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Abstract: A consistent orientation of ginger shoots when sowing ginger is more conducive to high
yields and later harvesting. However, current ginger sowing mainly relies on manual methods,
seriously hindering the ginger industry’s development. Existing ginger seeders still require manual
assistance in placing ginger seeds to achieve consistent ginger shoot orientation. To address the
problem that existing ginger seeders have difficulty in automating seeding and ensuring consistent
ginger shoot orientation, this study applies object detection techniques in deep learning to the
detection of ginger and proposes a ginger recognition network based on YOLOv4-LITE, which, first,
uses MobileNetv2 as the backbone network of the model and, second, adds coordinate attention to
MobileNetv2 and uses Do-Conv convolution to replace part of the traditional convolution. After
completing the prediction of ginger and ginger shoots, this paper determines ginger shoot orientation
by calculating the relative positions of the largest ginger shoot and the ginger. The mean average
precision, Params, and giga Flops of the proposed YOLOv4-LITE in the test set reached 98.73%,
47.99 M, and 8.74, respectively. The experimental results show that YOLOv4-LITE achieved ginger
seed detection and ginger shoot orientation calculation, and that it provides a technical guarantee for
automated ginger seeding.

Keywords: image recognition; deep learning; YOLO; attention mechanism; MobileNetv2; ginger

1. Introduction

Ginger is a perennial herb whose roots are often made into spices and herbs [1,2].
It originated in Asia and is now widely grown in various regions, of which China is the
world’s most productive country for ginger [3,4]. Before sowing, growers need to break
the ginger and cultivate the ginger shoots, thus retaining one to two ginger shoots for each
ginger seed [5]. After plowing, fertilizing, and trenching, the ginger seeds are placed in a
trench [6,7], while ensuring consistent ginger shoot orientation. In China, ginger shoots
generally face southwest, which is beneficial for ginger shoots to accumulate tempera-
ture. This is because ginger is a crop with a high cumulative temperature, and effective
temperature accumulation is more conducive to high ginger production [8]. Furthermore,
consistent ginger shoot orientation ensures that all gingers grow parallel to each other,
effectively avoiding neighboring ginger seeds crowding together and, thus, affecting the
quality and yield of ginger. Ginger sowing mainly relies on manual labor [9], while me-
chanical sowing is less prevalent and still requires manual assistance. At present, ginger
mechanical seeding is commonly realized in the following way: growers first place the
ginger seeds in the ginger seed holding device and then make them fall into the trench
with the help of different forms of conveying device.
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Ginger seeds are treated with medicine to make the color features of the ginger shoots
very unstable before sowing, and traditional object detection methods are unable to meet
the requirements of rapid and accurate identification. Object detection technology has
made remarkable breakthroughs and has been widely applied in the agricultural field with
the rapid development of deep learning technology in recent years [10–14]. The main task
of object detection is to find out the class and location of targets of interest in an image, and
object detection is mainly divided into two categories: one-stage algorithms and two-stage
algorithms. Two-stage algorithms require, first, forming a regional proposal, and then
the object is classified and localized using convolutional neural networks (CNN). Typical
algorithms are Faster-RCNN [15–18], Mask R-CNN [19], etc. Their recognition speed is
slow due to the requirement of multiple detection and classification. On the other hand,
the one-stage recognition speed is relatively fast, so it is more suitable for mobile applica-
tions, because it can directly predict the category and location of objects through features
extracted from the network. Commonly used algorithms include YOLOv3 (you only look
once v3) [20–22], YOLOv4 [23,24], SSD [25], Retina-Net [26], etc. Hou et al. [27] proposed
a ginger shoot identification method based on YOLOv3, but this method only identifies
ginger shoots, resulting in a complex process of calculating ginger shoot orientation, and
it had a redundant backbone network. The backbone network of YOLO [28] is relatively
complex, which makes YOLO unsuitable for direct application in mobile terminals. There-
fore, many researchers have put forward different improved methods for the backbone
network, significantly reducing the model size, while ensuring the accuracy remains largely
unchanged. For instance, they combined YOLOv3 with MobileNetv1 to achieve detection
of fish [29], strawberries [30], and citrus fruit [31]; YOLOv4 with MobileNetv3-Small to
achieve detection of weeds [32]; YOLOv3 with Darknet19 to achieve detection of man-
goes [33], coffee fruits [34], and leaves [35]; and YOLOv4 with CSPDarknet19 to achieve
detection of pear fruits [36].

Recently, the attention mechanism has been widely applied in CNN. In the human
visual system, people usually selectively focus on the parts they are interested in, rather
than the whole scene. Similarly, the purpose of the attention mechanism in neural networks
is to filter out the most critical information for the current task from a large number of mes-
sages. The common attention mechanisms are squeeze and congestion (SE) attention [37]
and convolution block attention module (CBAM) attention [38]. The aforementioned
attention mechanisms have been applied in different networks. For illustration, Kang
et al. [39] added CBAM attention to an Xception network for segmentation of cotton roots;
Xu et al. [40] applied SE attention for classification of fish in a ResNet network; Yang
et al. [41] added CBAM attention to the backbone network of YOLOv4 for detection of
wheat ears; Tang et al. [42] implemented the classification of grape leaves by adding SE
attention to ShuffleNetv1 and v2; and Li et al. [43] implemented the detection of lemons
by adding SE attention to the backbone network of YOLOv3. In addition, one-stage object
detection usually suffers from an imbalance between positive and negative samples, which
is generally solved by adding different weights to them when calculating the loss function.
There are various common methods, such as hard negative mining, online hard negative
mining (OHNM), class balance loss, focal loss [26], etc. Among them, focal loss has been
the most widely used. For example, Liu et al. [44] combined a YOLO network and focal loss
to recognize broken maize, and Li et al. [45] realized the detection of hydroponic lettuce
seedings status by combining focal loss and Faster R-CNN.

