 

exact non-parametric test (significance level α = 0.05) was performed to determine whether the 10% 

epidemic onset, mid-time and other model parameter estimates were significantly different between 

the first and third periods, where the RDI modes are found. 

Spearman’s rank-based correlation coefficients were computed between weather-related 

variables and the response variables (RDI, DSI) over the 31 years. The resulting correlation matrix 

was used in a principal component analysis (PCA), to investigate the relationships between RDI or 

DSI and the weather-related variables and among the weather-related variables themselves. 

Using periods I, II and III as classes, discriminant analyses were performed to identify the 

variables (excluding RDI and DSI) that influenced the ODM polyetic development differently across 

the three periods. A discriminant analysis was performed with all the weather-related variables and 

another with a reduced number of them (i.e., a sufficient subset of discriminating variables), retained 

at the end of a stepwise procedure. The rank-transformed data were used in these analyses. The 

outputs include the probabilities of classification of the years in the three periods (I, II or III), in an 

attempt to predict higher or lower ODM occurrence from the weather-related variables. 

In the application of multivariate statistical methods (e.g., PCA, discriminant analysis) with 

time-series data, joining the years in chronological order in biplots facilitates the interpretation of 

results and such a temporal walk may allow the detection of atypical years within a period in the case 

of the PCA [33]. The statistical analyses described above were carried out with procedures NLIN, 

UNIVARIATE, NPAR1WAY, CORR, PRINCOMP, DISCRIM and STEPDISC from SAS/STAT V9.4 

(SAS Institute Inc., Cary, NC, USA). 

3. Results 

Regional disease incidence values in the years 1987–2017 varied from 0 to 33.25% and form a 

bimodal distribution with one peak in 1990 and the other in 2014 (Figure 1B). The ODM was present 

in five years out of 10 in period I (mean RDI: 3.59%, SE = 2.63), five years out of 10 in period II (mean 

RDI: 0.11, SE = 0.05), and 11 years out of 11 in period III (mean RDI: 9.55, SE = 3.17). For the majority 

of the variables, the null hypothesis of a normal distribution, was rejected according to the Shapiro–

Wilk test. The Kruskal–Wallis test shows a significant difference in the mean RDI value among the 

three periods (p = 0.0002). The multiple pairwise comparison test then found a significant difference 

between periods I and III (p = 0.0102) as well as between periods II and III (p = 0.0003), but not between 

periods I and II (p = 0.5708) (Table 2). 

There are also significant differences among the three periods in the mean value of the weather-

related variables, especially the ones related to production and survival of overwintering inoculum. 

For these, the Kruskal–Wallis test shows significant differences among periods for the average and 

minimum temperature during harvest and the total rainfall during harvest (p = 0.0302, 0.0015 and 

0.0008, respectively) (Table 2). In summary, the average and minimum temperatures were 

significantly warmer while precipitation was more abundant in period III than in period I (Table 2). 

For the variables related to overwintering, the Kruskal–Wallis test shows significant differences 

among periods for the disease statuses the previous year and the previous two years (p = 0.0002 and 

0.0002, respectively), while the Hellmann numbers (HL) suggest warmer winters for period III 

compared to period I (p = 0.0084) (Table 2). For the variables related to sporulation, differences among 

periods are significant for the number of DownCast periods (p = 0.0072), while significant differences 

are also found for solar radiation in the category of variables related to infection (p < 0.0001) (Table 

2). 

The first ODM outbreak was reported, on average, 75 days after 1 May (Figure 2A). The 

correlation between year of the survey and time of the first outbreak is negative and significant (r = 

−0.700; p = 0.0003) (Figure 2A). More specifically, the first disease outbreak was reported, on average, 

93.8, 84.3 and 63.4 days after 1 May, during the first, second and third periods, respectively (Figure 

2B). The fitting of logistic models confirms this trend in ODM seasonal epidemics (Figure 3A, Table 

3). In addition to earlier disease outbreaks, the 10% epidemic onset (b10) and mid-time (b) were 15.1 

and 11.3 days earlier in period III than in period I (p = 0.0102 and p = 0.0255) (Figure 3B, C). 
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Table 2. Mean values of regional disease incidence (RDI) and weather-related variables, and results 

of the Kruskal–Wallis test (observed value of the test statistic and corresponding probability of 

significance). 

