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Abstract: A portable X-ray fluorescence probe (pXRF) is a tool that is used to measure many elements
quickly and efficiently in various samples, without any pretreatment. However, each type of sample
generally requires different calibrations to be accurate. To overcome this, our work evaluated the
efficacy of determining several elements in forage plant samples using the ‘Soil Nutrient and Metal’
calibration in a commercially available pXRF probe, envisioning that a single calibration can be
used to measure samples of different matrixes. For this, the net intensity of the pXRF probe was
determined in place of the concentration values that are obtained directly from measurements.
Elemental concentrations (P, K, Ca, Mg, S, Cu, Fe, Zn, and Mn) from forage plant samples, collected
across Oklahoma, US, were assessed in a representative number of ‘modeling’ and ‘validation’
(independent dataset) samples. Linear regression (LR) associated with the d-index, polynomial
regression (PR), and power regression (PwR) were tested for predictions, producing many statistical
parameters associated with the models that were used for comparison goals. The pXRF elemental
data provided highly reliable predictions of K, S, Zn, and Mn regardless of the regression model.
Although all models can be reliable in prediction of Ca and Fe concentrations, the PwR provided
better root mean square error (RMSE) values. The predictions of Mg concentrations were less reliable,
although highly significant; however, the P and Cu predictions were not acceptable. Our work
successfully showed that, once established, a single calibration curve that covers a wide range of
concentrations of several elements in soils and plant tissues enables both soil and plant samples to be
analyzed. This suggests that manufacturers can develop a new calibration model for a commercially
available pXRF probe that covers a wide variety of heterogeneous samples.

Keywords: portable XRF; net intensity; calibration; plant nutrients concentration; model prediction

1. Introduction

Research on the application of portable X-ray fluorescence probes (pXRF) for agricul-
tural purposes has been very limited, and research regarding their use for plant analysis
was nearly nonexistent [1]. Some works [1–4] have assessed pXRF probe use in determining
plant nutrient concentrations, aiming to eliminate the wet chemistry sample preparations
that are usually involved during acid digestion [5]. Although some inconsistent find-
ings were reported, the use of pXRF probes on processed plant samples is commonly
encouraged to eliminate both the acid digestion step and quantification by an inductively
coupled plasma spectroscopy (ICP), since the nutrients concentration of plant tissues can
be assessed in a matter of seconds with a pXRF probe. However, most of the calibration
methods designed for commercially available pXRF probes are dedicated to soil and min-
eral samples [6], which makes it necessary to develop another calibration curve that is
externally purchased, if the determination of elemental concentration in plant tissues is
desired. Therefore, it is important to develop a single calibration curve with multiple
purposes, with potential use for heterogeneous samples such as soils and plants. This
would gradatively eliminate the costly use of time and resources that is involved in the
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standard method (wet chemical analysis via acid digestion and quantitative determination
via ICP). Our work will be a pioneer in inspiring such a development, since a single cali-
bration curve—originally designed for elemental analyses in soil samples—will be used to
determine nutrient concentrations in forage plant tissues.

Foliar diagnosis has been used for a long time to evaluate plant nutritional status [4].
This evaluation is related to fertilizer application responses and access to the mineral
composition of forage plant tissues for major ruminant livestock feeds [3]. Since these
evaluations are presently a subject matter for study [4], it is important to make accessible
the use of instruments that quickly determine the elemental composition. In this context,
analysis by pXRF probes can be a superior alternative to wet chemistry in terms of both
cost and time effectiveness [7], as well as in the analysis of samples that are not chemically
pretreated or are totally non-destructive. Overall, the accurate determination of elemental
composition depends on proper sample preparation and placement, instrumental setup
of the pXRF probe, the energy level of the element, scanning time, particle size, and the
moisture content of the sample [2]. Additionally, penetration and escape depths potentially
influence pXRF analyses [3]. The former refers to the depth to which the primary X-ray
penetrates the sample; thus, it depends on the sample matrix and the primary X-ray
energy. The latter also depends on the sample matrix; however, the emerging fluorescent
X-ray energy also becomes relevant. Thus, most of the works referred to previously have
made use of software that determine the elemental concentration in plant tissues under
their net intensity measurements—even under the specific calibration curves acquired for
elemental concentration in plants—and correlates them with actual values from standard
methods [1,3]. In this framework, we aimed to use the same technique to determine plant
nutrient concentrations from a calibration method that was originally developed for soil
analysis, since the range of elemental concentrations of forage plant samples used in our
study is within the range of the calibration curve acquired by the pXRF probe. Moreover,
the sample processing of forage plants is identical to that of soil, in terms of drying and
particle size after grinding.

