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Abstract: Digitization and technological transformation in agriculture is no longer something of the
future, but of the present. Many crops are being managed by using sophisticated sensors that allow
farmers to know the status of their crops at all times. This modernization of crops also allows for
better quality harvests as well as significant cost savings. In this study, we present a tool based on
Deep Learning that allows us to analyse different varieties of plums using image analysis to identify
the variety and its ripeness status. The novelty of the system is the conditions in which the designed
algorithm can work. An uncontrolled photographic acquisition method has been implemented. The
user can take a photograph with any device, smartphone, camera, etc., directly in the field, regardless
of light conditions, focus, etc. The robustness of the system presented allows us to differentiate, with
92.83% effectiveness, three varieties of plums through images taken directly in the field and values
above 94% when the ripening stage of each variety is analyzed independently. We have worked with
three varieties of plums, Red Beaut, Black Diamond and Angeleno, with different ripening cycles.
This has allowed us to obtain a robust classification system that will allow users to differentiate
between these varieties and subsequently determine the ripening stage of the particular variety.

Keywords: agriculture digitalization; precision agriculture; computer vision; plum orchard;
Prunus salicina

1. Introduction

Extremadura is a region in Spain with the highest agricultural potential and one of the
largest exporters of raw materials in the field of agriculture. Our region is characterized
by its exports, among others, of fruits such as plums. In the European Union as a whole,
Spain is considered to be one of the largest producers of plums. In recent years, the volume
of tonnes produced has been growing, most of which is destined for export, thus creating
an strong foreign market. According to the the United Nations Food and Agriculture
Organization (FAO), production in Spain in 2019 reached 179,840 tonnes of plums, making
it one of the top 13 producing countries in the world. Extremadura, with 4885 ha of area
in production, in 2018 is the leading national producer, with more than 74,000 tonnes. In
Extremadura, growing conditions are particularly favourable, allowing long production
periods from June to September, with a range of varieties of different characteristics.

The consumption of fruit and vegetables, both on the domestic and foreign markets,
increasingly demands strict quality parameters, as well as the objective of preserving fresh
produce on the market for a longer period of time. This makes it necessary to provide
technicians and growers with the necessary knowledge to ensure that their products are
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of the highest possible quality and to predict certain characteristics of the fruit at an early
stage, as well as the most likely harvesting date. These predictions will allow growers
to adopt corrective agronomic measures, if necessary, and to know the characteristics of
their harvest and, therefore, adapt to market demand. The optimum state of commercial
ripeness at harvest will be key to achieving an appetising product after transport and
storage until it reaches its destination. This information would be fundamental for the
organisation of the campaign, which is very complex.

Currently, a great part of fruit evaluation in the field is conducted by visual inspection
techniques in combination with destructive measuring equipment, which not only takes
time away from production, but also consumes valuable technician time that is sometimes
not available, which has great limitations. This traditional method depends on the expe-
rience and criteria of the person carrying out the evaluation. There are many varieties of
plums, each with a different ripening cycle and different external characteristics. Having
a model that allows us to know the state of ripening and/or growth of the fruit would
allow us to adjust agronomic practices, such as irrigation, adapted to the varieties, thus
optimising water consumption. It seems reasonable that with the technology currently
available, systems should be implemented which, supported by image analysis and com-
puter processing, facilitate decision making by using the available information captured
quickly, automatically and reliably. Therefore, these processes should now be supported
by computer tools that allow farmers to make a decision to improve production, based on
artificial intelligence.

