

Supplementary Materials

Recovery of Phosphorus from Waste Water Profiting from Biological Nitrogen Treatment: Upstream, Concomitant or Downstream Precipitation Alternatives

Albert Magrí 1,*, Mar Carreras-Sempere ², Carmen Biel ² and Jesús Colprim ¹

- ¹ LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003 Girona, Catalonia, Spain; jesus.colprim@udg.edu
- ² IRTA, Institute of Agrifood Research and Technology, Sustainable Plant Protection Program, Ctra. de Cabrils, km 2, E-08348 Cabrils (Barcelona), Catalonia, Spain; mar.carreras@irta.cat (M.C.-S.); carmen.biel@irta.cat (C.B.)
- * Correspondence: albert.magri@udg.edu; albert.magri@gmail.com; Tel.: +34-972-419-542

Received: 19 June 2020; Accepted: 14 July 2020; Published: 18 July 2020 18 July 2020

Table S1. Relevant words included (or discarded) in the multi-term topic search assessed via the Web of Science Core Collection (Clarivate Analytics, USA).

Topic	Words
Included	Included
Core element under	"ortho-phosphate*" OR "orthophosphate*" OR "phosphate*" OR
study	"phosphorous" OR "phosphorus"
Management strategy	"*recover*" OR "recycl*"
Technological process	"crystal*" OR "formation" OR "*minerali*" OR "precipitat*" OR "production"
Product formed	"*apatite*" OR "bobierrite" OR "brushite" OR "monenite" OR "newberyite" OR "*struvit*" OR "vivianite"
By-products to be processed	"biosolid*" OR "centrate*" OR "digestate*" OR "dung" OR "effluent*" OR "filtrate*" OR "leachate*" OR "liquor*" OR "manure" OR "residu*" OR "sewage" OR "sludge*" OR "slurr*" OR "stream*" OR "supernatant*" OR "urine" OR "waste*" OR "WWTP*"
Discarded	Discarded
P-related chemicals and compounds	"acetyl phosph*" OR "*adenosin*" OR "*alanin*" OR "arginine phosph*" OR "carbonate apatite*" OR "cellulose phosphate" OR "chloro-phosph*" OR "dinucleotide*" OR "fluorophosphoric" OR "hypoxanthine*" OR "ketone*" OR "lipid-phosphate" OR "molybdopho*" OR "monobasic potassium phosphate" OR "nitrophosphate" OR "organo-phosph*" OR "organophosph*" OR "pentose phosph*" OR "peptide" OR "phosphate-buffered" OR "phosphate buffer" OR "phosphate cement*" OR "phosphate ceramic*" OR "phosphate group*" OR "phosphate transporter*" OR "*phosphine*" OR "*phosphinite*" OR "*phosphite*" OR

"phosphogypsum" OR "*phosphomannos*" OR "phosphomolyb*" OR "*phosphonate*" OR "*phosphopeptid*" OR "phosphoric ester" OR "*phosphorite*" OR "phosphoryl*" OR "*phosphoserin*" OR "pyridoxal" OR "pyrophosphate" OR "sulphonate" OR "tributyl phosphate*" OR "tricresyl phosphate*" "analgesic*" OR "antibiotic*" OR "antibod*" OR "antigenic*" OR "arthritis" OR "blood" OR "*bone*" OR "calculi" OR "cancer*" OR "cartilage*" OR "catheter*" OR "cisplatin" OR "*clampsia" OR "clinical*" OR "coronary" OR "cortisol" OR "creatine*" OR "crystalluria" OR "cystoplast*" OR "cytophatic" OR "dental" OR "dentin*" OR "disease*" OR "disinfect*" OR "enamel*" OR "endocrine" OR "fetal" OR "heart*" OR "hepatitis" OR "holmium" OR "immunoassa*" OR "implant*" OR "inflammator*" OR "inositol" OR "kidney*" OR "*kinase*" OR "laser-induced damage" OR **Biomedical studies** "lincomycin" OR "lithostatine" OR "liver*" OR "loperamide" OR "lung*" OR "lysozyme*" OR "mammal*" OR "mammary-gland" OR "mucos*" OR "mutagen*" OR "nephro*" OR "nucleotide*" OR "orthopaedic*" OR "pericardium" OR "*polyoma" OR "precipitation of protein*" OR "prostat*" OR "*protease*" OR "renal*" OR "salivar*" OR "*stanniect*" OR "*synaptic*" OR "tendinopath*" OR "testosterone" OR "therap*" OR "tooth" OR "urolithiasis" OR "urothelial*" "archaeobotany" OR "archaeologist*" OR "amphibian*" OR Natural history, "*antarctic*" OR "boreal" OR "chlorspodioside" OR "diamond*" ecosystems, OR "lentic ecosystem*" OR "lotic ecosystem*" OR "magma*" OR mineralogy and "metamorphism" OR "mimetite" OR "paleocen*" OR other related studies "prehistoric*" OR "pollen" OR "*pyrite*" OR "riparian" OR "*silicate*" OR "soil structure" "actinide*" OR "antimony" OR "barium" OR "cesium" OR "erbium" OR "fission" OR "lanthanide*" OR "lanthanum" OR "lithium" OR Radioactivity and "neodymium" OR "nuclear waste*" OR "plutonium" OR "production of HF" OR "radioactive material*" OR "radioactive waste*" OR chemical studies "radionuclide*" OR "scandium" OR "strontium" OR "technogenic waste*" OR "thorium" OR "uranium" OR "vanadium" (("4-phosphate" OR "6-phosphate" OR "adsorbent*" OR "agricultur*" OR "Al and Fe" OR "Al/Fe" OR "Al:Fe" OR "*alkanoate*" OR "alum*" OR "ash*" OR "BNR" OR "clogging" OR "*coagula*" OR "combustion*" OR "electrodialy*" OR "Fe and Al" OR "fertili*" OR "*floccul*" OR "incinerat*" OR "ion exchange" OR "iron*" OR Alternative P "membrane*" OR "osmosis" OR "P removal" OR "phosphate management discharge*" OR "phosphate removal" OR "phosphorous discharge*" alternatives OR "phosphorus discharge*" OR "phosphorous removal" OR "phosphorus removal" OR "polyphosphate*" OR "removal of phosphate*" OR "removal of phosphorous" OR "removal of

