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Abstract: Optimization of fertilization enables to obtain a yield of high quality and quantity, brings
economic profits, and reduces environmental threats. The aim of the three-year field experiment
was to determine the efficiency of fertilization with a new fertilizer available on the Polish market
and containing nitrogen (N) and sulfur (S) in proportions designed for cereals cultivation (30% N
and 6% S as ammonium nitrate and ammonium sulfate). Other treatments included no fertilization;
fertilization with ammonium nitrate (34% N); fertilization with standard nitrogen and sulfur fertilizer
with N supplementation with ammonium nitrate. Nitrogen doses were 150, 200, and 250 kg N ha−1.
Sulfur was applied in doses of 30, 40, and 50 kg S ha−1. A beneficial effect of using fertilizer containing
N and S in proportions designed for cereals cultivation was observed. The highest mean optimal
nitrogen dose and maximum winter wheat yield were recorded for the new fertilizer (217 kg N ha−1

and 8251 kg ha−1, respectively). Sulfur supplementation with the new fertilizer significantly increased
apparent nitrogen recovery (mean values 48.9%, 44.6%, and 40.6% for doses 150, 200, and 250 kg N
ha−1, respectively), agronomic efficiency (11.1 and 8.6 kg kg−1 N for doses 200 and 250 kg N ha−1,
respectively), and physiological efficiency (24.7 kg kg−1 N for dose 200 kg N ha−1).

Keywords: ammonium nitrate; ammonium sulfate; fertilization efficiency; cereals

1. Introduction

Wheat (Triticum L) was one of the first domesticated plants and has been the staple food for major
civilizations in Europe, West Asia, and North Africa over many thousands of years. Domestication
of wheat was probably the most important step in humanity’s transition from hunter-gatherer and
nomadic shepherd to settled farmer [1].

Nowadays, wheat is an economically important crop cultivated worldwide [2–4]. It is one of
three cereals (next to rice and corn) which are the most important food sources for people, and whose
total global consumption accounts for over 90% of total cereal consumption [5–8]. In 2018, wheat was
grown on 214 million hectares of land worldwide. The production amounted to 734 million tons,
with an average yield of about 3.4 tons per hectare [9]. The forecasts indicate that in 2020, 761.5 million
tons of wheat will be produced worldwide [10]. In 2018, Asia generated 44.7% of worldwide wheat
production, Europe—33.0%, Americas—15.4%. Twenty-eight European Union (EU) Member States
produced 138 million tons of this cereal on a 25.5 million ha area, with an average yield of about 5.5 tons
per hectare. The main wheat producers in the EU include France, Germany, the United Kingdom,
Romania, and Poland. In 2018, wheat was grown on 2.4 million ha in Poland, providing an output of
9.8 million tons (average yield was 4.1 tons per hectare) [9].
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Wheat popularity and success can mainly be attributed to the fact that it is unrivaled in its range
of cultivation. It can be grown in many areas with different weather, elevation, or soil properties.
Not only conventional mineral fertilizers, but also organic materials can be used for fertilization [11].
In addition, wheat is the most versatile grain among the cereals used for food, supplying more proteins
and calories to the global population than any other agricultural food [4,12–14].

Wheat yield efficiency is a complex of many natural and agrotechnical factors and their
mutual connections (crop genotype, soil type, crop management, atmospheric dioxide concentration,
and weather conditions) [1,7]. Abiotic stresses such as extreme temperatures and water shortage due
to changing climate may affect the productivity of cereals worldwide [3]. Wheat grows preferentially
in cooler temperatures (the optimum temperature for growth: 15–25 ◦C) [15]. Temperature changes
during vegetation can potentially decrease wheat productivity in certain regions [16–18]. Among the
major staple crops, wheat is the most drought resistant and most water-use efficient [2]. However,
drought may also reduce wheat harvest [10].