Based on the above research, this paper proposes a deep learning method based on
YOLOv4 to implement the recognition of ginger seeds, and which offers improvements
to address some of the problems in the recognition process. First, the YOLOv4 backbone
network is very complex and contains many redundant parameters, making it difficult
to deploy on the mobile terminals of the ginger planter; therefore, we propose the use of
a MobileNetv2 [46] network instead of the original CSPDarknet53 network. Second, the
YOLOv4 network is poor at recognizing ginger shoots compared to the larger target ginger,
and, thus, we introduce a simple and efficient CA (coordinate attention) [47] mechanism.
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In addition, we introduce Do-Conv (depth-wise over-parameterized convolution) [48]
to speed up the network’s training and facilitate the convergence of the model. Finally,
the recognition targets of this network are ginger shoots and ginger, and the difference
in recognition difficulty and target size between them is large. Therefore, we introduce
focal loss to solve the problems of positive and negative sample imbalance and simple and
difficult sample imbalance. The above improvements provide a technical guarantee for the
fast and accurate discrimination of the orientation of ginger shoots in ginger seed images.
The rest of the paper is organized as follows: Section 2 describes the creation of the dataset
and the improvements based on the YOLOv4 network; Section 3 describes the tuning of the
model parameters and the experimental validation of the proposed method; and Section 4
describes the conclusions of this work.

2. Materials and Methods
2.1. Data Processing
2.1.1. Data Acquisition and Annotation

This paper uses ginger seed samples collected from a ginger plantation in Anqiu,
Shandong, China (36.47847◦ N, 119.2189◦ E) on 25 April 2021. The ginger seeds are of
the ‘Baby Ginger’ variety and were germinated for 15 days. Ginger seed images were
captured to accelerate the training and debugging of the ginger seed recognition model,
by using the device shown in Figure 1, which includes a CMOS industrial camera, fill
light, camera stand, computer, etc. The camera model was a MV-EM1400C manufactured
by Micro-vision, with a resolution of 3288 × 3288 pixels; the fixed-focus lens was M1620-
MPW2, the shooting distance was 30 cm, and a total of 500 images in “JPG” file format
were stored. In addition, high luminance, regular luminance, and low luminance images
were acquired separately to test the model recognition ability, for a total of 100 images.
Meanwhile, 500 ginger seed images from a previous study by Hou et al. [27] were used to
enrich the ginger dataset, with an image size of 5472 × 3672 pixels.
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Figure 1. Schematic diagram of image acquisition and annotation.

As shown in Figure 1, LabelImg (https://github.com/tzutalin/labelImg, accessed
on 9 August 2021) was used to label the ginger shoots and ginger separately in “xml” file
format, to determine the orientation of the ginger shoots; and it is worth noting that the
labeled boxes are tightly aligned with the edges of the ginger and ginger shoots. In addition,
the annotation information of each image was stored in a “txt” file, including image path,
annotation box coordinates (image coordinates of the upper left and lower right corners),
and object category. After image annotation, 1000 images were randomly divided into
training and validation sets in the ratio of 80% and 20%, and the remaining 100 images

https://github.com/tzutalin/labelImg
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were used for the model testing. Among them, the validation set was for adjusting the
hyperparameters and monitoring the model for overfitting, and the test set was used for
model evaluation, with no duplication between the above two, to ensure the accuracy of the
model evaluation results. Finally, the ginger images, annotation files, and category labels
were stored in PASCAL VOC format for training the ginger seed recognition network.

2.1.2. Data Enhancement

This paper used online data enhancement for expanding the original ginger seed
images, to improve the model generalization ability and compensate for the insufficient
number of samples. This means that before each batch training, the data-enhanced images
were scaled to 416 × 416 pixels, and then four images were randomly cropped and stitched
into one image using the Mosaic algorithm, thus, serving as training data. Mosaic greatly
enriches the image background and also reduces the demand for GPU memory. The data
enhancement methods are specified as follows: (1) Horizontal flip, mirror flip, and affine
transformation were performed on images, with a 0.5 probability of reducing the effect of
different ginger positions on the recognition results. (2) Image brightness was increased by
1.2 times or decreased by 0.8 times, with a 0.5 probability of reducing the effect of different
illumination levels on the field on recognition results. (3) Image contrast was increased by
1.2 times or reduced by 0.8 times, with a 0.5 probability of better expressing the grayscale,
sharpness, and texture details of the ginger images.