> "sediment*" OR "wetland*") NOT ("*apatite*" OR "bobierrite" OR "brushite" OR "calci*" OR "magnesi*" OR "monenite" OR

phosphorus" OR "scale" OR "scaling" OR "soil*" OR "*sorption*" OR

Others

"newberyite" OR "recover*" OR "*struvit*" OR "vivianite")) OR "alumina recovery" OR "EBPR recovery" OR "phytoremediation" OR "production of available phosphorus from rock phosphate" OR "recovered by backwashing" OR "recovering alloy steels" OR "recovery of normal operation" OR "rhizofiltrat*"

"cheese quality" OR "D2EHPA" OR "DBDECMP" OR "flame" OR "glass-ceramics" OR "LDH" OR "LUKE" OR "parenteral nutrition" OR "resilon" OR "silicon" OR "thermal ionization" OR "titanium" OR "u-th-ra" OR "water-ethanol"

Table S2. Summary of experiences integrating chemical precipitation aiming at P recovery followed by biological N oxidation, or removal (upstream precipitation).

Waste water source ¹	Precipitation performance ²	Bioprocess performance	Precipitate characteristics	Reference
NDN as the biop	rocess following chem	ical P precipitation		
Hydrolysed urine Composition: pH 9.1, ALK 19692, COD 5868, TN 5280, NH₄⁺-N 5193, TP 280, Mg & Ca not detected	MgP precipitated in lab tests simultaneously to vacuum thermal stripping (+acid absorption) at 25– 65° C using MgCl ₂ 3 h batch stripping tests at 60°C and 21.3 kPa \rightarrow 80% infl. N recovery; solids produced: 25.3 g/Lurine [(NH4)2SO4 + NH4HSO4: 85.5 + 13.9 wt%]	NDN via nitrite in a continuous-flow AS AO MBR (2.4 L) Increased COD/N (4.7) and ALK/NH4 ⁺ -N (4.4) mass ratios after precipitation favoured NDN NLR 0.37 g N L ⁻¹ d ⁻¹ , NRE >80%; higher efficiency limited by ALK shortage	MgP mostly precipitated as MAP (>90 wt%) according to XRD and chemical analysis of the solid Composition of the precipitate: 13.1% P, 8.2% Mg, 5.3% N	[68]
	Mg/P adjusted to $1.2/1 \rightarrow PUE >95\%;$ solids produced: 1.5 g/Lurine	Global performance: >95% N and P reduction		
Anaerobically digested sludge	MgP precipitated in a lab batch reactor (3.5 L)	Nitrification in a fixed-film aerated reactor (0.4 L), denitrification in a MFC-cathode (0.1		
dewatering centrate from a municipal WWTP	MgCl2 added, pH 8.5 (NaOH), reaction time 10 min	Wife-cathode (0.1 L); MFC-anode fed with raw waste water (270 mg COD L ⁻¹)	No data available for the precipitate	[105]
	16% NH4 ⁺ and 73% PO4 separated;	NRE 52%; power generation 0.3		

	effluent with TN	mW/m ² –ref.		
Anaerobic lagoon digester supernatant in a swine farm Composition: pH 8.1, COD 266, TN 607, NH4 ⁺ -N 598, PO4-P 22, Mg 31	1530 mg L-1 MgP precipitated in lab batch tests (in beakers) Raw vs. (organically) fermented superphosphate fertiliser [Ca(H2PO4)2] used as P source; fermentation increased 15% water-soluble P and provided extra bCOD MgSO4 supplied at pH 9.0 (NaOH), reaction time 30 min; process optimisable at pH 9.5 41–50% (up to 55%) NH4 ⁺	anodic surface– NDN in a SBR (4.5 L); pH adjusted to 7.0 (influent) COD/TN mass ratio raised (0.4 → 1.8) by adding fermented superphosphate favouring NDN (COD 598, NH4+-N 328, mg L-1) NRE 71% (lower if fermented superphosphate not used) Global performance: 72% COD, 89% N and 98% P reduction	MgP precipitated mostly as MAP according to XRD and SEM-EDS Effectiveness of the precipitate as fertiliser demonstrated in a pot test (increased crop yield)	[106]
Side-stream sludge fermenter effluent from an EBPR system treating low- strength synthetic waste water Composition of synthetic waste water: pH 7.0– 8.0, COD 340, TN 48, NH4 ⁺ -N 23, PO4-P 7	separated CaP precipitated in a SBR at 20°C Ca(OH)2 added at pH 10 PUE >99% (65% influent P recovered)	EBPR in a continuous-flow AS A ² O system (10 L), HRT 0.5 d Fermentation of purged sludge followed by precipitation of released P lead to improved simultaneous P uptake and N removal in the mainstream (NRE 80%)	Composition of the precipitate: 13.8% P	[107]
Urine Composition: pH 6.2–7.9, TN 4670–7630, NH4 ⁺ -N 315– 2250, TP 330–	PO4 precipitated in a lab stirred system using RO brine (from a reclaimed WWTP in a thermal power	NDN via nitrite in a continuous-flow AS AO MBR (10.4 L); influent COD 2500–4000, TN 1800–3200, mg L ⁻¹ ; HRT 2 d	Precipitates produced at different brine/urine mixture ratios (0/1–1/1) with 10–15% P	[108]