Worldwide production systems differ significantly not only in climatic conditions, but also in
soil fertility. In all agricultural systems there is a need for giving plants access to adequate elements,
introduced in appropriate doses—in general, nutrients are supplied as fertilizers in areas of advanced
production [19]. Mineral fertilizers play a significant role in replenishing shortages of nutrients
for plants, improving crop productivity and preventing losses of yield quantity and quality [20].
Total global demand for fertilizers (as N, P2O5, K2O), exceeded 185 million tons in 2016, of which the
demand for N fertilizers was over 105 million tons [21]. The total global demand for N will reach
112 million tons in 2022. In terms of world regions, the highest demand for N fertilizers in 2016 was
recorded in Asia (59.2 million tons). Americas and Europe have considerably lower demand for N
fertilizers. However, on a global scale, they are right behind Asia, i.e., the demand in 2016 was 23.4
and 16.5 million tons, respectively. In 2022 the demand for N fertilizers in Asia, Americas, and Europe
will reach 62.0, 25.0, and 17.6 million tons, respectively [21]. At the same time, attention is drawn to
the need to reduce fertilizer use because of environmental reasons [22].

The unsuitable management of nitrogen fertilization may not only reduce wheat yield [23–26],
but also lead to losses of this nutrient caused by leaching, runoff, volatilization, or denitrification.
Therefore, optimizing the use of N fertilizers is important as it ensures economic sustainability of
cropping systems and suitable plant production, and at the same time reduces environmental threats
caused by the introduced nitrogen [16,23,27–29]. This research area has become a major focus of
recent agricultural research, mainly due to the fact that N fertilizer has become the largest input cost,
and because of the demand and production costs its price continues to increase [30]. Proper plant
supply with other nutrients is important for effective nitrogen fertilization [31]. The effect of nitrogen
(N) and sulfur (S) fertilizers on crop production has been widely investigated, and these nutrients
are normally considered as key factors in cereal production. This is because they affect rapid plant
growth and improve the quality and quantity of grain yield [25,29,31,32]. Grain protein content is
a major determinant of wheat grain quality, which is the subsequent effect of N and S fertilization.
These macronutrients build blocks of proteins. Nitrogen fertilization increases grain protein content,
while sulfur fertilization affects grain protein composition [33–35]. Due to insufficient S supply, wheat is
not capable of reaching its full yield potential [36], and the use of N for protein synthesis may be
reduced [30].

Due to the fact that the human population is growing, and, in consequence, food consumption
is increasing, crop production must be intensified by roughly 70% by 2050 and doubled or tripled
by 2100 to provide food security for people [14,37,38]. Exploring the possibilities of increasing plant
production, and efficient use of N fertilizers without posing environmental threats is an important
research area [38,39].

The aim of this study was to determine the efficiency of winter wheat fertilization with ammonium
nitrate enriched with ammonium sulfate. The effect of a new fertilizer (containing 30% N and 6% S)
available on the Polish market was analyzed. Based on the results of a three-year field experiment,



Agronomy 2020, 10, 1304 3 of 17

the following parameters were calculated: optimal nitrogen dose and maximum yield of winter grain
for that dose, marginal efficiency of fertilization, agronomic efficiency, nitrogen uptake, apparent
nitrogen recovery, physiological efficiency.

2. Materials and Methods

2.1. Field Experiment

The field experiment was set up in 2014 at the experimental station of the University of Agriculture,
located in Krakow-Mydlniki in Poland (N 50.091568, E 19.857655). The experiment was established
on Stagnic Luvisol. The soil has heavy category (36% fraction < 0.02 mm), acid reaction (pHKCl 4.88),
low content of total sulfur (0.16 g kg−1 DM) and sulfate sulfur (8.92 mg kg−1 DM), and medium content
of available phosphorus (63.4 mg kg−1 DM) and potassium (238 mg kg−1 DM).

The experiment comprised 10 treatments, each conducted in four replications (the area of a single
experimental plot was 28 m2 = 7 × 4 m):

• I: no fertilization (control);
• II, III, and IV: 150 kg N, 200 kg N, and 250 kg N ha−1, respectively, with no S fertilization—as

ammonium nitrate (34% N);
• V, VI, and VII: 150 kg N and 30 kg S ha−1, 200 kg N and 40 kg S ha−1, 250 kg N and 50 kg

S ha−1, respectively—S was introduced with fertilizer A (a mixture of ammonium nitrate and
ammonium sulfate, 26% N and 13% S) conventionally available on the Polish market; N dose was
supplemented with ammonium nitrate;

• VIII, IX, and X: 150 kg N and 30 kg S ha−1, 200 kg N and 40 kg S ha−1, 250 kg N and 50 kg S ha−1,
respectively—S and N were introduced with fertilizer B (a mixture of ammonium nitrate and
ammonium sulfate, 30% N and 6% S) which was a new fertilizer available on the Polish market
and containing N and S in proportions designed for cereals cultivation.