2.2. Overall Technical Route

To achieve accurate real-time detection of ginger and ginger seeds, the technical
solutions proposed in this study are as follows:

1. Construction and training of a YOLOv4-LITE network. This study used the Mo-
bileNetv2 network to replace the original CSPDarknet53, to solve the model redun-
dancy caused by the more complex backbone network.

2. The introduction of an attention mechanism and Do-Conv convolution. This study
introduced an attention mechanism and Do-Conv into YOLOv4-LITE, to improve the
recognition of smaller ginger shoots.

3. Model performance analysis and experimental validation. The performance of the
improved model was tested, and the improvements proposed in this study were
verified and analyzed sequentially.

2.3. Method of Discriminating Ginger Shoot Orientation
2.3.1. YOLOv4 Model

As an end-to-end one-stage object detection algorithm based on regression theory, a
YOLO network can directly predict the bounding box and class of an object. The YOLOv4
network is based on the original YOLO and is optimized for data processing, backbone
network, activation function, loss function, and other aspects to improve the detection
performance and inference speed of the model. Its training process is shown in Figure 2,
which includes the following five parts:

1. Based on Darknet53, CSPDarknet53 borrows the cross-stage partial (CSP) from CSP-
Net and adds a CSP on each of the five residual blocks, which enhances the learning
ability of CNN and can maintain a high performance while lowering the weight of
the network. CBL (convolution, batch normalization, and Leak-ReLU) is the most
common module in YOLOv4 and includes convolutional (Conv) layers, batch nor-
malization layers, and activation layer constructs.

2. This paper adds a spatial pyramid pooling (SPP) structure after CSPDarknet53, which
effectively increases the perceptual field of the backbone network. It uses the maxi-
mum pooling operations with convolution kernels of 1 × 1, 5 × 5, 9 × 9, and 13 × 13,
respectively, to obtain four feature maps in different scales, and then fuses them in a
concatenated manner.
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3. In CNN networks, shallow features contain richer target location information, such as
contours and textures, and less semantic information. However, the deeper features
contain richer semantic information, and the object location information is coarse.
Therefore, our network adopts a feature pyramid network (FPN) structure, which
passes the deep semantic information through up-sampling, thus fusing the shallow
layers’ semantic information and location information.

4. Borrowing from the bottom-up path augmentation method in PANet [49], two-path
aggregation network (PAN) structures are added after FPN, which transmits the
underlying location information by down-sampling, thus fusing location information
with the semantic information of higher levels.

5. YOLOv4 loss function includes bounding regression loss (Lcoord), based on the com-
plete intersection over union CIoU (LCIoU), confidence loss (Lconf), and classification
loss (Lcls). The loss function is formulated as follows:

Loss = Lcoord + Lcon f + Lcls

= λcoord
s2

∑
i=0

B
∑

j=0
Iobj
ij (2− wi ∗ hi)LCIoU

+
s2

∑
i=0

B
∑

j=0
BCE(ci, ĉi)(Iobj

ij + λnoobj I
noobj
ij )

+
s2

∑
i=0

Iobj
ij

B
∑

j=0
BCE(pi,p̂i)

(1)

where λcoord and λnoobj are penalty coefficients; s2 is the number of grids in the feature map;
B is the number of anchor boxes per grid; i is the i-th grid and j is the j-th anchor box; (wi, hi)
and (ŵi, ĥi) are the coordinates of the ground true and the prediction, respectively; BCE(·)
represents the binary cross-entropy loss; Iobj

ij and Inoobj
ij represent whether there is an object in

the j-th anchor box of the i-th grid, if so, then Iobj
ij = 1 and Inoobj

ij = 0, otherwise, Iobj
ij = 0 and

Inoobj
ij = 1; ci and ĉi are the confidence of ground truth and prediction, respectively; pi and p̂i

are the probabilities of the output categories of ground truth and prediction, respectively.
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2.3.2. YOLOv4-LITE Network Design

Based on the features extracted by the backbone network, the YOLO network predicts
object bounding boxes and categories. Moreover, YOLOv4 uses CSPDarknet53, after remov-
ing the final pooling layer, fully connected (FC) layer, and softmax layer, as the backbone
of the feature extraction network. However, with YOLOv4 it is difficult to achieve a high
inference speed in embedded devices, due to its network layer count of 104; requiring a
lightweight network to replace the original complex backbone network. Therefore, this
paper designed a YOLOv4-LITE network, based on the YOLOv4. In addition, MobileNetv1
is a lightweight network proposed by Google, and it uses depth-wise separable convo-
lution instead of traditional convolution. Hence, this paper used MobileNetv2 as the
backbone network of YOLOv4-LITE, which reduces the model size, while maintaining its
performance. The network parameters of YOLOv4-LITE are shown in Table 1.

Table 1. YOLOv4-LITE network parameters.