Variables * 
Period ** 

χ2 p 
I II III 

RDI 3.6 a 0.1 a 9.6 b 17.20 0.0002 

DC 33.7 b 22.0 a 20.18 a 9.87 0.0072 

NSP 52.6 66.9 80.5 4.73 0.0941 

HT4_24N 1245.3 1207.5 1227.7 0.75 0.6867 

NHNT_28 0.4 0.3 0.6 0.01 0.9945 

RAD 15.94 b 15.77 b 12.32 a 20.45 <0.0001 

DSP 79.3 82.6 107.5 5.33 0.0699 

NREIP 33.4 34.1 47.6 4.11 0.1284 

NHR_90 413.0 486.6 468.6 5.23 0.0732 

HT4_24IP 451.5 447.2 446.5 0.94 0.624 

NHDT_28 45.2 41.9 41.5 0.11 0.9463 

ATH 17.30 a 18.42 a,b 18.81 b 6.99 0.0302 

MTH 7.28 a 9.5 b 10.5 b 13.05 0.0015 

TRH 42.6 a 90.9 b 104.82 b 14.15 0.0008 

SCOV 154.6 146.4 158.7 0.06 0.9683 

DS_PY 3.6 a 0.1 a 8.5 b 16.92 0.0002 

DS_P2Y 3.6 a 0.1 a 7.99 b 16.76 0.0002 

HL −111.7 b −98.97 a,b −94.46 a 9.56 0.0084 

OSRF 330.1 289.7 298.4 0.12 0.9424 

* Mean values with different letters within the same row are significantly different according to the 

Dwass, Steel and Critchlo–Fligner two-sided multiple pairwise comparison test (significance level α 

= 0.05).** Period I include the years from 1987 to 1996, period II from 1997 to 2006, and period III from 

2007 to 2017. 

 

Figure 2. Plots against Year for (A) the earliest time of ODM observation from 1 May, with linear 

regression analysis results, and (B) the difference between the average first observation date and the 

first observation date for each year during which ODM was observed. 
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Figure 3. (A) Disease progress curves for the first and third ODM periods. Box plots of (B) model 

parameter estimate b, which represents the time (in days) at which seasonal ODM incidence is half of 

its maximum value (mid-time) and (C) b10, the time (in days) when seasonal ODM incidence is equal 

to 10% of the maximum value (10% epidemic onset). Period I include the years 1987–1996, and period 

III, 2007–2017. In each box plot, the horizontal black lines, from bottom to top, represent the 10th, 25th, 

50th (median), 75th and 90th percentiles, the red dashed line represents the mean and a black circle 

represents an outlier. The Z statistic and associated p-value are for the Wilcoxon exact test 

(significance level α = 0.05). 

Through correlations, the PCA was used to evaluate the relationships between weather-related 

variables and RDI or DSI over the 31 years. The eigenvalues calculated for the correlation matrix 

correspond to the proportions of dispersion (after standardization) explained by the principal 

components (PCs), the coefficients of the corresponding eigenvectors indicating the relative 

importance of each predictor in the composition of the PCs. Taken together, the first three PCs explain 

60.3% (PC1: 28.9%, PC2: 20.3% and PC3: 11.1%) of the total dispersion (Table 4). The eigenvectors of 

the first principal component had values ranging from −0.310 to 0.355, with the highest and lowest 

value corresponding to disease incidence the previous year (DS_PY) and solar radiation (RAD), 

respectively. The eigenvectors of the second principal components had values ranging from −0.352 to 

0.394, with the highest and lowest value corresponding to the number of hours with temperature 

between 4 °C and 24 °C during the day (HT4_24IP) and the number of hours with relative humidity 

greater than 90% (NHR_90), respectively (Table 4). While PC1 was largely associated with variables 

related to overwintering, PC2 was more related to temperature and relative humidity associated with 

infection and sporulation (Table 4). 
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Table 3. Summary of the logistic model (Equation (1)) fitting results for each of the 31 years (1987–2017) with enough ODM incidence. 