The study presented in this paper is foccused on three plum varieties, Red Beaut, Black
Diamond and Angeleno, present at the Agrarian Research Center La Orden-Valdesequera
(CICYTEX, Center for Scientific and Technological Research of Extremadura) (http://
cicytex.juntaex.es/es/centros/la-orden-valdesequera, accessed on 17 November 2021).
The main objective of this study is to identify the variety of the plums by means of an
image captured by a conventional photo camera in order to subsequently detect the state of
ripeness of the plum. We can focus this problem as a typical image classification problem
with some peculiarities. The problem can be divided into two different sub-problems, both
based on image recognition and classification: recognising the variety of plum in an image
and, subsequently, recognising the ripening state of the plum. Each variety has its own
ripening cycle, which implies that the study of ripening must be conducted independently
for each of the varieties used in this study. We can observe two independent problems or
we can build a chain of two recognition systems where we have to previously recognise
the variety in order to estimate ripening. In order to understand the high difficulty level of
this combined task, it is very important to highlight the nature of the images; they have
been acquired in the field and in its natural environment. Unlike the images collected in a
laboratory, these images have no position or illumination control, and they have different
backgrounds: Sometimes there are shadows or high brights, and at many times there are
partial occlusions, different zoom sizes and multiple fruits in the same picture. All of these
image features turn the recognition and classification process into a more complex and
more difficult achievement. In Figure 1, we can observe examples of plum images and the
natural conditions of their acquisition process. The images are organized into a matrix,
where each row illustrates one variety and its ripening cycle. The image classification
challenges are deeply related with the image diversity along the same variety and the
image similarities between different varieties. The three varieties are very similar in early
stages, and they become more diverse in advanced ripeness stages, particularly in color;
the shape remains similar for untrained eyes.

In the last few years, a new area of study known as deep learning (DL) has emerged
in the field of machine learning. This new area encompasses different techniques that are
fundamentally characterized by a hierarchical learning process in which high-level struc-
tures are automatically built starting from low-level ones across multiple layers, starting
from the raw data (i.e., the pixel values of an image). DL appears as an alternative to
traditional machine learning methods, which require a careful selection of hand-designed
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features from which the classifier can detect patterns by means of one, two at most, non-
linear transformation of those features. These classical methods have proven to be quite
effective for solving simple or well-delimited problems but encounter difficulties in dealing
with real-world complex problems such as object and speech recognition. By contrast,
DL techniques have hugely improved the state of the art in such complex tasks. In this
study, we focus on a DL technique for supervised learning known as deep convolutional
neural networks (CNN) [1,2], which has shown outstanding performances for visual objects
recognition. CNN benefits from the spatial structure of input data, that is, the images.

Figure 1. Plum variety and ripening example images: first line from left to right indicates the ripening
of Angeleno, second line indicates Black Diamond and third line indicates Red Beaut.

We propose a two-stage system based on DL with Convolutional Neural Networks
(CNN). Among all the architectures available for CNNs applied to image classification,
we used AlexNet, which has already proved is efficiency in this kind of problem [3].
Our system will address distinct problems using the same input images: plum variety
recognition and plum ripening estimation in weeks. We tackle each problem independently
by using the same methodologies and taking advantage of acquired knowledge. Each stage
of the problem uses a CNN based system; however, in order to estimate plum ripening, we
need to know its variety because ripening cycles are distinct. Thus, we can use the output
of the first classification system, which is variety, to chose the correct network to perform
ripening classification. As a machine learning system, it needs to be trained and tested in
order to figure out its accuracy quality.

This paper is organized as follows: In Section 2, we present the state of the art for
this kind of problem. In Section 3, we make a system overview. In Section 4, we detail
our methodology for the described problem. In Section 5, we describe and present our
experiments and results. Finally, in Section 6, we present our conclusions.

2. State of the Art

We consider artificial intelligence as a set of modern computing techniques permit-
ting us to perform tasks based on data capture, analysis and decision making in a fully
automated manner, but in many areas of application we are far from that reality. Artificial
intelligence was postulated in 300 BC by Aristotle, who was the first to describe “in a
structured way a set of rules, syllogisms, which describe a part of the workings of the
human mind and which, when followed step by step, produce rational conclusions from
given premises.” The next great contribution to artificial intelligence can be found in Alan
Turing’s article “On computable numbers, with an application to the Entscheidungsprob-
lem” [4] where he establishes the theoretical basis for computer science, which will later
give rise to the artificial intelligence we know today.