YOLOv4 No. Type Output Size Stride Numbers

MobileNetv2

- Input 416 × 416 × 3 - -
0 CBL 208 × 208 × 32 2 1

1–4 IRB2 208 × 208 × 16 2 1
5–11 IRB1 104 × 104 × 24 1 2

12–22 IRB2 52 × 52 × 32 2 3
23–37 IRB2 52 × 52 × 64 2 4
38–49 IRB1 26 × 26 × 96 1 3
50–60 IRB2 13 × 13 × 160 2 3
61–64 IRB2 13 × 13 × 320 2 1

65 Conv 1 × 1 13 × 13 × 1280 1 1

SPP
66–68 CBL(F4) 13 × 13 × 640 1 3
69–73 Max-pooling 13 × 13× 640 1 3

FPN + PANet

74–76 CBL 13 × 13 × 640 1 3
77 CBL 13 × 13 × 48 1 1
78 Up-sample 26 × 26 × 48 - 1

79–80 Route + CBL 26 × 26 × 48 1 1
81 Concatenate 26 × 26 × 96 - 1

82–86 CBL(F3) 26 × 26 × 48 1 5
87 CBL 26 × 26 × 16 1 1
88 Up-sample 52 × 52 × 16 - 1

89–90 Route + CBL 52 × 52 × 16 1 1
91 Concatenate(F2) 52×52 × 32 - 1

92–96 CBL(P2) 52 × 52 × 16 1 5

Head
97 CBL 52 × 52 × 32 1 1
98 Conv 1 × 1 52 × 52 × 21 1 1
99 Detection - - 1

FPN + PANet
100–101 Route + CBL 26 × 26 × 48 2 1

102 Concatenate 26 × 26 × 96 - 1
103–107 CBL(P3) 26 × 26 × 48 1 5

Head
108 CBL 26 × 26 × 96 1 1
109 Conv 1 × 1 26 × 26 × 21 1 1
110 Detection - - 1

FPN + PANet
111–112 Route + CBL 13 × 13 × 640 2 1

113 Concatenate 13 × 13 × 1280 - 1
114–118 CBL(P4) 13 × 13 × 640 1 5

Head
119 CBL 13 × 13 × 1280 1 1
120 Conv 13 × 13 × 21 1 1
121 Detection - - 1

As can be seen from Table 1, MobileNetv2 mainly consists of two forms of inverse
residual block (IRB) that use depth-wise (DW) convolution and point-wise (PW) convolu-
tion to extract the image depth features, thus, greatly reducing the time complexity and
space complexity of the convolution operations. Figure 3 is a schematic diagram of the
improved backbone network. As shown in Figure 3, when stride = 1 in DW convolution,
the block is the inverse residual block 1 (IRB1); when stride = 2 in DW convolution, the
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block is the inverse residual block 2 (IRB2). Since the convolutional layer in IRB2 also has
a down-sampling function, shortcut is not used to keep the output dimension consistent.
The above two kinds of IRBs are composed of PW1 convolution, DW convolution, and PW2
convolution. Among them, PW1 convolution consists of 1× 1 convolution, BN, and ReLU6,
and it maps the feature dimension, from low-dimensional space to high-dimensional space,
which is beneficial for feature extraction; DW convolution is composed of 3× 3 convolution,
BN, and ReLU6, and realizes feature extraction; the PW2 convolution is composed of 1 × 1
convolution and BN to map the high-dimensional space to the low-dimensional space.
As the ReLU6 activation function would destroy the features learned by the CNN in the
low-dimensional space, the PW2 convolution is not followed by an activation function.
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2.3.3. Coordinate Attention Module

In this paper, an attention [50] mechanism is introduced to improve the model accuracy,
by selecting the most critical information for the current recognition task from a large
amount of feature information. This is essentially similar to human selective vision, in
that it quickly scans the global image to obtain the information that needs to be focused
on, while suppressing information that is not helpful for the current task. Therefore, the
attention mechanism is applied after DW convolution in the IRB of MobileNetv2. Figure 4
shows the schematic diagram of different attention mechanisms, with an input feature map
of size: Height (H) ×Width (W) × Channel (C).
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Figure 4b shows a schematic structure of SE attention. As the convolution operation
only integrates the information of the spatial dimension and channel dimension within
a local perceptual field, it does not obtain enough information between global channels.
Therefore, first, global average pooling (GAP) is used to compress feature 1 (H ×W × C),
which has global spatial information, into feature 2 (1 × 1 × C), which has a global
receptive field. Second, two FC layers are used to reduce the complexity and improve the
generalization ability of the network; where the first FC is used to reduce the dimensionality
of the feature map, and the second FC is used to recover the feature dimensionality. Third,
feature 3 (1 × 1 × C) is obtained after the sigmoid activation function, which characterizes
the importance of each channel. Finally, the channels of feature 3 are multiplied one by one
with feature map 1 to obtain the final output re-weight (H ×W × C), which is equivalent
to adding a weight to each channel of feature 1, thus giving greater weight to information
helpful for the task at hand. In conclusion, SE attention improves the sensitivity of the
network to channel features and contributes a performance improvement by lowering the
computation needed, but it ignores the importance of the location feature information.