This study sought to evaluate the efficacy of using a calibration of a pXRF probe that
was designed for soils (previously established and validated in the work of Zhang et al. [8])
to quantitatively predict nutrient (P, K, Ca, Mg, S, Cu, Fe, Zn, and Mn) concentrations
in plant samples from Oklahoma (OK), US. Specifically, the objectives of the study were
to: (1) assess the relationship between pXRF net intensity data and elemental concentra-
tion from a standard method, and (2) to establish predictive models that can accurately
calculate the concentrations of P, K, Ca, Mg, S, Cu, Fe, Zn, and Mn from pXRF data, by
identifying the best possible regression model. It was hypothesized that pXRF probes
may be able to accurately predict nutrient contents in forage plant samples, using a single
calibration method that was previously developed for soil analyses, since plant elemental
concentrations fall within the range of the current calibration curve.

2. Materials and Methods
2.1. Forage Plant Samples Collection and Preparation

Forty plant samples were collected across Oklahoma, US, from field trials belonging
to the Oklahoma State University (OSU) (Supplementary Figure S1). Most of the samples
were comprised of cool- and warm-season forages such as annual ryegrass, wheat pasture,
bermudagrass, and switchgrass. The harvested aboveground biomass (plant shoots) was
washed with deionized water and oven-dried to a constant weight at 105 ◦C. Dried plant
materials were ground to ≤2 mm particle size, using a mechanical grinder for further
analyses by both wet chemistry and pXRF probe. The ≤2 mm particle size was chosen
to simulate the same physical conditions of processed soil samples that can be measured
by a pXRF probe, and because of the results of Sapkota et al. [3], who indicated that the
heterogeneous nature of the forage plant sample did not affect the quality of results when
samples are ground to ≤2 mm sizes. Moreover, after testing particle sizes of ≤1 mm and
≤0.25 mm, we found out that increasing the fineness or specific surface area did not affect
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the quality of measurements, and changes were either not significant or were negligible
among samples (data not shown). Hence, the ≤2 mm particle size was chosen for analysis,
since it is easier and faster to obtain in practice.

2.2. Wet Chemical Analysis (Standard Method)

Dried and ground plant materials were analyzed for mineral composition using nitric
acid digestion, in which 0.5 g of each sample was predigested for 1 h with 10 mL of trace
metal grade HNO3 in the HotBlock™ Environmental Express block digester. Then, the
digests were heated to 115 ◦C for 2 h and diluted with deionized water to 50 mL [9]. The
digested samples were determined for P, K, Ca, Mg, S, Cu, Fe, Zn, and Mn by an inductively
coupled plasma atomic emission spectroscopy (ICP-AES).

2.3. pXRF Probe Assays and Analysis

The pXRF measurements were performed using a TRACER 5i portable/handheld
XRF spectrometer (Bruker, Kennewick, WA, USA). More details on the pXRF instrument
can be found in Zhang et al. [8]. All analyses were performed using the ‘Soil Nutrient and
Metal’ calibration provided by the manufacturer. Triplicate readings were taken at 50 kV,
39 µA, with a Duplex 2205 sample over the examination window, and rounded up to the
nearest 5 µRem/hr value [8]. Samples were analyzed for 60 s using 2 phase scans for 30 s
each phase. Recent results indicated that forage plant samples can be analyzed with as little
as 60 s without losing accuracy [3]. Additionally, the 60 s time for elemental concentration
determination was used in soil samples by Zhang et al. [8], our use of the same duration
ensures the same setup for comparison purposes. Moreover, after testing scan times of
120 s and 180 s, we found that the net intensity (photon counts) increased proportionally,
which was also found by Sapkota et al. [3]; therefore, increasing the scan time did not affect
the quality of the measurements. Hence, the 60 s duration of analysis was chosen since
it further enhances the efficiency of the pXRF probe’s measurements. The net intensity
measurements were carried out under laboratory conditions, and the pXRF probe was
mounted upside down on a stand. Dried and ground plant samples were packed in the
sample holder and then placed on the window for measurements to be taken.