Year Parameter a Estimate SE 
Approximate 95% 

Confidence Limits 

Model p-

Value 
Year Parameter Estimate SE 

Approximate 95% 

Confidence Limits 

Model p-

Value 

1989 

k 1.024 0.024 0.972 1.077 

0.0001 2010 

k 1.019 0.036 0.941 1.098 

0.0001 r 0.187 0.017 0.150 0.225 r 0.151 0.024 0.099 0.204 

b 217.900 0.594 216.600 219.200 b 202.800 1.260 200.100 205.500 

1990 

k 1.028 0.017 0.990 1.065 

0.0001 2011 

k 1.040 0.049 0.935 1.145 

0.0001 r 0.274 0.021 0.228 0.321 r 0.141 0.026 0.084 0.198 

b 223.100 0.326 222.400 223.800 b 206.400 1.594 202.900 209.800 

1991 

k 1.020 0.022 0.973 1.068 

0.0001 2012 

k 1.000 0.001 1.000 1.000 

0.0001 r 0.214 0.020 0.171 0.257 r 2.021 0.013 1.994 2.048 

b 218.400 0.513 217.300 219.500 b 195.900 1.32x10-9 195.900 195.900 

1992 

k 1.012 0.025 0.959 1.066 

0.0001 2013 

k 1.011 0.017 0.975 1.047 

0.0001 r 0.663 0.196 0.240 1.086 r 0.412 0.032 0.344 0.480 

b 232.500 0.496 231.400 233.600 b 228.700 0.255 228.100 229.200 

1993 

k 1.000 0.001 1.000 1.000 

0.0001 2014 

k 1.072 0.053 0.957 1.187 

0.0001 r 1.993 0.008 1.976 2.009 r 0.164 0.022 0.116 0.211 

b 230.900 0.001 230.900 230.900 b 224.800 1.089 222.500 227.200 

2006 

k 0.954 0.030 0.891 1.018 

0.0001 2015 

k 1.057 0.040 0.970 1.144 

0.0001 r 0.630 0.340 −0.104 1.364 r 0.128 0.015 0.095 0.160 

b 201.400 0.999 199.200 203.500 b 213.400 1.176 210.900 216.000 

2007 

k 1.005 0.018 0.966 1.043 

0.0001 2016 

k 1.006 0.021 0.961 1.051 

0.0001 r 0.420 0.060 0.289 0.550 r 0.560 0.093 0.359 0.760 

b 208.000 0.423 207.100 208.900 b 226.000 0.406 225.100 226.900 

2008 

k 1.014 0.016 0.979 1.050 

0.0001 2017 

k 1.121 0.041 1.032 1.210 

0.0001 r 0.262 0.023 0.213 0.312 r 0.098 0.007 0.083 0.112 

b 213.900 0.400 213.100 214.800 b 219.900 1.131 217.400 222.300 

2009 

k 1.025 0.032 0.956 1.094 

0.0001 

       

r 0.150 0.015 0.118 0.182        

b 217.900 0.831 216.100 219.700        

a Parameters of the logistic model used in this study. 
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Graphically and accordingly, the RDI and DSI vectors in the PC2-PC1 biplot go in the same 

direction as those for disease status the previous year (DS_PY) and the previous two years (DS_PY2), 

minimum temperature at harvest (MTH) and number of morning precipitation events (DSP), 

whereas the solar radiation (RAD) vector points in the opposite direction (Figure 4A). In the year 

space (Figure 4B), it is possible to follow the chronology of events along PC1, with the period I years 

on the left, the period III years on the right and the period II years in-between; PC2 tends to show 

fluctuations among years within a period. 

 

Figure 4. Principal component analysis (PCA) biplots obtained by using the first two principal 

components (A) in the variable space and (B) in the year space, where consecutive years are linked to 

allow following the temporal walk. 

When using all the weather-related variables in the discriminant analysis, only 50% of the years 

belonging to period I, 80% of the years belonging to period II and 81.8% of the years belonging to 

period III are correctly classified (Figure 5A). Overall, the achieved classification accuracy is 70.6%. 