Figure 4c shows a schematic structure of CBAM attention, including the channel
attention module (CAM) and spatial attention module (SAM). On the one hand, CAM is
similar to SE attention, in that it first compresses the input feature 1 (H × W × C) into
feature 2 (1× 1× C) using GAP and global max pooling (GMP), which adds a layer of GMP
with respect to SE attention; thus, increasing the feature dimension once again. Second,
feature 2 is first reduced in the channel dimension to C/16 using a convolution layer, and
then its dimension is raised using 1 × 1 convolution to obtain feature 3 (1 × 1 × C). Third,
feature 4 (H ×W × 1) is gained after the sigmoid activation function, which characterizes
the importance of the channel feature information. Finally, the Re-weight1 (H ×W × C)
is obtained by multiplying feature 4 with feature 1. On the other hand, in the SAM, first,
Re-weight1 is compressed into feature 5 (H ×W × 1) and features 6 (H ×W × 1) along the
channel direction, using GAP and GMP, respectively, and then they are concatenated based
on the channel direction to obtain feature 7 (H ×W × 2). Second, the channel dimension
of feature 7 is reduced to 1 using 7 × 7 convolution, resulting in feature 8 (H × W × 1).
Third, feature 9 (H ×W × 1) is gained after sigmoid activation, and this characterizes the
importance of the location feature information. Finally, the final output Re-weight2 (H ×W
× C) is obtained by multiplying feature 9 with Re-weight1, which is equivalent to adding a
weight to the location features of Re-weight1, so that the location helpful information for
the current task has greater weight.

The above two attention mechanisms are widely used in lightweight networks and
have achieved good results. However, SE attention only considers the channel feature in-
formation and ignores the location information, and CBAM attention only introduces local
location information through global pooling. Therefore, this paper presents a coordination
attention mechanism, in which location information is embedded into channel attention to
avoid adding a large amount of additional computational overheads, while ensuring better
attention results for MobileNetv2. Figure 4d shows a schematic structure of CA attention,
consisting of coordinate information embedding and coordinate attention generation. Each
channel is first encoded along two spatial directions, vertical and horizontal, using GAP
with pooling kernel sizes (H, 1) and (1, W), respectively, to avoid a possible loss of valuable
location information by global pooling in channel attention. The above enables the input
feature map 1 (H ×W × C) to be compressed into a pair of direction-aware features, includ-
ing feature 2 (H × 1 × C) and feature 3 (1 ×W × C), and they have global receptive field
and precise location information. Second, feature 4 (1× (H + W)× (C/16)) is obtained after
concatenating feature 2 with 3 and reducing the feature dimension using 1×1 convolution.
Then, feature 4 is decomposed into feature 5, 6 along the spatial dimension, and their
feature dimensions are elevated using 1 × 1 convolution, and the above operation greatly
reduces the model complexity and computational overhead. Finally, features 5 and 6 are
multiplied with feature 1 after sigmoid activation to obtain the final output Re-weight2
(H ×W × C).
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2.3.4. Do-Conv Convolution

In general, the network depth is usually increased by combining linear convolutional
layers and nonlinear network layers to increase the network expressiveness, since succes-
sive linear layers increase the overfitting phenomenon of the network and can be replaced
by a linear layer. This paper replaces part of the traditional convolution in FPN + PANet
with Do-Conv convolution, speeding up the network training and promoting the model
convergence.

The operation of Do-Conv is shown in Figure 5, where * denotes conventional convolu-
tion and ◦ denotes depth-wise convolution. In model training, the depth-wise convolution
of weight DT ∈ R(M×N)×Cin and weight W ∈ RDmu×Cin×Cout are first computed to obtain
the new weight W′ ∈ RM×N×Cin×Cout , and then the conventional convolution of weights
W′ and input features P is calculated to get the final output O, and it should be noted
that Dmul ≥ M× N. On the basis of traditional convolution, Do-Conv adds an additional
depth-wise convolution, to form an over-parameterized convolution layer, which increases
the number of parameters compared to conventional convolution. Although the number of
parameters increases, the multi-layer linear operations used in over-parameterized convo-
lution can be combined into a single-layer convolution operation during model inference,
because both conventional convolution and depth-wise convolution are linear operations,
thus speeding up the inference.
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2.3.5. Focal Loss Function

In the YOLOv4-LITE network training, it is necessary to first set a suitable intersection
over union (IoU) threshold. When the IoU between the anchor box and all targets ground
truth is less than the IoU threshold, this anchor box is regarded as a negative sample; and
when the target centroid falls in a grid, the anchor box in the grid that has the maximum
IoU with the target is a positive sample. In one-stage object detection, the loss function is
dominated by many negative samples due to the imbalance between positive and negative
samples during training, so the network cannot measure the prediction results. Therefore,
this paper introduces a focal loss function to solve the problems of unbalanced positive
and negative samples, and unbalanced simple samples and difficult samples. The focal
loss function is calculated as follows:

FL(pt, y) =
{

−α(1− pt)
γ loga pt, y= 1

−(1− α)pt
γ loga(1− pt), y= 0

(2)
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where y is the category label and pt (pt ∈ [0, 1]) is the probability that the t-th sample is y.
Considering the imbalance of positive and negative samples in the ginger image, most of
the area is the background, and the number of positive samples (ginger and ginger shoots)
is much lower than the negative samples (background). Thus, the paper adds a weighting
factor α (α ∈ [0.5, 1)) to the cross-entropy loss function so that a smaller number of positive
samples take up more weight, and thus the model can learn more helpful information. On
the other hand, considering the imbalance between simple and difficult samples, ginger
samples are more facile to identify than ginger shoot samples. Focal loss combines the idea
of OHNM, by adding a weighting factor (1 − pt)γ to the loss function, and γ can be used
to reduce the loss of simple samples by adjusting the variation range of weighting factor
(1 − pt)γ, and its value range is generally [0, 5]. For instance, when yt = 1, the pt of the
simple sample is close to 1, so (1 − pt)γ is close to 0. In contrast, (1 − pt)γ of the difficult
sample is close to 1. The above description implies that the addition of (1 − pt)γ makes
the difficult samples have a more significant impact on the loss function. If γ is too small,
it will not increase the loss of difficult samples. On the contrary, if γ is too large, it is not
conducive to model training. In the end, γ = 2 and α = 0.75.