The experiment was conducted for three growing seasons, and winter wheat cv. Natula (a quality
cultivar with very high technological parameters of the grain) was the test plant in all seasons.
Sugar beet was the forecrop for winter wheat cultivation. Phosphorus and potassium were applied
before sowing of wheat (30.50 kg P ha−1 as 40% superphosphate and 83 kg K ha−1 as 60% potassium
salt each year). Nitrogen was applied at the beginning of spring vegetation (dose of 50%), at the
beginning of stem elongation phase (30%) and prior to heading (20%). Wheat was harvested at full
grain maturity and the amount of grain yield was determined.

Humidity and thermal conditions during the experiment are shown in Figure 1. The growing
seasons varied in weather conditions. The sum of precipitation for the first growing season (2014/2015)
was 593 mm, for the second one (2015/2016) it was 696 mm, and for the third season (2016/2017) it
was 826 mm. The precipitation distribution in particular months was not optimal. High precipitation
was recorded especially in July of the second growing season (180 mm, which was 26% of the total
precipitation in the growing season) and in January of the third season (148 mm, which was 18% of the
total precipitation). The mean air temperature in the first and second season was 9.6 ◦C, and in the
third season it was 8.5 ◦C. Despite similar mean air temperature, thermal conditions varied between
seasons. During the third season, temperature in winter months was the lowest. From February to
June, the highest mean temperatures were determined in the second growing season. At the same time,
it was the season with very low precipitation from March to June (water deficiency was supplemented
only in July), which created unfavorable conditions for wheat growth.
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Figure 1. Weather conditions for particular months of three seasons of winter wheat growth: (a) total 
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Figure 1. Weather conditions for particular months of three seasons of winter wheat growth: (a) total
precipitation; (b) mean air temperature.

2.2. Calculations

The curves of winter wheat response to N fertilization were determined based on the second-degree
polynomial equation (the x-axis shows N doses, and the y-axis shows the yield of winter wheat
grain) [40]:

y = a + bx + cx2 (1)

The highest point on the graph of quadratic function shows the optimal N dose and maximum
yield of winter wheat grain for that dose. The optimal N dose (Dopt) was calculated as:

Dopt = –b/2c (2)

and maximum yield (Ymax) as:
Ymax =

(
a− b2

)
/4c (3)

Marginal efficiency (Em), determining the increase in plant yield per 1 kg of nutrient (kg kg−1 N) at
any given dose within a given range, was established as the first derivative of the polynomial function:

Em = b + 2cx (4)

Once the Dopt is exceeded, the Em parameter assumes negative values.
Agronomic efficiency (Ea) of nitrogen fertilization of winter wheat was calculated according to the

equation ([41], after Dobermann 2007):

Ea =
Y −Yo

D
(5)

where:

Ea—agronomic efficiency of nitrogen fertilization (kg kg−1 N),
Y—yield of fertilized plants (kg ha−1),
Yo—yield of control plants (unfertilized) (kg ha−1),
D—nitrogen dose (kg N ha−1).

Agronomic efficiency is a parameter that determines the increase in plant yield in a given range of
nutrient doses.

Nitrogen uptake was calculated by multiplying the amount of yield and N content in that
yield (arithmetic mean N content in the yield for a particular treatment and for a particular year of
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experiment were used; N content was determined with a vario MAX cube CNS elemental analyzer
(Elementar Analysensysteme GmbH, Langenselbold, Germany)). Apparent nitrogen recovery (R) was
calculated as:

R =
U −Uo

D
·100% (6)

and physiological efficiency (Ep) was calculated according to the equation ([41], after Dobermann 2007):

Ep =
Y −Yo

U −Uo
(7)

where:

R—apparent nitrogen recovery (%),
U— nitrogen uptake by fertilized plants (kg N ha−1),
Uo— nitrogen uptake by control plants (unfertilized) (kg N ha−1),
Ep—physiological efficiency of fertilization (kg kg−1 N).