2.4. Quality Control

The analyses included certified checking of samples for quality assurance and quality
control (QA/QC) as follows: Reagent blanks and reference samples were analyzed for every
nine (9) samples, and if a check sample failed control limits, then the 9 samples analyzed
before and after the failure were reanalyzed. A certified alfalfa reference sample and a metal-
rich reference sediment (SdAR-M2, International Association of Geoanalysts, Keyworth,
Nottingham, UK) were included in the determination of the total elemental concentrations
in the plant samples by both ICP-AES and pXRF analyses. Acceptable method blank
concentrations of all analyzed elements were below the established instrumental limits of
detection (LOD), and the LOD of nutrients was in the range of 0.1–0.2 mg kg−1 for the ICP
measurements. The quality control quantitative tests and the LOD of the pXRF probe are
shown in Table 1 and in Supplementary Table S1, respectively.

2.5. Data Collection and Statiscal Analyses
2.5.1. Descriptive Statistics

Plant sample data from the standard method (n = 40) were first separated into two
datasets as follows: ‘excluded’, with n = 32 (80%), and ‘modeling’, with n = 8 (20%) (Table 2
and Supplementary Figure S2). The 8 data points used for modeling were chosen to
best fit in the range, from the limit of detection (LOD) to the maximum values used in
the pXRF probe’s ‘Soil Nutrient and Metal’ calibration setup (Supplementary Table S1).
The ‘excluded’ dataset for modeling is then justified by the extreme values that were too
deviated from the upper-end value in the ‘Soil Nutrient and Metal’ calibration range, which
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does not happen for the ‘modeling’ dataset (Supplementary Figure S2). Moreover, in the
‘excluded’ dataset, the mean values significantly deviated from the median values.

Table 1. Coefficient of variation (CV) from replicated plant samples used for modeling, and CV of the certified reference
material (CRM).

Element
Average

CV of all Plant Samples (n = 8)
%

CV for
CRM

%

Difference between
Mean Standard and CRM Measurement

%

pXRF (net intensity) a pXRF (mg kg−1) a

P 2.1 11.1 4.5
K 0.7 0.6 3.1
Ca 0.8 0.5 0.7
Mg 9.5 30.2 14.7
S 2.0 5.1 13.5

Cu 14.3 1.9 3.6
Fe 1.2 0.4 0.5
Zn 8.4 1.0 10.2
Mn 3.0 1.5 1.1

ICP-AES (mg kg−1) b

P 0.9 3.5 2.5
K 5.3 0.0 3.0
Ca 0.8 11.1 6.3
Mg 4.4 8.7 12
S 26.4 19.7 4.3

Cu 19.5 2.4 2.7
Fe 16 17 13.4
Zn 7.3 5.9 15
Mn 0.3 13.2 1.1

a Samples measured by a pXRF probe, results are from triplicates (n = 3); b Samples measured by an ICP-AES in pre-filtered extracts after
acid digestion, results are from duplicates (n = 2). The CV from the digested CRM for most elements reported elemental recoveries between
80 and 120% (±20%) according to McLaren et al. [1].

Table 2. Summary statistics of plant elemental values, as determined by portable X-ray fluorescence (net intensity) and
inductively coupled plasma atomic emission spectroscopy (elemental concentrations) (n = 8) analyses.

Statistic P K Ca Mg S Cu Fe Zn Mn

pXRF intensity
Mean 17,423 96,167 137,003 1106 7092 2033 27,282 3583 7891

SD 10,238 22,076 106,038 215 3284 445 17,389 2623 7913
SE of mean 3620 7805 37,490 76 1161 157 6148 927 2798
Minimum 5918 48,799 23,960 876 3789 1605 13,114 1022 2375

Median 19,295 105,072 122,531 1046 6579 1946 22,486 2550 3820
Maximum 31,199 114,465 289,205 1406 12,282 2862 64,273 8969 24,302

CV (%) 0.6 0.2 0.8 0.2 0.5 0.2 0.6 0.7 1.0
Wet chemistry (elemental concentration, mg kg−1)

Mean 4556 9785 15,009 3220 1835 4 511 63 156
SD 8559 2211 15,495 2751 821 5 478 48 163

SE of mean 3026 782 5478 973 290 2 169 17 58
Minimum 1145 5475 1550 850 1075 1 105 21 26

Median 1630 9978 10,835 2810 1620 2 353 46 67
Maximum 25,725 13,410 46,765 9100 2890 15 1452 167 481

CV (%) 1.9 0.2 1.0 0.9 0.4 1.2 0.9 0.8 1.0

SD: standard deviation, SE: standard error.