The great boom of artificial intelligence applied to the field of computer vision has
allowed a significant advance in a multitude of problems. We can find synergies between
agriculture and artificial intelligence [5] as well as the incipient use of the so-called Internet
of Things in agriculture [6–8] and prediction models [9].

As we can observe, artificial intelligence is beginning to take hold in agriculture and
more recently in crops such as plums. Papers [10–12] present results demonstrating the
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effectiveness of artificial intelligence applied to agriculture, most notably in Japanese plum.
Works such as those presented in [1–3,13–18] present results in the field of computer vision
and DL; however, works that are precise and that research ripeness analysis of fruit using
images collected in real environment and without capture constrains are insufficient.

By studying the use of computer vision techniques focused on food analysis, we can
find a multitude of works such as those presented in [19–23]. The great advances in this
field allow us to study substantial information about the nature and attributes of the objects
present in a scene, in this case food. However, we cannot only study objects on the basis of
an RGB image that provides colour, shape, texture and so on. An important new feature
is to be able to study regions of the electromagnetic spectrum where the human eye is
unable to operate, such as in the ultraviolet (UV), near infrared (NIR) or infrared (IR). These
analysis techniques are included in the so-called non-destructive techniques, which make
it possible to analyse a food without having to destroy it unlike other techniques used in
laboratories where it is necessary to destroy the food in order to extract certain quality
indicators.

The general pattern of plum fruit growth has been described as a double sigmoid with
three stages (Khan, 2016; Zuzunaga et al., 2001). In early maturing varieties, the time of
fruit development is very short, and there is no clear definition of the beginning and end of
each stage. However, although the fruit remains on the tree for several months in some
late maturing varieties, some studies show a continuous growth of the fruit without clearly
differentiating each stage as it occurs in other stone fruit trees [24–27].

The rentability of a fruit orchad is based on having detailed information on the
phenology and physiology of the crop, as well as on the agro-ecological conditions imposed
by specific growing conditions. The production of Japanese plums is mainly destined for
fresh consumption, and its sale is based on its size, colour and flavour, which reflect the
quality of the product. It is essential to know the agronomic behavior and the sensitivity
to water stress in each stage of the fruit during the preharvest period in order to ensure
optimal fruit quality [28,29].

3. System Overview

Our system tackles two different but related problems using DL based on CNNs [30].
It uses an image acquired in the plum’s natural environment and estimates the variety of
the fruit regardless of the ripening stage, and it is also able to estimate the ripening week
of the plum since it knows its variety. We consider it a two problem system or a chained
system with two stages: plum variety classification and ripening week classification.

As illustrated in Figure 2, each classification problem is based on a CNN [31] or
transfer deep learning methods [32]. The first stage is dedicated to the first described
problem: the plum variety. We used a CNN with three classes, one for each plum variety:
Angeleno, Black Diamond and Red Beaut. The second stage may work independently with
previous human labeling or in a chained mode using the classification output of the first
stage. Depending on the fist stage output, one of the CNNs of the second stage is activated
to perform ripening week classification: 10 weeks cycle for Angeleno, 3 weeks cycle for
Black Diamond and 11 weeks cycle for Red Beaut. In summary our system can work in
three different modes: plum variety classification (first stage), ripening week classification
(second stage) or in a two-stage combined mode to perform plum variety classification
and correspondent ripening week. Moreover, with respect to the two-stage system sketch
and architecture, there are a lot of important features and decisions that confer unique
characteristics and result in accurate results. Among them are image preprocessing, im-
age normalization and representation, data augmentation processes, CNN layers and
architecture and the training methodology. All of them will be detailed described.
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Figure 2. Plum variety and ripening classification system sketch with two stages: plum variety
classification and ripening week classification.