654, PO₄-P 283– 585, Mg 31–65, Ca 68–128	plant) as Me ions source at 20°C Brine/urine mixture adjusted to 1/1 vol., pH 9.0 (with NaOH), reaction time 30 min PUE >90%	NRE 45% (with internal COD), increased to 92% when using methanol as external COD source Global performance: >90% COD, N and >99% P reduction	Depending on the amount of brine added (Mg+Ca/P molar ratio 0.2–2.3), Mg in the solid decreased from 7 to 2.5%, and Ca raised from 8 to 25% Low K, Na and Si content (sum <5%); no hazardous compounds (e.g. HMs)	
Ultrafiltered permeate from an(aerobically) digested sludge dewatering centrate in a municipal WWTP Composition: pH 8.8, COD 2694, TN 2024, NH4+-N 1717, TP 420, PO4-P 326	MgP precipitated in lab batch tests (in beakers) at 20°C Mg/NH4/PO4 adjusted with MgCl2 + K2HPO4, pH increased with NaOH, reaction time 2 min, MgP deposits used as seeding material Mg/NH4/PO4 adjusted to 1.0/1.0/1.0 and pH to 9, 65% NH4 ⁺ and 95% PO4 separated Mg and PO4 supply favoured NH4 ⁺ separation; addition of seeding material did not enhance N & P precipitation efficiency (but favoured chemical sludge settling); presence of HMs could negatively affect MAP precipitation	NDN in a continuous-flow AS A ² O system (24 L) (+settler) for treating raw sewage plus MgP precipitation effluent Mixing of precipitation effluent with raw sewage decreased COD and N removal efficiency NLR >0.13 g NH4 ⁺⁻ N L ⁻¹ d ⁻¹ (mixture ratio >1/1 vol.) triggered NO2 ⁻ accumulation (hypothesised by nitrification inhibition)	MgP precipitated mostly as MAP according to XRD Quality of the MgP precipitated potentially compromised by the HM content	[109]
Urine-seawater mixture	PO4 precipitation PO4 precipitated in a lab continuous- flow reactor (0.84 L) incl. a	Nitrification in a continuously aerated SBR (for subsequent in-	MgP precipitated mostly as MAP according to XRD and chemical	[110]

3				
Composition	concentric cylinder	sewer	analysis of the solid	
(depending on	differentiating	denitrification)	formed; calcite also	
the mixture	hydrolysis-	with 25% urine	detected; higher	
ratio, 25–50%	precipitation zone	fraction	purity MAP obtained	
urine): pH 6.6–	and settling-		with higher urine	
6.7, TN 1750-	separation zone	ALK added as	content	
3470, NH4+-N	1	NaHCO3 based on		
143–462, TP 104–	PUE >91%	pH set-point	Precipitate with	
187, Mg 545–	regardless HRTs		similar NH4+/P (0.8),	
826, Ca 274–374	(1.5-6 h) and urine	Complete	Mg/P and Ca/P molar	
	mixture ratio (25–	nitrification albeit	ratios (Mg/P slightly	
	50%); P recovery	high Cl- (13 g L-1)	greater than NH ₄ +/P);	
	enhanced with		Mg+Ca/P of 1.5–2.0	
	HRT and urine	4–5 mg P g-1	C	
	fraction; effluent	NH4 ⁺ oxidised needed		
	with <10 mg TP/L	for stable		
	<u> </u>	nitrification (when		
	Urea hydrolysis	necessary achieved		
	almost completed	by ~1% urine		
	in all cases (84–	bypass)		
	94%)			
		NLR 0.75 g L ⁻¹ d ⁻¹ ,		
		NCE 90% (NH4 ⁺)		
		NDN in a MBR (8.4		
		L) intermittently		
	MgP precipitated	aerated		
	in a lab FBR (9.5 L)		MgP precipitate	
	at 20ºC	P-recovery in FBR	mostly as MAP	
Low-strength		enhanced SND and	according to XRD	
synthetic waste	pH adjusted with	COD, NH4 ⁺ and	and SEM-EDS	
water	NaOH (7.5 \rightarrow 9.5);	PO ₄ removal in		
	PO ₄ separation	MBR (NRE 99%,	Precipitate with	
Composition:	improved from	PUE 93% at pH 9,	molar ratios of Mg/P	
pH 6.4, COD	43% to 94%	HRT 6 h and	1.1 and Ca/P 5 10-3	[111]
250–325, TN 60–		aeration on/off		
75, NH4+-N 45-	At pH 9 and HRT	45/15 min); final	Anhydrous precipitate	
55, PO ₄ -P 10–12,	2h; >80% PO4 and	effluent with <1 mg	with 23.5% P, 19.8%	
Mg 22*, Ca 12*	<40% NH4+ (<30%	PO ₄ -P/L	Mg, 0.5% K, 0.1% Ca	
(*calculated)	COD) separated		(EDS analysis	
		Membrane fouling	reported as not	
	pH 9.5 favoured	was mitigated	sensible to N)	
	NH ₃ loss from FBR	when the FBR-		
		MBR system run at		
		optimal conditions		
Low-strength	CaP precipitated	EBPR in a	CaP precipitate	
synthetic waste	in a lab up-flow	continuous-flow	mostly as HAP (or	
water	reactor at 20ºC	AS A ² O system for	precursors)	
		N & P removal	according to XRD	[112–113
Composition:	CaCl ₂ added after	(~300 L)	and SEM-EDS	[112 -110
COD 250-300,	the anaerobic stage			
NH4+-N 30-45,	of a EBPR system	Chemical P	Composition of the	
PO ₄ -P 5–15	and CO ₂ stripping	precipitation	precipitate: 8–13% P	