At the end of the stepwise procedure, five variables (MTH, DS_PY, HL, TRH and RAD) were retained 

as a sufficient discriminating subset (Table 5). Using these five variables, 90%, 90% and 100% of the 

years belonging to the first, second and third ODM periods are correctly classified (Figure 5B), and 

the achieved overall classification accuracy is 93.5%. 

Table 4. Composition of the eigenvectors (as linear combinations of variables) for the first three 

principal components in the PCA. 

Categories Variables 
Principal Components 

1 2 3 

Related to sporulation 

DC −0.1501 0.3595 −0.1119 

NHNT_28 −0.0422 −0.2494 0.2626 

HT4_24N 0.1225 0.3935 −0.0859 

NSP 0.258 0.0695 0.3646 

DSP 0.2905 0.1403 0.4098 

Related to infection 

RAD −0.3104 0.1242 0.187 

NHDT_28 −0.1389 −0.3254 0.0754 

HT4_24IP −0.0299 0.3353 −0.2817 

NHR_90 0.0295 −0.3518 0.0737 

NREIP 0.2409 0.2085 0.4248 
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Related to production of 

overwintering inoculum 

ATH 0.1088 −0.2944 −0.1261 

TRH 0.1538 −0.2353 −0.1137 

MTH 0.2930 −0.1287 −0.1455 

Related to overwintering 

OSRF 0.1171 0.1021 0.3673 

HL 0.1821 −0.2124 0.0499 

DS_P2Y 0.3175 −0.059 −0.1326 

DS_PY 0.3418 0.0015 −0.1674 

 RDI 0.3499 0.0668 −0.1576 

 DSI 0.3549 0.0776 −0.2156 

 
Cumulative variation 

accounted for (%) 
28.93 49.23 60.25 

 

Figure 5. Discriminant analysis results presented graphically in biplots of the second linear 

discriminant variable (LD2) against the first (LD1). The blue, green and turquoise points represent the 

years correctly classified in periods I, II and III, respectively. The red points indicate the years that are 

misclassified. A) All the weather-related variables are used, and the overall correct classification rate 

is 70.6%. B) The discriminating subset of five variables (MTH, DS_PY, HL, TRH, RAD) found to be 

sufficient at the end of the stepwise procedure is used: 93.5% of the years are correctly classified within 

the three ODM periods. 

Table 5. Weather-related variables retained in the stepwise discriminant analysis procedure, applied 

to identify the smallest sufficient set of discriminating variables for periods I, II and III, and the 

corresponding statistics. 

Variables a F-Value b p > F Partial R2 b Wilks’ Lambda c p < Lambda 

RAD 29.570 <0.0001 0.6787 0.3213 <0.0001 

DS_PY 10.310 0.0005 0.4331 0.1821 <0.0001 

MTH 15.750 <0.0001 0.5479 0.0823 <0.0001 

TRH 8.370 0.0016 0.4011 0.0493 <0.0001 

HL 2.380 0.1145 0.1652 0.0412 <0.0001 
a See Table 1 for the description of the variables. b An F-test is performed to assess whether the 

inclusion of a variable in the discriminating subset reinforces the discrimination significantly or not; 

a 0.15 significance level to enter was used. The outcome of the F-test (enter, yes/no) is related to the 

partial R2, which is indicative of the increase in size (%) of the difference among vectors of mean 

values after inclusion of the variable considered. c Wilks’ Lambda is a likelihood-ratio test statistic 

used to compare vectors of mean values; it is used in various contexts, including multivariate analysis 

of variance (MANOVA) and discriminant analysis. 
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4. Discussion 

Although the local conditions for P. destructor infection and sporulation were thoroughly studied 

in the 1980s [7,10–12,14,15,28,34], the processes underlying ODM seasonal establishment are poorly 

understood. Results of the analyses of scouting data collected from 1987 to 2017 in our study allowed 

a quantitative description of the ODM epidemics in the long term over time and at a regional scale. 