The representativeness of the 8 samples used for modeling will be reinforced by the
significant relationships and by an independent validation dataset (n = 16) with additional
forage samples collected across Oklahoma, US (Supplementary Figure S1). Thus, a total of
56 samples (n = 56) were used in this study, where 32 samples were excluded, 8 samples
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were used to create prediction models using the ‘Soil Nutrient and Metal’ calibration setup
of the pXRF probe, and 16 samples were used for validation (Supplementary Figure S2).

2.5.2. Modeling

Initially, only the linear regression (LR) was applied to the ‘modeling’ dataset to
verify if the pXRF values could be linearly correlated with the plant nutrient content (from
standard method), as it is in soil elemental composition when using the ‘Soil Nutrient and
Metal’ calibration setup of the pXRF probe. The LR models were generated considering
the net intensity obtained by the pXRF probe as independent variables and the elemental
contents were generated via the standard method as dependent variables [1]. The d-index
(Equation (1)), which is better at evaluating simple linear regression between two methods,
was used to test the proposed method, and was calculated after values of the dependent
variable were converted from the slope.

d-index = 1−
[

∑n
i=1(Pi −Oi)

2

∑n
i=1
(∣∣Pi

′∣∣+ ∣∣Oi
′∣∣)2

]
0 ≤ d ≤ 1 (1)

where n is the sample size; Pi is the proposed method value; Oi is the typical method value;
Ō is the overall mean of the proposed method value. Pi’ is Pi–Ō, and Oi’ is Oi–Ō. The
d-index varies between 0 and 1, with a value of 1 indicating perfect agreement between
typical and proposed methods [10].

2.5.3. Validation

Since some d-index values were in the ‘poor’ category, causing the LR model to fail
to predict the plant nutrient content of some elements, the second-degree polynomial
regression (PR) and power regression (PwR) were applied for the predictions of plant
nutrient contents, as well as comparing other parameters for model testing accuracy. For the
assessment of the best model, the following indices were used: coefficient of determination
(R2), root mean square error (RMSE) (Equation (2)), normalized RMSE (NRMSE) (Equation
(3)), mean absolute error (MAE) (Equation (4)), and the residual prediction deviation (RPD),
which was defined as the standard deviation of observed values divided by the RMSE [6].
These indices provided metrics of model validity that are easily comparable across models.
RPD values >2.0 indicated good predictive models, values between 1.4 and 2.0 indicated
fair models, and RPD values <1.4 indicated poor predictive models [11]. All the generated
models were validated with an independent dataset (‘validation samples’, n = 16) falling
within the ‘modeling’ dataset range (cross-validation).

Root mean square error as follows:

RMSE =

√
∑n

i=1(Oi − Pi)
2

n
(2)

where Oi represents observed values, Pi represents predicted values from regression, and n
is the sample size.

Normalized root means square error as follows:

NRMSE = RMSE/ȳ (3)

where ȳ is the mean of observed values. If the value of NRMSE is less than 10%, the degree
of the fitness is considered excellent; if 10% ≤ NRMSE < 20%, the degree of the fitness
is considered good; when 20% ≤ NRMSE < 30%, the degree of the fitness is considered
common; and if the value NRMSE is larger than 30%, the degree of the fitness is considered
poor [12,13].
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Mean absolute error as follows:

MAE =
1
n

n

∑
i=1
|Oi − Pi| (4)

where Oi represents observed values, Pi represents predicted values from regression, and n
is the sample size.