	by aeration (5% NH3 loss), calcite used as seeding material	favoured EBPR (PUE > 99%) regardless COD/P mass ratio (20–67); final effluent with <1 mg PO ₄ -P/L COD and NH ₄ + removal efficiency as 84–87% regardless COD/P mass ratio	Precipitate with Ca/P molar ratio >1.67 due to carbonate co- precipitation; high P release in the anaerobic stage favoured HAP crystallisation	
Side-stream sludge fermenter effluent from an EBPR system treating low- strength synthetic waste water Composition of synthetic waste water: COD 300, NH4 ⁺ -N 30, PO4- P 10	MgP precipitated in batch (in flasks) using MgO at room temperature Mg/NH4/PO4 adjusted to 1.5/2.7/1.0 70% N, 90–95% P separated (besides 6% sCOD)	EBPR in a SBR alternating AO phases also involved partial N removal through NDN (NRE 25%) Fermentation of purged sludge followed by precipitation of the released N and P, plus reintroduction of VFAs formed into EBPR system, lead to higher P separation efficiency (P in the effluent reduced by >65%) and complete nitrification	MgP precipitate mostly as MAP according to supernatant analysis and XRD	[114]
Swine waste water Composition: pH 7.3–7.9, COD 5117–6705, TN 959–1120, NH₄⁺- N 733–922, TP 106–222, PO₄-P 31–56	MgP precipitated in a lab CSTR (10 L) at 27°C, MgP precipitate recovered from an external settler Mg/NH4/PO4 adjusted to 1.0/1.0/1.0 by adding MgCl2 and K2HPO4; pH increased to 9 with NaOH; MgP precipitate partly recycled to the	NDN in a 2-stage continuous flow intermittently aerated AS system (+ settler) (20 L; air on/off 1/1 h), pH adjusted to that of raw waste water (HCl) COD/TN mass ratio increased from 4.8–6.1 to 13.0–19.8 favouring NDN, COD/TP	MgP precipitate partly as MAP according to XRD and EDS Anhydrous precipitate with 25.3% P, 18.3% Mg, 7.1% N, 5.4% K, 2.5% Ca Quality of the precipitate potentially compromised by the organic content (35	[115]

	78–92% NH4+ 84–	50 to 267–430 fayouring EBPR		
	78–92% NH4+, 84– 93% PO4 (besides 74% TSS, 47% COD) separated	favouring EBPR MgP precipitation enhanced nitrification and ARE due to a reduced OLR and NLR once fixed HRT, low NH ³ levels in bioreactors (eventually toxic triggering NO ₂ - accumulation)		
		OLR 4.5 g COD L ⁻¹ d ⁻¹ , NLR 0.18 g N L ⁻¹ d ⁻¹ \rightarrow NRE >90% (NH4 ⁺)		
		NDN in a SBR (10 L), pH adjusted to 7.5 (influent)		
Anaerobically digested landfill leachate	MgP precipitated in a lab stirred system using MgCl2 and PO4	BOD5/NH4+-N mass ratio increased from 1.5 to 6.5 favouring NDN, 6-fold Cl-	Composition of the	
Composition: pH 7.5–8.1, ALK 11120, Cl ⁻ 2000, COD 12000, BOD5 4250,	Mg/NH4/PO4 adjusted to 0.7/1.0/0.7, pH 9, reaction time 2 h	raise (12 g L ⁻¹) The higher MgCl ₂ addition the higher NH ₄ ⁺ separation as	MgP formed not determined analytically	[116
NH4*-N 2800, TP 14	70% NH₄⁺ separated	MAP, but Cl->12 g L ⁻¹ limited nitrification (triggering NH4 ⁺ accumulation in the bioreactor)		
Rare-earth smelting waste water	MgP precipitated in lab batch tests (in beakers) at 20ºC	SND in a batch system using immobilised microorganisms	MgP precipitate mostly assumed as MAP. Composition: 15.6% P, 9.3% N,	
Composition: pH 0.77, COD 1088, NH4+-N 1540, La ³⁺ 200, Eu ³⁺ 78	Mg/NH4/PO4 adjusted with MgSO4 + Na2HPO4 (among other P- sources), pH increased with KOH	COD/NH4 ⁺ -N mass ratio increased from 0.7 to 7.2 favouring NDN (COD 566, NH4 ⁺ -N 79, mg L ⁻¹)	8.3% Mg Quality of the MgP precipitated compromised by the rare metal content	[117

5 5				
	Mg/NH4/PO4 adjusted to 1.2/1.0/1.3, pH 11.1–11.2, reaction time 1.5 h 95% NH4 ⁺ separated	Rare metal ions removed from the liquid phase favouring biological treatment NLR 0.13 g NH4 ⁺ -N L ⁻¹ d ⁻¹ , NRE 86%	When Ca dosed instead of Mg, CaP formed hypothesised as Ca-struvite. Composition: 18.3% Ca, 13.6% P, 6.5% N	
	Using CaO (not KOH) and Ca3(PO4)2 (not MgSO4, Na2HPO4) → ~80% NH4 ⁺ separated	(NH4 ⁺)		
	MgP precipitated in lab batch tests (in beakers)	NDN in a fill-and- draw system under intermittent aeration (air on/off 1/1 h)		
Raw swine waste water obtained by centrifugation	Mg/NH4/PO4 adjusted with MgCl2 + KH2PO4, pH increased with NaOH	BOD/TN increased from 1.6 to 7 enhancing NDN (BOD 8200, TN 1166, mg L ⁻¹)	Composition of the	
Composition: pH 8.5, BOD 9500, TN 5930, NH4 ⁺ -N 2500, TP 360, PO4-P 302	Mg/NH4/PO4 adjusted to 0.9/1.0/0.6, pH 7.5, temperature 25°C,	NLR 0.97 g N L ⁻¹ d ⁻ ¹ , NRE 91% w/o detecting TP removal	MgP not determined analytically	[66,118]
	reaction time 1 h 79–87% NH4+, 40– 88% P separated	Additional 60% PO4 precipitated as CaP by adding CaCl2 once biotreatment ended		
PNA as the bio	process following che precipitation	mical P		
Digester sludge thickening lagoon supernatant in a municipal	MAP precipitated by the Ostara [®] process at full-	PNA in a IFAS- SBR (6 L) with intermittent aeration	No data available for	
WWTP Composition: pH 8.0, ALK 3180, TSS 344,	scale; PO4-P reduced to 32 mg L ⁻¹	NLR 0.31 g N L ⁻¹ d ⁻¹ 1, NRE improved from 55% to 88% when PO4 was decreased	the precipitate	[69]