3.1. Variety Problem

Plum variety study is the fist stage of our sketch in Figure 3. It presents tremendous
challenges due to the nature of images, as explained before. The high similarity between
variety classes, in particular, in the earlier ripening weeks is a huge challenge for correct
classification even for a farmer’s trained eyes (see Figure 3). This fact along with the high
variability in images of the same variety during the ripening cycle transforms the task
of variety recognition in natural environments and in different ripening stages on a very
complex and difficult achievement.

Figure 3. First week images similarity for three variety classes: first row—Angeleno; second row—
Black Diamond; third row—Red Beaut.

3.2. Ripening Problem

The other important study conducted in this paper is plum ripening. Each variety
of the plum, Angeleno, Red Beaut and Black Diamond, has a different ripening cycle.
Ripening is related to the time of the fruit from fruit set to the time of harvest. Our aim
is that given a picture of a plum and knowing its variety, we will be able to predict its
ripeness measured in weeks. Each variety has a different ripening cycle in weeks so it
is fundamental to know the variety of the plum in an image; thus, we can use human
knowledge in order to label correctly the images or use output of the study introduced in
Section 3.1. Therefore, to make a complete study of plum ripening, we have to develop
three classifier systems, each one dedicated for each variety according to the system sketch
illustrated in Figure 2.

The second part of the system sketch is the ripening classification system that has, in
account, the previous classification of the plum variety. Figure 4 shows a set of images of
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Angeleno variety during a ripeness cycle, it is possible to observe that images of contiguous
weeks are very similar. As in the variety problem, this becomes a very hard task even for
farmers’ trained eyes due to the similarity and to the large number of classes that, for some
cycles, reach 11 weeks.

Figure 4. Angeleno ripening cycle images: from top left (early) to bottom right (late).

4. Methodology

Therefore, identifying plum variety in an image as well as the ripening cycle is an
ambitious objective that we accomplished with notable results by using DL with convo-
lutional neural networks. Consequently, CNNs use an architecture based on three key
principles [15]: local receptive fields, shared weights and bias and pooling layer.

AlexNet, which was first proposed by Alex Krizhevsky et al. in the 2012 ImageNet
Large Scale Visual Recognition Challenge (ILSVRC-2012) [33] is a fundamental, simple
and effective CNN architecture, which is mainly composed of cascaded stages, namely,
convolution layers, pooling layers, rectified linear unit (ReLU) layers and fully connected
layers. Specifically, AlexNet is composed of five convolutional layers: The first layer, the
second layer, the third layer and the fourth layer are followed by the pooling layer, and the
fifth layer is followed by three fully connected layers. For the AlexNet architecture, the
convolutional kernels are extracted during the back-propagation optimization procedure
by optimizing the entire cost function with the stochastic gradient descent (SGD) algorithm.
Generally, the convolutional layers act upon the input feature maps with the sliding
convolutional kernels in order to generate convolved feature maps, and the pooling layers
operate on the convoluted feature maps to aggregate the information within the given
neighborhood window with a max pooling operation or average pooling operation. The
reason for why AlexNet is successful can be attributed to some of the practical strategies,
for instance, the ReLU non-linearity layer and the dropout regularization technique.

The proposed method for the two-problem classification process is based on deep
learning (DL) using the convolutional neuronal network AlexNet architecture. Two differ-
ent approaches were considered: one based on DL process from scratch and another one
based on transfer learning using the same CNN architecture AlexNet.

The standard AlexNet architecture is prepared for a 1000 classes problem: eighth-layer
fully connected layer of output 1000 neurons (since there are 1000 classes). We transform
the eighth layer into three classes, and we use the SoftMax function to compute the loss.

4.1. The Image Datasets

In this subsection, we present our image database and the construction processes
of the datasets used for the two studied problems. In machine learning processes, the
construction of the dataset is a very important task: It includes the definition of the training
set validation set and test set, and it may include some image preprocessing, such as
resizing cropping or filtering. Our image database was collected in the orchard during
two ripening cycles and during 2 years, 2018 and 2019, with favorable climatic conditions
(without rain) by using a regular camera, and it includes images of three varieties of plum:
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Angeleno, Black Diamond and Red Beaut. Each variety is also divided into balanced
ripening classes as described in Table 1.