3. Results
3.1. Exploratory Data Analysis Variation

In the ‘excluded’ dataset, there was a great variability of values found for P, K, Ca,
Mg, and S contents (Supplementary Figure S2). Conversely, such a great data variability
when greater CV% are found, could positively contribute to the generation of models with
possible application in a wider range of plant nutrient concentrations [6]; however, as pre-
viously mentioned, extreme values and median values excessively deviated from the mean
values (Supplementary Figure S2) would jeopardize the measurements, since the values
would then be too deviated from the concentration range of the ‘Soil Nutrient and Metal’
calibration method. This great variability of concentrations is probably due to the different
land uses and soil management practices of the study areas (Supplementary Figure S2),
ranging from native vegetation—where nutrient contents are likely to be lower—to experi-
mental areas cultivated over a few to many years—where nutrient contents are higher due
to agricultural practices such as liming and fertilization.

3.2. pXRF and ICP Measurements Relationship

As demonstrated in Table 3, the relationships between pXRF and ICP determination
on processed plant samples were first assessed via simple linear regression. This aimed
to establish easy first-degree equations to calculate the actual concentration of nutrients
via the pXRF probe’s measurements of net intensities, after the software deconvoluted
the spectra.

Table 3. Intercept, slope, coefficient of determination (R2), and d-index of linear regression between
values determined by pXRF intensity (net intensity) and ICP-AES (concentrations in mg kg−1).
Results are from the ‘modeling’ dataset.

Element Intercept Intercept Slope Slope R2 d-Index

Value SE Value SE Slope Corrected a

P −2103 6035 0.38 NS 0.30 0.21 0.58
K 1063 1705 0.09 ** 0.02 0.82 0.88
Ca −1804 5477 0.12 ** 0.03 0.71 0.90
Mg −8719 3160 10.8 ** 2.8 0.71 0.37
S 137 229 0.24 *** 0.03 0.92 0.97

Cu −4.0 9.1 0.004 NS 0.004 0.13 0.34
Fe −39.8 242 0.02 * 0.007 0.54 0.82
Zn −1.95 4.04 0.02 *** 0.000 0.98 0.99
Mn −4.17 17.4 0.02 *** 0.002 0.98 0.99

SE is standard error. Significant at * p < 0.05; ** p < 0.01; *** p < 0.001, or not significant NS at p > 0.05; a values of
dependent variables were converted from the slope to properly calculate d-index values.

Except for P and Cu, the slope coefficients of all other nutrients were significant
(p < 0.05) as shown in the linear regression models (Table 3). Further, to properly measure
the d-index, generally used to evaluate the linear relationship between an alternative and
a standard method, values obtained by the alternative method were converted from the
slope, with the intent of bringing all response variables to the same unit. Thus, as deemed
by the obtained d-index values, the relationships were not close to 1:1 (except for Zn and
Mn), although most of the nutrients provided a significant slope (p < 0.05). Such a drawback
made it necessary to test other common regression models, to evaluate their efficacy and
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reliability in predicting the nutrient concentration on plant tissues; thus, other statistical
parameters were included in the determination of the best model, resulting in an extra
evaluation of the linear regression with such parameters.

3.3. Regression Models

Table 4 presents the statistical parameters of regression models used for the prediction
of plant nutrient concentrations based on pXRF data via LR, PR, PwR, and their respective
R2 values. Although all models can be reliable to predict Ca and Fe concentrations, the PwR
provided better root mean square error (RMSE) values (Table 4), which is further evidenced
in Figure 1, or in Figure 2, when including an independent dataset of measurements.
Very high correlations were found between data provided by the pXRF probe and K, S,
Zn, and Mn wet chemistry, regardless of the model tested. This is further illustrated in
Figure 1; Figure 2 when establishing the relationship between observed and predicted
values, where data points are more homogeneously distributed along the 1:1 line. As for
Mg, although relationships were less strong, all models provided a good relationship at the
same magnitude, at least for the ‘modeling’ dataset. Conversely, none of the regression
models were able to establish adequate relations for P and Cu (Table 4 and Figure 1;
Figure 2).

Table 4. Evaluation of the regression models through the dataset for predicting nutrient contents in the plant samples.
Results are from the ‘modeling’ dataset.