2.3. Statistical Analysis

The obtained results of agronomic efficiency, nitrogen uptake, nitrogen recovery, and physiological
efficiency were statistically analyzed. A two-way analysis of variance (factor 1: treatment, factor 2:
year) was performed using PQStat, ver 1.6 (PQStat Software, Poznań, Poland) statistical package.
The least significant differences (LSD) were calculated by the Fisher’s test (α = 0.05).

3. Results and Discussion

The amount of winter wheat yield is shown as a function (a second-degree polynomial equation
y = a + bx + cx2) of N fertilization. Vertices of the curves mark the optimal N doses and the maximum
yields of winter wheat grain for those doses (higher N doses did not increase the yield). Figure 2 shows
curves of winter wheat response to fertilization with individual fertilizers and in individual years,
whereas Figure 3 shows mean curves for three years of research.
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Figure 2. Winter wheat yield as a function of nitrogen fertilization in individual years: (a) curves of
winter wheat response to fertilization with ammonium nitrate; (b) curves of winter wheat response to
fertilization with fertilizer A: 26% N and 13% S; (c) curves of winter wheat response to fertilization
with fertilizer B: 30% N and 6% S.

When analyzing mean values for three years of research, the highest Dopt and Ymax were recorded
for the treatment with the use of fertilizer B (30% N and 6% S)—-217 kg N ha−1 and 8251 kg ha−1,
respectively (Table 1). The mean Ymax of winter wheat fertilized with ammonium nitrate (without S)
was 2.7% lower than the yield obtained after fertilization with fertilizer A, and 4.2% lower than the
yield obtained after fertilization with fertilizer B.

The exact values of the optimal N dose (Dopt) and maximum wheat grain yield (Ymax) for that
dose are shown in Table 1—-the values change depending on treatment and year of the experiment.
However, regardless of the experimental treatment, notably the lowest yields (mean value 6770 kg ha−1)
were collected in the second year of research. This can be explained by unfavorable weather conditions,
especially very low precipitation (Figure 1). In general, increased soil water content enhances crop
yield response to N fertilization, in particular when high N rates are applied [42].
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Table 1. Optimal N dose and maximum yield of winter wheat grain for that dose.

Treatment Optimal N Dose (kg N ha−1) Maximum Yield (kg ha−1)

2015 2016 2017 Mean 2015 2016 2017 Mean

Ammonium nitrate: 34% N 166 235 269 211 8053 6553 9364 7904

Fertilizer A: 24% N and 13% S 219 153 323 199 8078 7126 9818 8122

Fertilizer B: 30% N and 6% S 170 262 250 217 8194 6973 9833 8251

Mean for all treatments 179 190 274 208 8084 6770 9636 8086

The optimal N rate varies depending on the cultivar, but also on the site and year of cultivation.
This is due to the spatial variability of crop growing conditions and soil properties [43]. Zhang et al. [44]
indicated that discrepancies in the optimal N dose and maximum yield may have resulted from
environmental variability. Walsh et al. [45] did not find any significant differences in wheat grain
yield under two levels of N fertilization: 90 and 135 kg N ha−1. Haile et al. [46] reported that different
rates of N fertilization significantly increased wheat grain yield, and its maximum was achieved by
application of 120 kg N ha−1 (however, optimal yield was not achieved as the response apparently
did not plateau out). Litke et al. [47] observed a significant wheat grain yield increase up to the rate
of 180 kg N ha−1, and Duan et al. [48] up to the rate of 150 kg N ha−1. According to Ali et al. [49],
increasing N doses increase plant height as they stimulate the vegetative development, and thus grain
yield is reduced. Aizpurua et al. [50], using the quadratic plateau response model, found that the
optimal N dose was 182 kg N ha−1. Zhang et al. [44], based on the linear plateau model, found that the
optimal N dose (for field trials conducted at 120 sites) varied from 84 kg to 270 kg N ha−1, with a mean
value of 138 kg ha−1, under which the maximum wheat yield varied from 5213 kg to 8785 kg ha−1

with an average value of 6789 kg N ha−1. Beneficial effect of S introduction under N fertilization on
wheat grain yield was confirmed by Salvagiotti et al. [51], Klikocka et al. [52], and Rossini et al. [26]
and explained by greater accumulation of nitrogen in the grain.