The epidemics occurring during period III (2007–2017) were more severe than those during period I 

(1987–1996) and were characterized by the first ODM observation dates that were earlier in the year 

(30.4 days on average). The first disease observation date is a valuable indicator of change in disease 

epidemiology but may not be representative of the seasonal establishment of the disease in a given 

area. For this reason, we fitted models to regional disease progress curves to calculate and compare 

10% epidemic onset and mid-time for the three ODM periods. Results of the non-linear regression 

analysis (logistic model fitting) are consistent with those for the first observation dates, as the 10% 

epidemic onset and mid-time are, respectively, 15.1 and 11.3 days earlier in 2007–2017. The incidence 

of ODM during the transition between the second and third periods was too low for seasonal disease 

establishment, so that no logistic model was fitted for the corresponding years. However, these 

observations are of interest, as they heralded a shift in the polyetic ODM development. A similar 

trend was observed for potato late blight caused by P. infestans in Finland. Using a historical dataset 

from 1933 to 2002, Hannukkala et al. [24] showed that late blight epidemics started two to four weeks 

earlier in the years 1996–2002 than in 1933–1962. This trend was later confirmed for the 2002–2012 

period [30], and a similar trend was also reported in Sweden for 1983–1992 compared to 1993–2012 

[35]. 

As for other Peronosporaceae, P. destructor has long been thought to be a periodically introduced 

oomycete because of multiyear ODM epidemics followed by multiyear absence of the epidemic [36]. 

For these pathogens, atmospheric transport of sporangia is considered to play a major role in their 

long-distance spread. Thus, the presence of periodically introduced oomycetes in northern latitudes 

largely depends on sporangia dispersal from outbreaks occurring in the South [37–39]. Their sporadic 

presence in northern areas may be the result of a lack of local production of oospores or simply 

because they cannot survive the rigor of winters beyond a certain latitude. This is the case of 

Pseudoperonospora cubensis, which is not known to overwinter in the field above 30° latitude North 

[39–41]. Long-distance dispersal is subjected to several factors (e.g., presence of susceptible hosts, 

anthropogenic trades), but it is reasonable to expect that the closer the overwintering source, the 

earlier and the more frequent and severe the epidemics will be. Our results are supportive of the 

hypothesis of a continuous shift poleward of plant pathogens, possibly because of global climate 

change [42]. While P. destructor mainly spreads by aerial dispersal, climatic conditions are likely to 

determine the subsequent establishment of the disease in a given area. Hence, our results point to an 

adaptation of the pathogen with respect to the production and survival of overwintering inoculum 

under the south-western latitudes of Québec. 

An increasing number of studies provide ever more accurate predictions of the effects of climate 

change on plant diseases [26,43–48], but studies remain limited and constrained by the availability of 

data [49,50]. Moreover, when available, the observations may come from several sources and in 

different types (discrete, categorical or continuous). Thus, it is often impossible to choose the 

appropriate scale (field, farm, county, country or continent). In our study, even though the original 

observations were made at the plant level, there is one line of data per field per date in the database. 

It follows that the fields are considered as the units of infection and the epidemics are studied at two 

nested time scales (i.e., the year and the day within a year), enabling a smooth shift to multi-year 

regional disease level [51]. In their long-term analysis of potato late blight epidemics, Zwankhuizen 

and Zadoks [23] had to merge qualitative and quantitative observations from several sources (annual 

reports of plant protection service, journal articles and unpublished data) and accept some 

arbitrariness of classification, to finally work at an aggregation level of years and countries in time 

and space [23]. To investigate the poleward shift of pests and plant pathogens in response to global 

warming, Bebber et al. [42] used data from the CABI (Commonwealth Agricultural Bureau) 

distribution maps which were also aggregated at the country level. 
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The study of the polyetic development of plant diseases and their interactions with climate 

change is highly relevant in a context of changing agricultural landscape. As a result, diseases may 

emerge where they were non-existent and the frequency of occurrence of existing diseases may 

increase, but also the status of plant pathogens known to be periodically introduced may change and 

become endemic. Among the factors that can influence the distribution of plant pathogens or the 

magnitude of seasonal epidemics, temperature and precipitation regimes are of most importance. For 

some diseases, it is realistic to expect that increasing temperature favors overwintering and increases 

the number of seasonal disease cycles, while changes in precipitation regime might enhance (or 

disfavor) infection processes [50]. Our PCA results suggest that regional disease incidence (RDI) was 

mostly influenced in a season by precipitation (NSP, DSP), but not by diurnal or nocturnal 

temperature (NHNT_28, HT4_24N, NHDT_28, HT4_24IP). Because P. destructor is known to be more 

aggressive at lower temperatures (i.e., favorable temperatures are between 4 °C and 24 °C) [7], 

whereas sporangia germination is much lower above 26 °C and completely inhibited above 28 °C 