Parameter P K Ca Mg S Cu Fe Zn Mn

LR
R2 0.21 NS 0.82 ** 0.71 ** 0.71 ** 0.92 *** 0.13 NS 0.54 * 0.98 *** 0.96 ***

RMSE 8222 1013 9085 1598 257 5.16 351 6.45 34
NRMSE 1.80 0.10 0.61 0.50 0.14 1.20 0.69 0.10 0.22

MAE 5285 658 4998 1069 159 2.89 197 4.74 19
RPD 1.04 2.18 1.71 1.72 3.19 0.99 1.36 7.38 4.85

PR
R2 0.30 NS 0.84 * 0.71 * 0.77 * 0.93 ** 0.15 NS 0.68 NS 0.99 *** 0.97 ***

RMSE 8466 1062 9895 1567 251 5.58 318 4.10 33
NRMSE 1.86 0.11 0.66 0.49 0.14 1.30 0.62 0.07 0.21

MAE 4562 706 8694 943 261 2.96 199 2.27 20
RPD 1.01 2.08 1.57 1.76 3.27 0.92 1.50 11.60 4.89

PwR
R2 0.27 NS 0.82 *** 0.70 ** 0.76 *** 0.92 *** 0.12 NS 0.54 ** 0.99 *** 0.96 ***

RMSE 6817 883 7901 1260 219 4.49 304 5.14 29
NRMSE 1.50 0.09 0.53 0.39 0.12 1.04 0.60 0.08 0.19

MAE 4681 666 5061 962 157 2.95 213 4.48 21
RPD 1.26 2.50 1.96 2.18 3.74 1.14 1.57 9.27 5.58

RMSE—root mean square error; NRMSE—normalized RMSE; MAE—mean absolute error; RPD—residual prediction deviation; LR—linear
regression; PR—polynomial regression; PwR—power regression; R2—coefficient of determination. Regression models are significant at
* p < 0.05, ** p < 0.01, and *** p < 0.001, or are not significant NS at p > 0.05.

In addition to the ‘modeling’ dataset that was used to predict nutrient concentration
in plant samples, a completely independent dataset of measurements was included for
each regression model, as demonstrated in Figure 1; Figure 2. This has further reinforced
the validation and reliability of measurements via the pXRF probe using the ‘Soil Nutrient
and Metal’ calibration of the probe, mainly to determine the concentration of K, S, Zn, and
Mn in plant samples, since relationships remained strong for the independent samples.
Such a dataset was ensured to fall into the concentration range of the ‘modeling’ dataset,
as measured by the standard method of acid digestion, and the same approach has been
used by Pelegrino et al. [6] in another study using a pXRF probe for agricultural purposes.
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Figure 1. The relationship between the observed (x-axis) and predicted values (y-axis), shown in mg kg−1, of the nutrient
contents (P, K, Ca, Mg, and S) of plant samples. RMSE—root mean square error. The observed values are the actual values
obtained, and the predicted values are the values of the variable predicted, based on the regression analysis. Blue and
red points are ‘modeling’ and independent (‘validation’ samples) datasets of measurements, respectively. Black dashed
lines represent the 1:1 line, and blue and red solid lines represent the actual regression curves from the ‘modeling’ and
‘independent’ datasets, respectively.
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Figure 2. The relationship between observed (x-axis) and predicted values (y-axis), shown in mg kg−1, of the nutrient
contents (Cu, Fe, Zn, and Mn) of plant samples. RMSE—root mean square error. The observed values are the actual values
obtained, and the predicted values are the values of the variable predicted, based on the regression analysis. Blue and
red points are ‘modeling’ and independent (‘validation’ samples) datasets of measurements, respectively. Black dashed
lines represent the 1:1 line, and blue and red solid lines represent the actual regression curves from the ‘modeling’ and
‘independent’ datasets, respectively.
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4. Discussion

The evaluation of the accuracies and errors of the models is presented in Table 4 (1:1
graphs, between observed and predicted values, are shown in Figure 1; Figure 2). The
lowest RMSE value was used as a criterion for selecting the best model for each nutrient’s
prediction. According to the data obtained in each model tested, it was observed that for
the prediction of Ca and Fe, the best model was the PwR, although LR also presented
good results.