2.3.6. Identification Method of Ginger Shoot Orientation

First, to discriminate the orientation of ginger shoots, the location of the ginger shoots
and ginger is predicted using the ginger identification network. Second, this paper uses the
area of the ginger shoot prediction box as the criterion to select ginger shoot and only selects
the largest one to discriminate the orientation of ginger shoot. As shown in Figure 6, a
right-angle coordinate system is established with the center point O of the ginger prediction
frame as the origin, the center point of the ginger prediction frame is A (dx, dy), and the
orientation angle of the ginger shoot is θ, where “+” indicates counterclockwise rotation
and “−” indicates clockwise rotation.

θ′ = arctan(
|dy|
|dx| ) (3)

θ =



+θ′, dx > 0 dy ≥ 0
+π/2, dx = 0 dy > 0
+(π− θ′), dx < 0 dy > 0
−(π− θ′), dx < 0 dy ≤ 0
−π/2, dx = 0 dy < 0
−θ′, dx > 0 dy < 0

(4)
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2.4. Method of Discriminating Ginger Shoot Orientation

The paper uses precision (P) and recall (R) as evaluation criteria to assess the model
performance. In addition, the F1 score can be used to equalize the precision and recall.
They are defined as shown in Equations (5)–(7).

P =
TP

TP + FP
× 100% (5)

R =
TP

TP + FN
× 100% (6)

F1 score =
2PR

P + R
× 100% (7)

where true positive (TP) means that the prediction result and ground truth are both positive
samples; false positive (FP) indicates that the prediction result is positive and ground truth
is negative; and false negative (FN) means the prediction result is negative and ground
truth is positive.

However, depending on different task requirements, precision and recall can be ad-
justed to various values during model testing by adjusting different confidence thresholds,
and average precision (AP), as the average of precision under different recalls can be used
to measure the inherent model properties. In this study, since there are two categories, the
ginger shoot and ginger seeds, mean average precision (mAP) was adopted to measure the
model performance. The equations of AP and mAP are as follows:

AP =
∫ 1

0
P(R)dR× 100% (8)

mAP =
1
2

1

∑
m=0

∫ 1

0
Pm(Rm)dRm × 100% (9)

where m is the number of categories and R is the integral variable used to calculate the
region’s area under the P-R curve. AP50 is the AP value when the IoU threshold is 0.5;
therefore, mAP50 is the average of AP50 for all categories. Similarly, mAP75 is the average of
AP75 of all categories, mAP50:95 is the average of AP50:95, and AP50:95 is the average of ten
values of AP50, AP55, AP60, . . . , AP95.

In addition, the model performance was measured using model size, Params, and
giga Flops (GFlops) [50,51], where Params is the total number of parameters required to
train the network, and GFlops is the amount of computation in the network. The lower the
GFlops, the less computation and execution time needed for the model.

3. Results and Discussion

The experimental environment of the YOLOv4-LITE network during model training is
shown in Table 2. In addition, the model optimizer was SGD (stochastic gradient descent),
the momentum was 0.95, the weight attenuation coefficient was 5 × 10−3, the batch size
was 16, the trained epochs were 200, and the model weight was reserved once for every 10
epochs. At the beginning of the network training, the learning rate was increased linearly
from 0 to 1 × 10−4 in the first 20 epochs, to make the network converge to a better initial
state quickly, and it was then reduced to 1 × 10−6 by using the cosine annealing decay
method; the formula and diagram of the learning rate are shown below.

lr =

{ lrmax
Twarm

t t ≤ Twarm

lrmin +
1
2 (lrmax − lrmin)

(
1 + cos( t−Twarm

Ttotal
)
)

t > Twarm
(10)

where t and Twarm are the current epochs and warmup epochs, respectively; lrmin and lrmax
represent the minimum and maximum values of the learning rate, respectively; Tcur and
Ttotal represent the current and total epochs, respectively.
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Table 2. Experimental environment.