Table 1. Plum image database.

Year Variety Weeks Images Size Format

Angeleno 10 4773 1200 × 800 JPEG
2018 Black Diamond 3 1440 1200 × 800 JPEG

Red Beaut 11 4320 1200 × 800 JPEG

Angeleno 8 1860 1200 × 800 JPEG
2019 Black Diamond 7 2430 1200 × 800 JPEG

Red Beaut 6 2630 1200 × 800 JPEG

The original images were collected in the plum orchard in real environments without
image characteristics concerns. All images are have 1200 pixels in width and 800 pixels in
height; however, in the majority of the cases, there is a lot of unnecessary information in the
image because the fruit (plum) occupies a small part of the image that is typically centered
despite as shown in Figure 5. The Black Diamond variety images were only collected in
three different weeks for the 2018 year. Due to logistic restrains, the natural ripening cycle
is of 2 to 3 months.

Figure 5. Plum image in its natural environment (1200× 800) and the plum portion of the image
with the fruit.

As mentioned before, we will use neuronal networks for the classification process,
particularly a CNN called AlexNet that was previously described. This network was
designed for classification problems, and its architecture uses RGB images as inputs. The
input images sizes are typified as squares of 256 pixels; thus, images with different sizes
have to be transformed to the input square size. Usually, resizing or crop transformations
or both are used to accomplish the desired size. During our study, we tested two different
techniques for image size transformation, which resulted in two different datasets with
different preprocessing techniques. We constructed two different datasets using different
preprocessing techniques, each one with advantages and disadvantages. As depicted
in Figure 6, the first method consists of making a direct resize of the original images,
from 1200 × 800 to 256 × 256. This kind of preprocessing does not maintain the image’s
proportions and causes distortion; however, it retains all image information, including the
borders. The obtained dataset will be called direct resized (DR). The second method used
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for preprocessing is illustrated in Figure 7, and this technique begins with a proportional
resize of the image where the image proportions are kept. An image resize is computed
by transforming the smaller dimension from 800 pixels to 256 pixels; the larger dimension
is also resized but in the same scale, 256

800 , obtaining a dimension of 384 pixels. Thus, the
intermediate image is 384× 256. Then, the image is cropped in its horizontal dimension,
(384−256)

2 ; this means a crop of 64 pixels at each image side. This method keeps the image
proportions without any distortion; however, some parts of the image are lost, particularly
the border sides. As observed in Figure 5, the portion of the image that contains the fruit
is usually relatively centered, and the crop almost does not affect the image information.
This last method results in another dataset used in the experiments, and we will refer to
it as resized and cropped (RC). Thus, for the purpose of plum variety classification, we
developed two different datasets from the original database of images: DR and RC.

Figure 6. Direct resize process (DR) of an image: from 1200 × 800 to 256 × 256.

Figure 7. Resize and crop process (RC): Image is resized maintaining the proportions by the smaller
dimension (height), then cropped to obtain a 256 × 256 final image.

Therefore, the main goal of training a CNN is not to learn the data used during training
but rather to be able to correctly classify unseen samples. A successful training session
with the entire set would guarantee the required accuracy of the samples of the dataset,
but this does not imply being able to obtain a similar or even acceptable level of accuracy
on new data. Considering this, we can divide the dataset into two subsets: the training set
and the validation set [34]. However, the original dataset could also be partitioned in order
to produce a third subset: the testing set.

The training set is used to fit the model. The network weights will be updated from
it. The training set must be representative so that the model can learn the most important
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features to distinguish all classes. The accuracy on the training set tells us if the network
configuration used is able to learn the data. Thus, if the model does not perform well on the
training data, this means that the network architecture must be reviewed and improved.

A validation dataset is a dataset of examples used to tune the hyperparameters (i.e.,
the architecture) of a classifier. It is sometimes also called the development set or the “dev
set.” An example of a hyperparameter for artificial neural networks includes the number
of hidden units in each layer. The testing set (as mentioned above) should follow the same
probability distribution as the training dataset.