The effectiveness of nitrogen fertilization can be assessed not only by the quantity of the yield
obtained, but also by other indicators, such as marginal efficiency, agronomic efficiency, physiological
efficiency, and nitrogen recovery [53,54]. These parameters show the ability of plants to convert the
uptaken N to yield; values of these parameters decrease as the fertilization level increases [52,55].
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In general, lower crop nitrogen efficiency under its high input is a result of reusing nitrogen accumulated
in tissues, in relation to lower N uptake [56].

The marginal efficiency (Em) of nitrogen fertilization on wheat grain yield is presented in Figure 4.
For the entire research period, Em of fertilizer B was higher than that of ammonium nitrate or
approximated it. Such a relationship for fertilizer A was observed in the first and third year of
the research.
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Figure 4. Marginal efficiency of N fertilization of winter wheat: (a) marginal efficiency of fertilization
with ammonium nitrate; (b) marginal efficiency of fertilization with fertilizer A: 26% S and 13% S;
(c) marginal efficiency of fertilization with fertilizer B: 30% N and 6% S.

The agronomic efficiency (Ea) of N varied from 4.8 kg to 17.9 kg kg−1 N, depending on N dose,
the type of fertilizer, and the year of research (Table 2). Ea was visibly higher in the third year of the
experiment than in the first and second year. When analyzing mean Ea values for three years of research,
significantly higher values were obtained after fertilization with 150 kg N ha−1 (12.3–14.4 kg kg−1 N)
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than after fertilization with 200 kg and 250 kg N ha−1. Fertilization with sulfur, especially as fertilizer
B, increased the Ea of N fertilization of winter wheat.

Table 2. Agronomic efficiency of N fertilization of winter wheat (kg kg−1 N).

Treatment
Year

Mean
2015 2016 2017

Ammonium nitrate: 34% N

N dose (kg ha−1)

150 10.7 12 14.2 12.3

200 8.3 4.9 11.7 8.3

250 4.8 7.4 10.4 7.5

Fertilizer A: 26% N and 13% S

N dose (kg ha−1)

150 10.7 17.9 14.6 14.4

200 7.7 6.1 12.8 8.9

250 6.8 6.4 11.6 8.3

Fertilizer B: 30% N and 6% S

N dose (kg ha−1)

150 12 10.3 17.3 13.2

200 8.5 10.4 14.4 11.1

250 5.7 7.8 12.3 8.6

Mean 8.4 9.2 13.3 10.3

LSD0.05 for:

Treatment 1

Year 0.6

Treatment × year 1.7

The efficiency of nitrogen application is a valuable indicator of rationality of N supply. For wheat
cultivation, the Ea value usually ranges from about 10 kg to 30 kg kg−1 N, and over 30 kg kg−1 N
can be encountered in well-organized growth systems or on poor soils where low level of nitrogen
fertilization occurs. A lower Ea value suggests that changes in N management can increase plant
productivity, and its value for wheat depends mainly on N fertilization and climatic conditions [57,58].
Our findings are consistent with the findings of Ayadi et al. [56] who showed that Ea increased to
13.97 kg kg−1 N after fertilization with 150 kg N ha−1 (further increasing the N dose decreased the
Ea). Belete et al. [59] also noted a decreasing trend in nitrogen agronomic efficiency with increasing N
fertilization—-from 120 kg to 360 kg N ha−1. In their study, Mandic et al. [57] obtained wheat yields
that were generally not higher than 4.5 t ha−1. For such relatively low yields, they obtained Ea values of
3.11 kg and 2.21 kg kg−1 N for fertilization levels of 75 kg and 150 kg N ha−1, respectively (no statistical
differences between these values were determined). Klikocka et al. [52] checked results of fertilization
with different doses of nitrogen and stated that Ea reached the highest value (32.1 kg kg−1 N) after N
fertilization at 80 kg N ha−1 with the addition of sulfur at 50 kg S ha−1. A significant effect of weather
conditions on nitrogen agronomic efficiency was confirmed by Szmigiel et al. [60].

Nitrogen uptake by unfertilized wheat amounted to 91.0–114.5 kg N ha−1 (Table 3). Fertilized
plants took up from 148.5 kg to 240.3 kg N ha−1, depending on N dose, the type of fertilizer and the
year of research. The highest N uptake was recorded in the third year of research. When analyzing
mean values for three years of research, significantly the highest values were obtained after fertilization
with 250 kg N ha−1 and 50 kg S ha−1 (198.6–201.0 kg N ha−1).
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Table 3. Nitrogen uptake by winter wheat (kg N ha−1).