COD 644, NH4+-		High PO4 inhibited		
N 892, PO ₄ -P 235		anammox bacteria,		
		higher tolerance to		
		PO ₄ stress when		
		biomass grew as		
		biofilm rather than		
		forming flocs		
		PNA as 2-step		
		process (PO ₄		
		precipitated after		
		PN) and also as 1-		
	MgP precipitated	step process (with		
Anaerobically	in a lab CSTR (10	intermittent		
digested sludge	L) at 10ºC with	aeration) using		
dewatering	MgO	SBRs (3.5 L)		
centrate in a				
municipal	Mg/P adjusted to	NRR ~0.3 g N L-1 d-	Composition of the	
WWTP	1, reaction time 2.5	¹ for both	Composition of the MgP formed not	
	h; PO4-P reduced	configurations	determined	[119]
Composition:	to 31 mg L ⁻¹			
pH 8.0–8.8, TIC		45–50% anammox	analytically	
681–893, COD	MgP formation	activity drop at		
410–510, NH4+-N	(incl. eventual NH3	~300 mg P L ⁻¹		
1081–1177, PO ₄ -	stripping) resulted	-		
P 260–351	in 8% NH4+	Lower sensitivity		
	separation	to PO ₄ -P was		
	-	estimated in short-		
		term experiments		
		(IC50: 650 mg L ⁻¹ at		
		35ºC, pH 6.5)		
	MgP precipitated			
	in a lab mixed			
	reactor (4 L) with	PNA as 2-step		
	MgCl ₂	process (20 L CSTR		
Anaerobically		w/o sludge		
digested	pH adjusted to 7.8	retention + 3.7 L		
industrial	(NaOH)			
(potato) waste		UFBR) and also as		
water	Urea (1.5%) added	1-step process		
	to the crystallisator	(UFBR) at 35°C	MgP precipitate	
Composition	as N source (in		mostly as MAP	[120]
(anaerobic	presence of	NLR 0.1–0.25 g N L ⁻¹ d ⁻¹	according to XRD	
effluent 2-fold	anaerobic sludge),	LʻUʻ		
diluted): pH 7.9,	HRT 6–7 h	Clobal		
TIC 396, NH4+-N		Global		
203, PO ₄ -P 57,	TIC/NH4+-N	performance (2-		
Mg 39	decreased from 2.3	step process): 86%		
č	to 1.9 favouring	N, 83% PO ₄		
	PNA (TIC 421,	reduced		
	•			
	NH4+-N 261, mg L-			

Anaerobically digested industrial (potato) waste water from a UASB reactor + anaerobically digested sludge dewatering centrate in a municipal WWTP Composition: COD 565, NH4+- N 372, PO4-P 73	MAP precipitated by the PHOSPAQ [™] process at full- scale (2*300 m ³), aeration supplied for bCOD degradation and CO₂ stripping MgO dosed and pH adjusted to 8.2–8.3; PUE ~67% (feasible >80%)	PNA as 1-step process (600 m ³) with granular sludge and dynamically controlled continuous aeration at 37°C NLR 1.5 g N L ⁻¹ d ⁻¹ Global performance: ca. 56% COD, 73% TN, 91% NH4 ⁺ , 76% TP reduced	MAP with low HM content with respect to EU standards for fertilisers Precipitate fertilising effectiveness demonstrated in field tests (= performance as commercial fertilisers)	[121–122]
Anaerobically co-digested sludge dewatering supernatant in a municipal WWTP Composition: NH4+-N 651, PO4-P 75	MgP precipitated in a CSTR (50 L) using MgCl ₂ or MgCO ₃ Solids >0.8 mm removed before precipitation Mg/P adjusted to 1.3, reaction time 24 h; PO ₄ -P reduced to 18 mg L ⁻¹ MgP formation (incl. eventual NH ₃ stripping) resulted in 4.5% NH ₄ ⁺ separation	PNA as 2-step process: MBBR (7.4 L) + SBR (30 L) PN: NLR 1 g N L ⁻¹ d ⁻¹ , NCE 50% (at 30°C) <i>Anammox:</i> PO ₄ -P increase from 30 to 55 mg L ⁻¹ implied SAA loss of 45% (in 7 days); by decreasing PO ₄ -P to <20 mg L ⁻¹ activity was recovered (SAA \leq 100 mg N ₂ g ⁻¹ VSS d ⁻¹ , at 35°C); anammox activity was potentially limited at pH 7 and TIC <24 mg L ⁻¹	Composition of the MgP formed not determined analytically	[67]

Abbreviations: A²O, anaerobic-anoxic-oxic; ALK, alkalinity (as CaCO₃); anammox, anaerobic ammonium oxidation; AO, anaerobic-oxic; AS, activated sludge; BOD, biochemical oxygen demand; CaP, calcium phosphate; COD, chemical oxygen demand (b-, biodegradable; s-, soluble); CSTR, continuous stirred tank reactor; EBPR, enhanced biological P removal; EDS, energy dispersive X-ray spectroscopy; FBR, fluidised bed reactor; HM, heavy metal; HRT, hydraulic residence time; IC₅₀, half maximal inhibitory concentration; IFAS, integrated fixed film AS; MAP, magnesium ammonium phosphate; MBR, membrane bioreactor; MBBR, moving bed bioreactor; Me, metal; MFC, microbial fuel cell; MgP, magnesium phosphate; N, nitrogen; NCE, N conversion efficiency; NLR, N loading rate; NDN, nitrification-denitrification; NRE, N removal efficiency; NRR, N removal rate; OLR, organic loading rate; P, phosphorus; PNA, partial nitritation-anammox; PUE, P uptake efficiency; RO, reverse osmosis; SAA, specific anammox activity; SBR, sequencing batch reactor; SEM, scanning electron microscope; SND, simultaneous NDN; TIC, total inorganic carbon; TN, total N; TP, total P; TSS, total suspended solids; UASB, upflow anaerobic sludge blanket; UFBR, upflow fixed bed reactor;

 $^{\rm 1}$ Composition, concentrations expressed in mg L-1.

² Ca/P, Mg/P and other component ratios expressed in molar units.

Table S3. Summary of experiences integrating biological N oxidation, or removal, and mineral precipitation aiming at P recovery inside the bioreactor (concomitant precipitation).