Configuration Parameter

CPU Intel core I9-9900K
GPU Nvidia GTX 2080Ti GPU

Operating system Ubuntu 18.04
Accelerated environment CUDA 10.0 CUDNN 7.0

Development environment PyCharm professional edition
Library Python 3.6, Pytorch1.5.1, Opencv4.2.0

As shown in Figure 7b, the dimensions of the labeled boxes were clustered using the
K-means algorithm before network training. K-means uses an IoU-based metric with the
objective function of minimizing the distance between the labeled boxes and the clustered
boxes, and resulted in nine clustered boxes, (24, 24), (33, 42), (39, 57), (51, 64), (46, 84),
(217, 172), (287, 204), (237, 252), and (329, 285), which were then used to initialize the anchor
boxes in the ginger recognition network. When network training, a multi-scale training
method is used to improve the model generalization, which means randomly training the
model with images of different sizes every 10 batches, while ensuring that the image edge
length is a multiple of 32. Moreover, this paper also used mixed-precision training, based
on single-precision and half-precision, to speed up the network training and reduce the
GPU memory usage.
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3.1. Result Analysis

As is well-known, the loss function evaluates a model by measuring the error between
the predicted and the true values. Figure 8a shows the loss value change curve of YOLOv4-
LITE with a total training time of 3.5 h. As seen in Figure 8a, the loss value dropped
rapidly from 1441.33 to 3.71 in the first 40 epochs and then slowly oscillated down and
stabilized as the epochs increased. Eventually, the loss value stabilized at around 1.80, and
the model converged at the same time point. Figure 8b shows the P-R curves for an IoU
threshold of 0.5. Both the P-R curves for ginger shoots and ginger enclosed almost the
entire parameter space, which indicated that the model had achieved a sufficient average
precision. It can also be clearly seen from Figure 8b that YOLOv4-LITE performed better in
ginger recognition than the ginger shoots of smaller targets.
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The test results of the validation set were analyzed, and the confidence threshold
(conf-thresh) was taken as 0.5, and the IoU threshold was taken as 0.5. The test results
are shown in Table 3, and the number of the ground truth in the test set was 435. The
improved model had improvements in terms of precision, recall, and F1-score. Specifically,
the precision increased by 0.49%, recall increased by 1.15%, and F1-score increased by
0.82%. The analysis of TP, FP, and FN in the test results revealed that the improved model
performance mainly depended on the increase of TP and the decrease of FP and FN.

Table 3. Validation set test results after network improvement (conf-thresh = 0.5, IoU = 0.5).

Model TP FP FN P/% R/% F1-Score/%

YOLOv4 414 23 21 94.74 95.17 94.95
YOLOv4-LITE 419 21 16 95.23 96.32 95.77

As shown in Figure 9a,b, this paper compared the original and manually labeled
ginger seed images to better evaluate the recognition effect of the YOLOv4-LITE network.
The final recognition results are as shown in Figure 9c, where the sizes of the test images
are all 416 × 416 pixels, and the green and white rectangular boxes represent the predicted
boxes for the ginger and ginger shoots, respectively. As can be seen in Figure 9, the ginger
seed images were well recognized. The image above had only one ginger shoot, and the
coordinates of the center points of the prediction boxes for ginger and shoot were (204, 207)
and (220, 317), respectively. After the calculation of Equations (3) and (4), δ = −81.7◦, the
ginger seed was rotated clockwise by 81.7◦ to ensure consistent ginger shoot orientation.
The below image had two ginger shoots, as shown by the red arrows, only the ginger shoot
with the larger prediction box was chosen. The coordinates of the center points of the
prediction boxes for ginger and shoot are (191, 192) and (270, 238), respectively. After the
calculation of Equations (3) and (4), δ =−30.2◦, the ginger seed should be rotated clockwise
by 30.2◦.

Due to the very irregular shape of the ginger seeds and the fragility of the ginger
shoots, we designed a ginger seed transport channel. After placing the ginger seeds on
the channel, detection of the seeds and the orientation of the ginger shoots was achieved
using an image acquisition device and a mobile terminal device. Next, an end-effector
with vacuum suction cups was used to pick up the center of the ginger prediction box and
adjust the orientation of the ginger shoot in real-time to ensure that the ginger shoots were
facing the same direction.
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3.2. Discussion of the Improved Algorithm

This paper conducted the following three comparison experiments [52] to demonstrate
the contribution of the proposed improved refinements to the YOLOv4 network: compari-
son experiments after replacing the feature extraction network, experiments with different
attention mechanisms, and comparison experiments after adding Do-Conv convolution.

3.2.1. Performance Comparison of Feature Map Extraction Network

The test results of the network are as shown in Figure 10, after replacing the original
backbone network of YOLOv4 with the MobileNetv2 network. This strategy achieved
good results, as mAP50 was reduced by only 0.37%. Moreover, compared to the original
CSPDarknet53, the network computation was greatly reduced after using MobieNetv2 as
the backbone network. As shown in Table 4, the model size, Params, and GFlops before
and after the improvement of the backbone network were compared, and, notably, when
calculating Params and GFlops, the network input images were of the same size, and
416 × 416 pixels was chosen for this paper. As can be seen from Table 4, YOLOv4-LITE
using MobieNetv2 as the backbone network was much smaller than the original network,
in terms of model size, Params, and GFlops; reducing these to 149.6 MB, 15.95 M, and 21.14,
respectively, which indicated that the improved network had a lower computational time
and spatial complexity.

Table 4. Experimental results under different feature extraction networks.