Treatment
Year

Mean
2015 2016 2017

Control (no fertilization) 93.3 91 114.5 99.6

Ammonium nitrate: 34% N

N dose (kg ha−1)

150 156.0 152.6 187.8 165.5

200 159.2 148.5 209.0 172.2

250 167.1 184.7 219.4 190.4

Fertilizer A: 26% N and 13% S

N dose (kg ha−1)

150 151.2 186.1 193.8 177.0

200 165.0 164.0 217.8 182.3

250 175.7 182.9 237.2 198.6

Fertilizer B: 30% N and 6% S

N dose (kg ha−1)

150 159.0 162.2 197.8 173.0

200 171.7 182.0 212.7 188.8

250 170.9 191.9 240.3 201.0

Mean 156.9 164.6 203.0 174.8

LSD0.05 for:

Treatment 4.2

Year 2.3

Treatment × year 7.3

Klikocka et al. [52] observed that N uptake by wheat increased significantly after increasing the
N dose, and amounted to 141.5 kg N ha−1 under the application of 120 kg N ha−1. Additionally,
Wang et al. [42], for over 2 years of a field experiment, found that N uptake by wheat reached 39.5 kg,
58.5 kg, 75.2 kg and 103.8 kg N ha−1 under N dose of 0 kg, 79 kg, 140 kg and 221 kg N ha−1, respectively.
As the authors noticed, a further increase in N dose to 300 kg N ha−1 decreased N uptake by wheat
to 92.3 kg N ha−1. Salvagiotti et al. [51] found that N uptake by wheat increased with increasing N
doses until the dose of about 80 kg N ha−1. Moreover, they stated that S fertilization (at a dose of
30 kg S ha−1) increased N uptake (the effect of sulfur intensified with increasing the N dose).

The apparent nitrogen recovery (R) depends on the congruence between plant demand for N and
the quantity of this nutrient released from N fertilizer applied [59]. The R value in cereals, including
wheat, ranges from 30% to 50%, and with lower N doses and best nutrient management it could reach
50–80% [61]. A low R value entails economic and ecological effects. The amount of nutrient that is
not taken up by plants or soil microorganisms is lost in various ways [60,62]. In our research, the R
value fluctuated between 28.8% and 63.4% (Table 4). The highest mean R value was recorded in the
third year of research, then in the second year, and the lowest value was recorded in the first year of
the experiment. When analyzing mean R values for three years of research, significantly the highest
values were obtained after fertilization with 150 kg N ha−1 (43.9–51.6%) than after fertilization with
200 kg and 250 kg N ha−1. Sulfur fertilization (fertilizers A and B) significantly increased the R value
for all N doses.

Szmigiel et al. [60] showed that applied nitrogen was most efficiently utilized by wheat when
rates of 60 kg and 90 kg N ha−1 were used (mean R of 42%), and at higher N doses that efficiency
decreased, reaching the lowest value at 150 kg N ha−1. These authors also pointed to a correlation
between the nitrogen recovery value and weather conditions. They noticed that the higher the
precipitation-evaporation quotient, the higher the nitrogen recovery. The decreasing R value as a result
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of increasing N doses and relation of R with weather conditions has also been confirmed in other
studies [42,63]. Furthermore, Wang et al. [63] indicated that suitable N fertilization for a high-yielding
wheat ranged from 96 kg to 168 kg N ha−1. Salvagiotti et al. [51] found that nitrogen recovery by
wheat increased significantly under S fertilization at a dose of 30 kg S ha−1, reaching almost 70% of the
applied N.

Table 4. Apparent nitrogen recovery by winter wheat (%).