Waste water	Experimental	Bioprocess	Precipitate	
source ¹	conditions	performance	characteristics	Reference
	on as the bioprocess of			
,,	precipitation			
	Long-term nitrification in trickling filters (6 L) partially packed with pumice & mussel shells (CaCO ₃ content: ~75 vol%)	PO4 precipitation induced by Ca released from mussel shells		
Synthetic urine Composition: TN 7780, NH4+- N 400, PO4-P 890	Process at 29ºC considering urine solutions at different concentrations	Mussel shells also provided carbonate needed for buffering the system (the higher the concentration of	Composition of the CaP formed not determined analytically	[168]
	Urine concentration did not influence filter performance in terms of stability and nitrate production rate	urine the higher the CaP formed and the buffering capacity released)		
	PN in aerated	<i>SBR:</i> NLR 0.19 g	Mineral crystals	
Synthetic waste	SBR (10 L) vs.	NH4+-N L-1 d-1 and	identified in the	
water	SBBR (16 L)	NCE 95%, PLR 0.04	sludge when observed	
mimicking	packed with	g PO ₄ -P L ⁻¹ d ⁻¹ and	at the microscopy	
anaerobic	polyethylene	PUE 40–90%		
digester	particles	(depending on NH4 ⁺	Suspended solids	
dewatering	L	availability within	containing 9–10% P	
centrate	Process at 30⁰C	the reactor), faster		
	and pH 7.5	start-up	Complementary work in the SBR	[71]
Composition: HCO3 ⁻ 4700,	Only 25–60% of	SBBR: NLR 0.35 g	transforming PN into	
COD 480,	the TSS as VSS in	NH4+-N L-1 d-1 and	NDN [169] showed	
NH4 ⁺ -N 470-	the SBR (SRT 30	NCE 40%, PLR 0.07	(using XRD) that PO ₄	
590, PO ₄ -P 100,	d) and 27–40% in	g PO4-P L ⁻¹ d ⁻¹ and	precipitated in	
Mg 45, Ca 115	the SBBR (SRT 20	PUE 70%, more	different form	
wig 40, Ca 110	d)	stable facing	depending on pH (7–	
	ч)	disturbances in	8.5): mainly as HAP at	

		dissolved oxygen conditions	pH >7.5 and partly as MAP (potentially associated to CaCO ₃) at pH >8.0	
Anammox as th	e bioprocess concom	itant to P	•	
Synthetic waste water mimicking effluent from a PN reactor Composition: pH 7.4, TIC 71, NH4 ⁺ -N 135, NO2 ⁻ -N 178, PO4-P 13, Ca 85	Anammox process in an EBR with internal recirculation Reactor (5 L) at 33°C and pH 8.6 with 43.9–70.3 g VSS L ⁻¹ (17% of the TSS)	NLR 5 g NH4+-N L ⁻¹ d ⁻¹ and NRE 87%; PLR 0.21 g PO4-P L ⁻¹ d ⁻¹ and PUE 66%; Granule size 1.3–1.7 mm Complementary work [170] in an attached film EBR (35°C) reached NLR 50 g NH4+-N L ⁻¹ d ⁻¹ and NRE 90% + PLR 0.55 g PO4-P L ⁻¹ d ⁻¹ and PUE 72% Complementary work [171] in an attached film EBR (35°C) reached NLR 10 g NH4+-N L ⁻¹ d ⁻¹ and NRE 77% + PLR 0.15 g PO4-P L ⁻¹ d ⁻¹ and NRE 77% + PLR 0.15 g PO4-P L ⁻¹ d ⁻¹ and PUE 68% (CaCl ₂ added in recirculation) Complementary work [172] in an EBR (25°C) reached NLR 20 g NH4+-N L ⁻¹ d ⁻¹ and NRE 84% + PLR 1.32 g PO4-P L ⁻¹ d ⁻¹ and PUE 94% (CaCl ₂ added in recirculation)	CaP recovered as HAP according to chemical analysis of the solid formed (Ca/P molar ratio 1.67) Granules with 83% mineral content, 28.9% Ca, 13.4% P, 0.9% N, 0.5% Mg The core of the granule contained more Ca than the external part (30% vs. 27%) probably due to the formation of CaCO ₃ or type-B carbonate apatite	[72]
•	process concomitant	to P		
pr	ecipitation PNA process as		CaP recovered as HAP	
Anaerobically digested sludge dewatering centrate in a municipal	PNA process as 1-stage SBR (10 L) at 25°C and pH ~7.2 with 1.45 g VSS	NLR 0.31 g NH₄⁺-N L-1 d-1 and NRE 66%	caP recovered as HAP according to XRD and chemical analysis of the solid formed (Ca/P molar ratio 1.64)	[70]
WWTP	L-1 (62% of the TSS)		Granules purged with 71% mineral content,	

Composition:		33.5% Ca, 15.8% P,
pH 8.1, ALK	No addition of	0.2% Mg
4401, NH4+-N	chemicals (w/o	
966, PO4-P 57,	pH control)	HMs content complied
Ca 79, Mg 14	-	with EU standards for
-		P fertilisers and
		requirements from P
		industry

Abbreviations: ALK, alkalinity (as CaCO₃); anammox, anaerobic ammonium oxidation; COD, chemical oxygen demand; EBR, expanded bed reactor; HAP, hydroxyapatite; HM, heavy metal; N, nitrogen; NCE, N conversion efficiency; NLR, N loading rate; NRE, N removal efficiency; P, phosphorus; PLR, P loading rate; PN, partial nitritation; PNA, PN-anammox; PUE, P uptake efficiency; SBBR, sequencing batch biofilm reactor; SBR, sequencing batch reactor; SRT, solids retention time; TIC: total inorganic carbon; TSS, total suspended solids; VSS, volatile suspended solids; WWTP, waste water treatment plant; XRD, X-ray diffraction.

¹ Composition, concentrations expressed in mg L⁻¹.

Table S4. Summary of experiences integrating biological N oxidation, or removal, followed by chemical precipitation aiming at P recovery (downstream precipitation).