Backbone
Network

AP50/%
(Shoot)

AP50/%
(Ginger) Size/MB Params/M GFlops

CSPDarknet53 98.22 99.99 264.6 63.94 29.883
MobileNetv2 97.45 99.99 115 47.99 8.741
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3.2.2. Different Attention Mechanisms Comparative Experiment

In this paper, SE, CBAM, and CA attentions were inserted in the IRB module of
MobileNetv2 to verify the effect of CA attention by comparing their test results. The test
results shown in Figure 11 indicated that after using three kinds of attention modules, the
AP50 of ginger shoots increased by 2.64%, 3.52%, and 5.95%, respectively, while the AP50 of
ginger remained basically unchanged. It is worth mentioning that the AP of ginger shoots
improved most significantly after using CA attention, with AP50 increasing from 91.5%
to 97.45% and AP50:95 rising from 41.63% to 52.32%, indicating that the addition of CA
attention to YOLOv4-LITE effectively improved the detection accuracy of ginger shoots.
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3.2.3. Analysis of Do-Conv Convolution

This paper conducted a comparison experiment with Do-Conv instead of the conven-
tional convolution in the FPN + PANet structure, to study the effect of Do-Conv convolution
on the ginger seed recognition network. The loss curves of the YOLOv4-LITE network are
shown in Figure 12, which indicate that the network had a faster convergence rate after
using Do-Conv convolution in the training process. Moreover, the network test results
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after using Do-Conv are shown in Table 5, which show that the AP50 of ginger shoots
improved by 2.18%. Furthermore, although the Do-Conv convolution layer added an extra
depth-wise convolution to the conventional convolution, it did not increase the Params
and GFlops. The reason for this was as follows: during the model training, D and W were
folded into W′(W′ = DT ◦W) with the same shape as the conventional convolution kernel
that they replaced, so the Params and GFlops of the model did not change in the inference.
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Table 5. Testing set experiment results using Do-Conv.

Model AP50/% (Ginger
Shoot) AP50/% (Shoot) mAP/% Params/M GFlops

YOLOv4-LITE 97.45 99.99 98.72 47.99 8.741
YOLOv4-LITE

(without Do-Conv) 95.27 99.99 97.63 47.99 8.741

3.3. Performance Comparison of the Overall Algorithm

Figure 13 shows the mAP of the various improved algorithms. Compared with
YOLOv3 and YOLOv3-tiny [53], YOLOv4 had a better target detection performance, with
a mAP50 of 99.1%, which was 1% and 1.8% higher than the others, respectively. When
replacing the backbone network with MobileNetv3 [54], Ghost-Net [55], and MobileNetv2,
without using other improved strategies, the network detection performance dropped
dramatically, with a mAP50 of only 92.75%, 93.13%, and 93.54%. After using CA attention
or Do-Conv based on MobileNetv2, the mAP50 reached 97.63% and 97.25%, respectively;
while, after using CA attention and Do-Conv at the same time, mAP50 reached 98.73%. In
summary, this study effectively enhanced the network performance through the series of
improvements mentioned above.

For the recognition of ginger seed images, we tried to use the traditional color differ-
ence segmentation method to segment ginger shoots and recorded the color components
of ginger seed images using RGB (red green blue) and HSV (hue saturation value). It
was found that the H component is less influenced by the illumination and can achieve
the segmentation of ginger shoots. However, the ginger seeds were treated with drugs
resulting in unstable color characteristics of the ginger shoots, thus making the error rate of
identification high; therefore, the color difference segmentation method is not very reliable
for the segmentation of ginger shoots.
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Unlike the traditional color difference segmentation method, Hou et al. proposed a
fast recognition method for ginger shoots based on YOLOv3. The method avoided the
manual design of feature extractors and had good robustness, and the AP of ginger shoots
reached 98.2%. However, it only identified ginger shoots and did not identify ginger,
resulting in a complex calculation process for ginger shoot orientation. In addition, its
backbone network was complex and contained a large number of redundant parameters,
making it difficult to deploy on ginger seeders and also restricting the development of
automated ginger seeders to some extent.

Based on the constructed ginger seed dataset, the backbone network of YOLOv4 was
replaced by MobileNetv2, which greatly reduced the network parameters and compu-
tational effort. Meanwhile, CA attention and Do-Conv convolution were added to the
backbone network to improve the detection of ginger shoots and the convergence speed
of the model. The experimental results showed that mAP50 reached 98.72% and mAP75
reached 82.46%.

4. Conclusions

To achieve ginger seed detection and ginger shoot orientation discrimination, this
paper introduced an improved YOLOv4-LITE network to detect ginger shoots and ginger
in ginger seed images and then discriminated ginger shoot orientation by calculating the
position of the largest ginger shoot relative to the ginger. First, this paper replaced the
original CSPDarknet53 backbone network with MobileNetv2, which significantly reduced
the network parameters and computation; thus, facilitating migration of the network to a
mobile terminal. Second, a coordinate attention mechanism was added into the backbone
network to improve the detection of ginger shoots. Third, Do-Conv was adopted to replace
some traditional convolutions, thus improving the model convergence speed. Finally, the
paper also used focal loss to solve the imbalance between positive and negative samples
and the imbalance between simple and difficult samples in the ginger dataset.

The experimental results showed that the mAP50 of the proposed improved YOLOv4-
LITE network reached 98.73%. Compared with the original YOLOv4, its Params and
GFlops decreased by 15.95 M and 21.14, respectively, while the mAP50 was only reduced by
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0.37%. This indicates that using the improved backbone network and Do-Conv convolution
is effective for improving the performance of the ginger seed recognition network.
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