In order to avoid overfitting, when any classification parameter needs to be adjusted,
it is necessary to have a validation dataset in addition to training and test datasets. For
example, if the most suitable classifier for the problem is sought, the training dataset is
used to train candidate algorithms, and the validation dataset is used to compare their
performances and decide which one to take; finally, the test dataset is used to obtain
performance characteristics such as accuracy, sensitivity, specificity, F-measure and so on.
The validation dataset functions as a hybrid: it comprises training data used for testing but
neither as part of the low-level training nor as part of the final testing.

An application of this process is in early stopping, where the candidate models
are successive iterations of the same network, and training stops when the error on the
validation set grows and chooses the previous model (the one with minimum error). A test
dataset is a dataset that is independent of the training dataset but that follows the same
probability distribution as the training dataset. If a model fit to the training dataset also fits
the test dataset well, minimal overfitting has taken place. A better fitting of the training
dataset as opposed to the test dataset usually points to overfitting.

A test set is, therefore, a set of examples used only to assess the performance of a fully
specified classifier such as many other aspects in DL; the train–test–validation split ratio is
also quite specific to this use case, and it becomes easier to make judgement as we train and
build more and more models. In our cases, we have three classes with unbalanced datasets,
and all of them have the same importance in the classification problem and training; thus,
it is important to keep the proportion or the probability distribution of the three classes in
all subsets, training validation and test. In our case, we decided to use 84%, 8% and 8%,
respectively (see Figure 8).

Figure 8. Dataset split ratio visualization.

4.2. Preprocessing

Some preprocessing operations are required to apply to the input images inputs,
usually related with size or with the range of value representations. Typically, AlexNet
receives images represented on an RGB colour space; this means that the images are three-
dimensional arrays or a set of three matrices usually named channel one matrix for each
Red, Green and Blue channel. The typical AlexNet implementation uses square images
227× 227 pixels as patches of the original images. However, we may consider the image
size 256 × 256, since almost every implementation cropped the original image for data
augmentation purposes. We used square RGB images 256× 256× 3 with pixel values in
the range [0; 255]. To provide a more balanced set, it is common to zero center the pixel
values. This can be performed simply by shifting all pixel values from the interval [0; 255]
to [−127.5; 127.5]. A more sophisticated approach computes the average image or the
mean pixel of the training set and subtracts one of them from all input images. The mean
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image is represented by an image with a crop size, and the mean pixel is represented by a
vector with three elements, [MR MG MB], where each element represents the mean value
for the image channel. In this manner, we obtain a pixel value representation that is zero
centered. These input intervals may cause the weights from the first layers, which are those
that are more directly affected by the magnitude of the inputs, to receive large updates,
causing an erratic learning procedure. It is common to use a normalization process to
transform the values in the range [−127.5; 127.5] to a normalized range [−0.5, 0.5], and we
used a multiplier (1/255) for scaling. We can also use normalization by standard deviation,
which will provide a dataset dependent interval, but on average the range remains similar.
Figure 9 illustrates the pipeline process with 2D data for better visualization from the
original data to the re-centered data and the value range normalization.

Figure 9. Image preprocessing operations example for 2D data: (Left) original data, (Center) zero
centered data and (Right) normalized data pixel.

For image pixel values preprocessing, we applied two subtraction techniques during
our experiments stage, the mean image subtraction (MI) and the mean pixel subtraction
(MP), and we created Figure 10. We demonstrate the mean image representation obtained
for a training dataset, and we also show mean pixel values computed for the same training
dataset.

Figure 10. Preprocessing input images for data centering: (Left) mean image; (Right) mean pixel.