Treatment
Year

Mean
2015 2016 2017

Ammonium nitrate: 34% N

N dose (kg ha−1)

150 41.8 41 48.9 43.9

200 33 28.8 47.2 36.3

250 29.5 37.5 41.9 36.3

Fertilizer A: 26% N and 13% S

N dose (kg ha−1)

150 38.6 63.4 52.8 51.6

200 35.8 36.5 51.6 41.3

250 33 36.8 49.1 39.6

Fertilizer B: 30% N and 6% S

N dose (kg ha−1)

150 43.8 47.5 55.5 48.9

200 39.2 45.5 49.1 44.6

250 31.1 40.4 50.3 40.6

Mean 36.2 41.9 49.6 42.6

LSD0.05 for:

Treatment 2.2

Year 1.3

Treatment × year 3.9

The value of physiological efficiency (Ep) under N fertilization varied from 16.3 kg to 29.4 kg kg−1

N, depending on N dose, the type of fertilizer, and the year of research (Table 5). The highest mean Ep

value was recorded in the third year of the experiment, then in the first year, and the lowest value was
recorded in the second year of the experiment. When analyzing mean values for three years of research,
significantly the highest values were obtained after fertilization with 150 kg N ha−1 (regardless of the
type of fertilizer)—values from the range 26.7–27.9 kg kg−1 N. For 200 kg N ha−1, supplementing N
fertilization with S fertilization (as fertilizer B) increased the Ep.

Szmigiel et al. [60] showed that N fertilization at a dose of 60 kg N ha−1 increased the Ep to
the maximum, and higher N doses (120 kg and 150 kg N ha−1) decreased the Ep. Velasco et al. [64]
also recorded a decrease in the Ep with increasing N doses. Klikocka et al. [52] presented that the
addition of sulfur at a 50 kg ha−1 dose to nitrogen dose of 40 kg ha−1 resulted in the Ep amounting to
21.6 kg kg−1 N. Compared to the variant without S addition, that was a 1.5-fold increase. However,
Salvagiotti et al. [51] stated that wheat fertilization with various N and S doses did not increase the Ep

value under different weather conditions, and explained that this factor presents low variation under
variable environmental conditions.



Agronomy 2020, 10, 1304 12 of 17

Table 5. Physiological efficiency of N fertilization of winter wheat (kg kg−1 N).

Treatment
Year

Mean
2015 2016 2017

Ammonium nitrate: 34% N

N dose (kg ha−1)

150 25.7 29.2 28.9 27.9

200 25 16.4 24.8 22.1

250 16.3 19.7 24.7 20.2

Fertilizer A: 26% N and 13% S

N dose (kg ha−1)

150 27.7 28.2 27.6 27.8

200 21.4 16.7 24.9 21

250 20.7 17.5 23.7 20.6

Fertilizer B: 30% N and 6% S

N dose (kg ha−1)

150 27.4 21.5 31.1 26.7

200 21.7 22.9 29.4 24.7

250 18.1 19.3 24.4 20.6

Mean 22.7 21.3 26.6 23.5

LSD0.05 for:

Treatment 1.2

Year 0.7

Treatment × year 2

Optimization of N fertilization of crops (providing accomplishment of agronomic, economic,
and environmental goals) still constitutes a challenge for science and agricultural practice [65].
Efficient management of N fertilization is a pivotal factor for maintaining economical crop production
and long-term environmental quality. It should combine the dose, form, and time of N application
in a way that optimizes the quantity and quality of crop yield, at the same time minimizing nutrient
losses [19,64,66]. Excessive doses of nitrogen are often applied in hopes of increasing wheat grain
yield [67]. However, an increase in wheat grain yield is not linearly linked to an increase in N dose.
Additionally, unsuitable management of nitrogen fertilizers poses many environmental hazards [68,69].
Due to the fact that world population is still growing, global food production must keep pace with
it. Over 40% of the global population’s food needs are supplied by N fertilizers, and it is estimated
that in future this value will increase at least to 60%. However, it is assessed that only 30–50% of
nitrogen applied worldwide is taken up by crops. In the most intensive agricultural production
systems, the amount of the unused nitrogen may reach over 50% and up to 75% of the N applied,
the element is lost by leaching into the soil profile [54,70]. From an exclusively economic point of view,
it is estimated that a 1% improvement of N efficiency in cereals could save over US$200 million in
N fertilizer costs, worldwide [71]. Therefore, fertilizing crops with excessive N rates not only poses
environmental hazards, which is gradually becoming a serious cause for concern, but also leads to
economic losses [44,54,71–74].

Due to the fact that sulfur is an essential component of enzymes involved in nitrogen metabolism,
supplementing N fertilization with sulfur can bring measurable benefits [51]. Concurrent management
of N and S may reduce the potential pollution of residual soil nitrates by increasing N uptake and
recovery and by maintaining a high level of N efficiency.