Waste water	Bioprocess	Precipitation	Precipitate	Reference
source ¹	performance	performance ²	characteristics ²	Kelelence
Nitrification a	as the bioprocess pre	ceding chemical P		
	precipitation			
	Nitrification in a			
	continuous			
	aerated system at			
	pilot-scale	CaP precipitated in		
Anaerobically		lab batch tests (in		
digested swine	Similar tests also	beakers) using		
waste water from a UASB	conducted	hydrated lime [10%	Field tests under	
reactor	considering NDN and PNA	Ca(OH)2]	equivalent conditions	
Teactor	as the bioprocess		also performed; sludge	
Composition:	preceding P	Lime injected	formed contained	
pH 7.6 (7.0),	precipitation	under stirring up to	30.0% Ca, 5.7% P, 2.5%	[74]
ALK 3231 (428),	(less satisfactory	pH 9 (24 h settling);	Mg; the high Ca/P	
TOC 636 (154),	results obtained	PUE >90% (PO ₄)	ratio (~4.6) indicated	
NH4+-N 882	according to PUE	with Ca/P 2	co-precipitation	
(160), PO ₄ -P 33	and Ca/P ratio);	Similar results		
(98), s-Ca 98	as far as ALK			
(204)	availability	previously given in [205]		
	increased P	[200]		
	content in			
	precipitate			
	decreased			
Anaerobically	N . 1 . 1 . 1 . 1 . 1 .	CaP precipitated in	CaP precipitated	
digested	Nitrification in	a lab CSTR (3.6 L +	mostly as HAP	
industrial	an aerated CSTR $(2 (L + aattler))$	settler) with CaCl ₂ ;	according to XRD and	[20(1
(potato) waste water from a	(3.6 L + settler)	pH 7.8–10.5 and Ca/P 0.7–1.5; tests	chemical analysis of	[206]
UASB reactor	with NCR 0.26 g NH4+-N L-1 d-1	at room	the solid formed	
UASD reactor	1 NI 14 -1 N L - U -	temperature		
		Chiperature		

Composition:			Composition: Ca/P/Mg	
pH 8.1 (7.9),		PUE 70% PO ₄ at	ratio as 1.5/1.0/0.1	
TIC 587 (77),		pH 7.8 with CaP		
NH4 ⁺ -N 293 (9),		yield depending on		
NO3 ⁻ -N 0 (304),		Ca ions availability;		
PO ₄ -P 50 (55),		high pH and Ca/P		
Mg 30 (29), Ca		initiated co-		
47 (46), K 1213		precipitation of		
(1239)		carbonates and		
		MgP		
		Nitrification		
		reduced Ca(HCO ₃) ₂		
		inhibition and		
		carbonate		
		precipitation		
		making Ca		
		available for CaP		
		precipitation		
		CaP precipitated in		
		lab batch tests (in		
		beakers), 1 h		
		reaction time		
		Several chemicals		
Anaerobically		used (NaOH,		
digested		Ca(OH)2, Na2CO3)		
industrial	Nitrification in	to raise pH (8.5–		
(potato) waste	an aerated MBR	9.0) and test effect	Composition of the	
water	(25 L)	of TIC	precipitate not	
previously			determined	
processed for	Mg content and	TIC decrease due	analytically	
urease-induced	pH increased	to nitrification		
partial	due to	(>90%) implied	Similar results than in	
phosphate	preliminary	shorter dosage of	[207] where P uptake	
removal	ureolytic	NaOH for raising	was assessed as a	[124]
	phosphate	the pH; NaOH	function of reaction	
Composition:	removal	supply w/o	time, pH, Ca/P and	
pH 7.5 (8.5),	i cinto v di	nitrification may	presence of	
TIC 455 (32),	Ca/P molar ratio	lead to MgP &	competitive ions;	
NH4+-N 180 (0),	increased from	CaCO ₃ formation	optimal TIC/NH4+	
NO3⁻-N 0 (180),	2.6 to 4.8 (66%		molar ratio before	
PO ₄ -P 36 (12),	PO ₄ reduction)	pH increase with	nitrification ~2	
Mg 43 (115), Ca	····/	Ca(OH) ₂ favoured		
121 (74), K 997		PO ₄ precipitation		
(997)		due to extra Ca		
		dosage		
		pH increase with		
		Na ₂ CO ₃ hampered		
		Ca and PO ₄		
		precipitation		

Surface lagoon liquids from swine farms Composition: pH 7.9–8.6 (6.0– 7.5), ALK 953– 3618 (20–156), NH4 ⁺ -N 100–723 (0–79), NO ₃ N 0–20 (100–523), TP 26–85 (26– 85), Mg 6–252, Ca 24–123, K 269–949	Nitrification in fluidised bed reactors (1.2 L) with sludge immobilised in supporting porous medium (3–5 mm cubes) at 30°C with NCR 0.26 g NH4+-N L ⁻¹ d ⁻¹ Ca/P molar ratio of 0.3–2.7 for the influent waste water >90% ALK reduction and prevention of NH ₃ emission	CaP precipitated in lab batch tests (in glass tubes), 1 min mixing pH 6–12 and Ca/P 1–10 tested; Ca(OH)₂ added as precipitant (hydrated lime suspended in water) pH increased to ≥9.5 for optimum P precipitation; PUE >90% TP Similar field test in [73] (reactor vol. 379 L, hydrated lime injected after nitrification until pH 9.0–10.5); P in effluent adjustable for on-farm use according to crop	Composition of the precipitate: 2.5–10% P; nitrification favoured P availability in the precipitate; the recovered material can be exported from the farm and reused as P- fertiliser The high pH value applied in the precipitation process destroys pathogens For the field test [73] composition of the precipitate was 24.6% Ca, 6.9% P, 1.2% Mg, 0.5% K	[208]
NDN as the biop Fertiliser industry waste water Composition: TN 350, NH4 ⁺ -N 245, NO3 ⁻ -N 21	NDN in a continuous flow AS AO system at pilot-scale (760 L) NLR 0.6–1.3 g N L ⁻¹ d ⁻¹ ; nitrification partially inhibited; denitrification achieved by adding methanol	needs (N/P ratio) mical P precipitation MgP precipitated in a continuous pilot-scale unit (320 L + settler); NLR 48–72 g N L ⁻¹ d ⁻¹ Mg/NH4/PO4 adjusted to 1.5– 1.8/1.0/1.5–1.8 with MgCl2 + H3PO4; pH 11–12 (NaOH) Mg and PO4 recovered from the precipitate by heating (while NH3 stripped out) allowing the recycling within the process (>90 wt%)	Composition of the precipitate after drying: 24.0% P, 16.6% Mg, 1.1% N	[209]