4.3. Data Augmentation

Showing different variations of the same image to a neural network helps prevent
over-fitting as it is forced to not memorize the images. Often, it is possible to generate
additional data from existing data in an easy manner [35]. Among the many possibilities,
we used two combined techniques: image translations and image reflections. The image
translations consist of extracting random square patches from the 256× 256 image, usually
227× 227. Each patch is also horizontally reflected (mirroring), Figure 11. During our
experiments, different square crop dimensions were used and tested. These two operations,
translation and reflection, increase the size of our training set, and we used the resulting
patches as inputs of the network (input images are 227× 227× 3-dimensional because we
assumed the square crop of 227 pixels).
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Figure 11. Augmentation data process, translation and reflection. (Left) Original 256 × 256 pixel size
image with a random square crop designed in yellow. (Right) Resulting crop image (227× 227) and
the horizontally mirrored image.

During the test stage, the prediction was performed by using several cropped smaller
images extracted from the original and their horizontal reflection: five extracted images
sized 224× 224, four for each image corner and a centered one. These five images and the
reflections are classified, and the final result is made by using the average of the result of
the final softmax layer of the network. In Figure 12, we are able to observe six original
images and the resulting augmented dataset by using image random crops and horizontal
mirroring.

Figure 12. Augmentation data process with 2 random crops. (Left) Six image subsets of the orig-
inal training set. (Right) Augmented dataset resulting from 2 crops and horizontal reflection for
each image.

During the plum variety problem study, we had more then a 1500 images per class
in the worst scenario, and some classes had more than 4000 images. However, for the
ripening study, the number of classes is larger for each variety, and the total number of
images is smaller once we had to split the plum dataset into three independent datasets.
For the Angeleno ripening classification, we have a total of 4773 images for 10 ripening
classes that correspond to a mean of 477 images per class. Aware of this potential problem,
we applied an additional data augmentation process based on image rotations that have a
larger base for a better training process. Each original image suffers a positive and negative
rotation with 30◦ before the resize and crop processes; therefore, we multiply by three the
number of images for each class, achieving a larger image dataset that is important for the
network training stage in DL. The process is illustrated in Figure 13.
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Figure 13. Additional data augmentation based on image rotation applied on Angeleno images. Each
line is composed of the original image, the positive rotate image and the negative rotate image.

4.4. Networks Architecture

Our two classification problems use a CNN architecture based on AlexNet [3] with
slight changes. Moreover, in the AlexNet layers, we are able to observe the kernels as well
as the ReLUs and max pooling processes. The CNN is built by using eight layers and
their corresponding weights: the first five layers are denominated convolutional layers
(conv), and the following three layers are fully connected layers (FC). The last layer output
is computed using a n-way softmax function. This softmax layer computes a probability
distributions over the n classes (labels) used. For the variety classification problem, the
number of classes is three. Although for the ripening problem, the number of classes
proceeds from 3 to 11. To describe the network architecture and related processes, take
as example the variety problem with three classes. For the remaining networks of the
ripening problem, it is sufficient to change the number of classes according to each case.
The first layer is a convolutional layer, and it computes several convolution between the
227 × 227 × 3 input image and 96 filters or kernels sized 11 × 11 × 3; the convolutional
process uses a stride of four pixels. An example of those training kernels obtained for the
plum variety classification problem is shown in Figure 14.

The second layer, also a convolutinal layer, receives the output of the previous layer
after a process of maximum overlap pooling and uses 256 kernels with sizes of 5 × 5 × 48
with respect to the convolutional process. The third layer uses the output of the second
layer after the maximum overlap pooling process and convolves it with 384 kernels of
size 3 × 3 × 256. The fourth convolutional layer uses 384 kernels with 3 × 3 × 192 , and
the last convolutional layer has 256 kernels of size 3 × 3 × 192. When the max pooling
process is used, there is also a normalize process. Each of the following fully connected
layers contains 4096 neurons, and the last layer performs a three-way softmax according
the example in Equation (1).

y =

2.0
1.0
0.1

→ S(yi) =
eyi

∑i e
yi
→ p =

0.7
0.2
0.1

 (1)
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The Softmax transforms the y values into p probabilistic distribution values over three
class labels. Our network uses the average across training cases of the log-probability of
the correct label under the prediction distribution to compute loss [3]; it is equivalent to
the cross-entropy (Equation (2)).