[14], it was expected that these temperature variables would have been important. The PCA results 

also suggest that regional disease incidence was influenced by the variables related to the production 

of oospores and their survival. The disease statuses the previous year and the previous two years 

(DS_PY, DS_P2Y) appear to be an important source of carryover, mainly because the larger the 

number of ODM cases, the higher the probability of oospore production. Warmer temperature at 

harvest time the previous year (MTH) was also shown to be an important factor. Higher temperatures 

towards the end of the growing season is thought to give the pathogen additional time to form 

oospores, possibly in larger quantity. 

The meteorological variables that vary the most among the three periods are related to oospore 

production and survival. The mean and minimum temperatures during harvest (ATH and MTH) 

were higher, precipitation during harvest (TRH) was more abundant, and the winter was less severe 

in period III than in period I. Using the subset of five variables retained at the end of the stepwise 

procedure (i.e., MTH and TRH: temperature and precipitation at harvest the previous fall; HL: 

severity in winter; RAD: solar radiation and DS_PY: disease incidence the previous year), the 

discriminant analysis results improved considerably from 70.6% to 93.5% correct classification. 

Except for solar radiation, which is known to affect negatively the viability of oomycete sporangia 

[10,12,52], the variables influencing RDI the most are variables related to the production and survival 

of overwintering structures. 

The role of oospores in the epidemiology of ODM is under-documented. It is known that P. 

destructor produces oospores in natural conditions and these oospores can be long-lasting in the soil 

[53,54]. In an experiment conducted over 25 consecutive years, McKay [53] found that oospores were 

able to germinate up to 25 years after their production. In the same study, it was shown that oospores 

needed an incredibly long maturation period, as the first observation of germination occurred after 

four years and reached the maximum germination rate after seven years [53]. Although it would be 

surprising that this oomycete produced oospores adapted for such a long-term survival for no 

apparent reason, their potential as a source of primary inoculum remains ambiguous. There is no 

clear evidence that oospores present in soil can lead to infection [53,55,56]. Alternatively, systemically 

infected tissues (mainly infected immature bulbs) can be an important source of primary inoculum 

[34,56,57]. Whether it is from oospores or infected crop residues, the results obtained in this study 

suggest that variables favoring the production and survival of overwintering structures may play an 

important role in seasonal ODM epidemics. 

The assumption of overwintering of P. destructor inoculum entails changes in tactical and 

strategic decision-making. The information on overwintering inoculum could become an important 

component of tactical decisions, for example, to plan the deployment of spore-trapping networks. In 

addition, the disease status the previous year and the harvest and winter weather conditions can also 

be used as baseline information for risk prediction models during the current year. The implication 

of this assumption is also meaningful for short-term strategic decisions because the presence of 

inoculum in soils is likely to influence the planning of crop rotations and the selection of cultivars 

and cropping systems [20]. 
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In general, the use of observational data implies the acceptance of greater uncertainty in the data, 

the potential introduction of bias due to multiple data sources, and the acceptance of correlations 

instead of understanding causation [42,50]. However, observational data and their analysis can reveal 

significant trends and influence long-term tactical decisions. Our main results are that ODM 

epidemics in south-western Québec tend to come earlier and more frequently, and that the increased 

disease incidence is linked to weather variables related to overwintering and disease carryover from 

one growing season to the next. Either there is production and survival of overwintering inoculum 

under the latitudes of south-western Quebec, or the production areas where survival is possible are 

closer than before. Finally, this study also contributes to long-term tactical decisions by highlighting 

the need for more research on overwintering and for the development of molecular-based tools 

enabling the monitoring of initial and secondary inoculum. 
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