In the conducted research, the same doses of N and S were introduced with fertilizers A and
B. The beneficial effect of fertilizer B (containing 30% N and 6% S) may be explained by a uniform
composition of each fertilizer granule, adapted to the requirements of cereals (it is assumed that,
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for 1 t of grain and a corresponding amount of straw, 22–34 kg N and 3.0–5.2 kg S are needed [75]).
In treatments with fertilization with fertilizer A, due to the high content of sulfur in that fertilizer
(26% N and 13% S), the nitrogen dose was supplemented with ammonium nitrate (two fertilizers
were the source of N). The composition of fertilizer granules differed, therefore the amount of N
and S, which the plants had direct access to, might not have always strictly corresponded with the
requirements of wheat.

Next to nitrogen availability, the most significant factors affecting wheat grain quality and quantity
also include climatic conditions [76–79]. Despite the ongoing advancement of agrotechnology and
improvement of crop varieties, weather is still the main uncontrolled factor affecting agricultural
production [78,80]. Wheat is sensitive to high temperatures which enhance the level of water stress
in plant cells. The optimum temperature range for the early growth phases of wheat is 12–25 ◦C,
while 35.4 ◦C is critical temperature for the grain-filling phase [79]. Global wheat production is assessed
to decrease by 6% for each Celsius degree increase in temperature [81]. Optimal humidity conditions
during vegetation period are also important, higher temperatures associated with decreasing humidity
cause the lack of water and thus decrease the yield. Even during sowing, low soil water content
and low precipitation slow down the germination process, decrease the percentage of germinated
grains, and hence plant density [82]. Water requirement during the growing season of winter wheat
ranges from 400 to 650 mm [80,83,84]. However, Rossini et al. [27] noted that under various weather
conditions, wheat yield is influenced by N fertilization rate only when the amount of rainfall exceeds
450 mm over the growing season. As the authors pointed out, an adverse effect of decreasing rainfall
amount on wheat grain yield resulted from the impact on the number of kernels per spike and mean
kernel weight. Fertilization with the same N dose may affect in different ways, and the determined
decrease in wheat yield may be a response to the interaction of external biotic and abiotic factors [85].

4. Conclusions

The analyzed parameters depended greatly both on the treatment and year of the experiment (in
other words on weather conditions).

When analyzing mean values for three years of research, the highest optimal nitrogen dose
and maximum yield were recorded for the application of the new fertilizer available on the Polish
market and designed for cereals cultivation (a mixture of ammonium nitrate and ammonium sulfate,
containing 30% N and 6% S). For that fertilizer, optimal nitrogen dose amounted to 217 kg N ha−1,
and maximum yield amounted to 8251 kg ha−1.

Significantly the highest agronomic efficiency and physiological efficiency of nitrogen fertilization,
as well as the highest apparent nitrogen recovery were obtained after fertilization with 150 kg N ha−1

than after fertilization with 200 kg and 250 kg N ha−1.
However, compared to nitrogen fertilization without sulfur, sulfur fertilization increased the

nitrogen recovery. Sulfur supplementation with the new fertilizer also significantly increased the
agronomic efficiency (for 200 kg and 250 kg N ha−1) and physiological efficiency (for 200 kg N ha−1) of
nitrogen fertilization of winter wheat.
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72. Shejbalová, Š.; Černý, J.; Vašák, F.; Kulhánek, M.; Balik, J. Nitrogen efficiency of spring barley in long-term
experiment. Plant Soil Environ. 2014, 60, 291–296. [CrossRef]

73. Zhang, J.; Dong, S.; Dai, X.; Wu, T.; Wang, X.; Bai, H.; Wang, L.; He, M. Combined effect of plant density and
nitrogen input on grain yield, nitrogen uptake and utilization of winter wheat. Vegetos 2016, 29, 2. [CrossRef]

74. Xu, A.; Li, L.; Xie, J.; Wang, X.; Coulter, J.A.; Liu, C.; Wang, L. Effect of long-term nitrogen addition on
wheat yield, nitrogen use efficiency, and residual soil nitrate in a semiarid area of the loess plateau of China.
Sustainability 2020, 12, 1735. [CrossRef]

75. Grzebisz, W. Technologies of fertilization of arable crops—Yielding physiology. In Cereals and Maize;
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