-8,				
		Residual PO ₄		
		removed from the		
		water line		
		electrochemically		
		Global		
		performance: 88%		
		TN, 87% NH4+, 92%		
		NO ³⁻ reduction		
Subfloor slurry				
from a pig				
farm, liquid	NDN in a			
separated by a	continuous flow			
rotary press	AS AO system at	CaP precipitated in	Composition of the	
	full-scale (504-	a continuous full-	precipitate not determined	
Composition:	m ³)	scale unit, well-		
pH 7.8 (8.0),	Traffer and success	mixed and with	analytically	
ALK 5469	Influent waste water with Ca/P	conical bottom (300 L); hydrated lime	0.67 and 0.20 lagar	[99]
(1422), TSS 1254	molar ratio 0.4	, ,	0.67 and 0.39 log ₁₀ reductions for total	
(227), NH4+-N	molar ratio 0.4	[12% Ca(OH)2] injected to pH 9.5	faecal coliforms and	
1213 (124), NO ₃ -	74% ALK, 87%	injected to pri 9.5		
-N 0 (221), PO ₄ -	COD, 90% NH4 ⁺ ,	PUE 75% PO4	enterococci, respectively	
P 82 (76), Mg 44	7% PO ₄	10175/0104	respectively	
(16), Ca 106	reduction			
(39), K 1551	reduction			
(1420)				
		MPP precipitated		
		in:		
		(1) lab experiments		
		lasting 2–3 h at	Lab: Fine-grained	
		room temperature	elongated crystals with	
		(2) pilot plant	a maximum diameter	
		running as CSTR	of several tens of	
		$(2-m^3 + settler);$	microns	
Calf manure	NDN running at	MgO added as Mg		[210]
	full-scale	source; reaction	<i>Pilot-plant:</i> the	
		time 0.5 h; TSS may	recovered product	
		interfere if >1 g L^{-1}	contained 12.5% P,	
		(3) full-scale plant (3 CSTRs + settler);	10.7% Mg, 11.4% K, 1,3% Ca, 0.7% N (5.5%	
		MgO added as Mg	organic-C)	
		source achieving	organic-C)	
		<30 mg P L ⁻¹ in the		
		effluent		
PNA as the biopr	ocess preceding che	mical P precipitation		
Anaerobically	PNA as 1-step	MgP precipitated	MgP precipitated as	
digested sludge	process at lab-	in lab batch tests	MAP & MPP	
dewatering	(10 L) and pilot-	(in beakers)	according to XRD and	
0	(10 L) and phot-			
centrate from	scale	· · · · · ·	chemical analysis	[76]
centrate from two municipal	· · ·	pH 8–12 (adjusted	chemical analysis	[76]
	· · ·		chemical analysis At pH 11, precipitate	[76]

biological P removal in the mainstream– Composition: pH 7.8–8.0 (7.5– 7.7), ALK 3276– 3407 (327–752), NH4 ⁺ -N 949–963 (109–228), PO4- P 59–222 (53– 233), Mg 4–12 (4–14), Ca 21–54 (21–33), K 251– 327 (261–367)	222 (biological) mg PO ₄ -P L ⁻¹ ; Mg/K/P molar ratio: 0.02– 0.3/1.2–3.9/1 Ca. 90% ALK, 85% NH ₄ + reduction	with MgCl) and temperature 20– 40°C K uptake from water line positively correlated with the pH value up to pH 11	9.2% Mg, 4.3% K, 3.5% N, 0.9% Ca	
Anaerobically digested manure centrate Composition: TSS (500), NH4 ⁺⁻ N (8), PO4-P (108), Mg (163), Ca (36), K (609)	After biological treatment, Mg/K/P molar ratio adjusted to ca. 2.0/4.5/1.0	MgP precipitated in lab batch tests (in beakers) targeting MPP recovery Different dilutions rates (0–90%) tested to decrease interference by TSS (K and PO4 adjusted using chemicals); pH 9– 12, 38°C Up to 80% PO4 recovery at pH 10 and 90% dilution	MgP precipitated mostly as MPP with co-precipitation of other salts according to XRD High dilution (90%) favoured co- precipitation of Mg3(PO4)2 and Mg(OH)2; low dilution (0–50%) favoured recovery of all PO4 as MPP, but with co- precipitation of Mg(OH)2 Suspended particles acted as nuclei for heterogeneous nucleation favouring aggregation of crystals as star-asterisk forms	[75]

Abbreviations: ALK, alkalinity (as CaCO₃); anammox, anaerobic ammonium oxidation; AO, anoxicoxic; AS, activated sludge; CaP, calcium phosphate; CSTR, continuous stirred tank reactor; HAP, hydroxyapatite; MAP, magnesium ammonium phosphate; MBR, membrane bioreactor; MgP, magnesium phosphate; MPP, magnesium potassium phosphate; N, nitrogen; NCR, N conversion rate; NDN, nitrification-denitrification; P, phosphorus; PNA, partial nitritation-anammox; PUE: P uptake efficiency; TIC, total inorganic carbon; TOC, total organic carbon; TP, total P; TSS, total suspended solids; UASB, upflow anaerobic sludge blanket; WWTP, waste water treatment plant; XRD, X-ray diffraction.

¹ Composition, concentrations expressed in mg L⁻¹; values after biological N treatment in brackets. ² Ca/P, Mg/P and other component ratios expressed in molar units.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).