According to the statistical analyses of the regressions (Table 4), no model was able
to accurately predict P and Cu when using pXRF data. Therefore, to establish reliable
correlations with P and Cu contents, further evaluation with other auxiliary variables and
different approaches—such as data fusion with other proximal sensors—might become
necessary, for example, an approach involving visible near-infrared diffuse reflectance
spectroscopy (Vis-NIR) [14–17]. Moreover, those poor results for P and Cu warrant the
evaluation of different models. For example, the use of a stepwise multiple linear regression
model (SMLR) could consider all pXRF-reported elements used as independent variables
for predicting the nutrient contents. Initially, such a model would incorporate all variables
into the model, followed by the removal of the least important/interfering ones, then the
remaining variables would constitute the final SMLR. In our experiment, such a model
was not evaluated because the ‘Soil Nutrient and Metal’ calibration integrates a total of
47 elements. Among them, several elements are not usually encountered in plant samples;
thus, either such elements would need to be replaced by ‘zero’ values, or those commonly
present in both soils and plants must be used. This reinforces the need of developing a
calibration method for ‘Plant and Soil’, that could cover potential elements present in both
materials. However, the use of easier and more accessible models, such as those tested in
our experiment, would be more feasible in practice.

Another reason behind the poor measurements of P could be the fact that the maxi-
mum concentration found in plants was much higher than the maximum concentration
of P in the ‘Soil Nutrient and Metal’ calibration method, even for the ‘modeling’ dataset
(Table 2 and Supplementary Table S1); conversely, Cu measurements are within the con-
centration range of the pXRF probe and provided inadequate predictions (Table 2 and
Supplementary Table S1). Additionally, Ca predictions were quite reliable although maxi-
mum values were also higher than the maximum concentration in the soil method. Interest-
ingly, in the case of Mg, the independent dataset did not agree with the ‘modeling’ dataset,
even when all values were falling into the concentration range of pXRF. These slight draw-
backs in the results—with the additional considerations of the interference of auxiliary
variables and the fusion of data from multiple proximal sensors—emphasize the impor-
tance of defining other prediction models for practical applications and decision making.

For plant samples collected across Oklahoma, US, the net intensities from a pXRF
probe can be used to reliably predict the concentration of most elements, such as K, S,
Zn, and Mn. For this, the simple linear equations showed in Table 3 can be used. For
practicability, Ca and Fe do not require the use of PwR for nutrient concentration predictions
(the use of PwR is only needed if higher accuracy is required); thus, equations presented in
Table 3 can be used as well. Other regression models were tested, since P and Cu provided
very poor linear predictions; however, neither of them succeeded in better predicting their
concentrations via a pXRF probe.

For our instrument, since a calibration method of a pXRF probe covered the plant
and soil nutrient concentrations, reliable measurements and predictions can be used for
both materials. Some refinements would be encouraged in the development of such a
calibration method, taking into account the many matrixes and heterogeneities of the
different samples. Worst case scenario, soil and plant samples must only be processed,
and no acid digestion is required to analyze either total soil nutrient contents or plant
nutrient contents, if a pXRF probe is used. In that case, samples would skip the wet
chemical digestion involved and would undergo measurements directly from the process.
In addition, a positive scenario of measuring samples onsite can be encouraged, since recent
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literature has shown positive results of a pXRF probe’s measurements on fresh leaves [4]. In
this context, studies of environmental concern would be capable of measuring potentially
toxic metals (PTMs) in soils in situ, while at the same time measuring the uptake of PTMs
by plants—either native or cultivated (for phytoremediation purposes)—using a single
calibration method of a pXRF probe. For agricultural purposes, the same could be done
for accessing nutrient uptake by plants in order to correlate them with the exchangeable
contents of those nutrients in the soil, which can be also predicted from a pXRF probe [6].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11112118/s1, Figure S1: The locations of field research stations of Oklahoma State
University where plant samples were collected; Figure S2: Box plots of ‘excluded’, ‘modeling’, and
‘validation’ datasets. Single results were divided by the average to normalize the data and plot the
variables in the same range. Boxes span the 25th to the 75th data percentiles, whiskers represent
1.5 × the interquartile range, horizontal lines denote the median, squared points denote the mean,
and � denotes the outlier. The horizontal red line separates the dataset from extreme values. Vertical
blue dashed lines highlight extreme values belonging to the ‘excluded’ dataset; Table S1: Summary
of elemental K-edge absorption energies that were scanned under 50 keV pXRF analysis settings.
The pXRF probe’s limit of detection (LOD) and maximum limit for the ‘Soil Nutrient and Metal’
calibration were provided by the manufacturer.
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