L = −
M

∑
i=1

3

∑
c=1

(yc,i · log(ŷc,i)) (2)

The goal is to minimize the loss function (L), where c represents the image class, and
i is the image number in the training set with M images. The ŷ values are the model’s
prediction (i.e., the output of the softmax for a class), and y values correspond to the
class labels: one-hot encoded, zeros or ones. During the training process, we used back
propagation to compute the gradient, and stochastic gradient descendent (SGD) [36] is
used as optimization method, namely first order optimizer; this means that it is based on
analysis of the gradient of the objective. Consequently, in terms of neural networks, SGD
and backpop are often applied together to make efficient updates. The updating rule for
weights (w) during the training process is based on SGD, modeled by Equations (3) and (4).

vi+1 := 0.9 · vi − 0.0005 · ε · wi − ε ·
〈

∂L
∂w
|wi

〉
Di

(3)

wi+1 := wi + vi+1 (4)

i represents the iteration number, v is the momentum variable, ε is the learning rate
and

〈
∂L
∂w |wi

〉
Di

is the average of the ith batch Di of the derivative of the objective with

respect to w, evaluated at wi [3].

Figure 14. 96 convolutional kernels of size 11 × 11 × 3 learned by the first convolutional layer on the
227 × 227 × 3 input images for the plum variety problem (3-classes).

4.5. Transfer Learning

Transfer learning generally refers to a process where a model previously trained on
one problem is used in some way on a second related problem.

In DL, transfer learning is a technique whereby a neural network model is first trained
on a problem similar to the problem that is being solved. One or more layers from the
trained model are then used in a new model trained on the problem of interest. Transfer
learning has the benefit of decreasing the training time for a neural network model and
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can result in lower generalization error. The weights in re-used layers may be used as the
starting point for the training process and adapted in response to the new problem. This
usage treats transfer learning as a type of weight initialization scheme. DL systems and
models are layered architectures that learn different features at different layers (hierarchical
representations of layered features). These layers are then finally connected to a last layer
or a group of layers, usually fully connected to obtain the final output. This layered
architecture allows us to utilize a pre-trained network without its final layer or layers as a
fixed feature extractor for other tasks (Figure 15).

Figure 15. Transfer learning diagram based on features extraction layers and classification layers:
(left) the original CNN AlexNet model; (right) the transfer learning new model with 2 different new
layers in the classification zone.

Our type of problem constitutes a typical image classification problem; thus, we used,
as a basis for the transfer learning process, the AlexNet architecture and a pre-trained
model. Considering the layer architecture of AlexNet, we used a natural subdivision into
two groups of layers; the first five convolutional layers compose feature extraction, and the
last two fully connected layers are responsible for using those features to produce a valid
classification of the image. Thus, we built our transfer learning model by using part of the
AlexNet pre-trained model, and we used the five initial layers with weights and biases
previously trained for the ILSVRC2012 image classification competition. We substitute
the last two fully connected layers by two new similar layers (fc7 and fc8), as shown in
Figure 15. The last layer uses softmax to compute classification and loss during training. To
train the new model, we used the pre-trained model values for the bottom layers (feature
extractor), and we randomly initialized the newly added layers. During the training stage,
we used different learning rate multipliers for different layers. We used a larger learning
rate multiplier (×10) in the new fully connected layers. In this manner, we ensure that
the classification layers suffer larger and faster changes during the training process, and
the convolutional layers from the feature extractor have smaller and finer changes. This
process is denominated fine tuning.
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5. Experiments and Results

To conduct the experiments, we take in account the two problems studied, variety and
ripening, in addition to the combined two-stage problem where we predict the ripening in
weeks of a plum using an image without previous know of its variety. All the experiments
were performed in a server by using a graphics card “NVIDIA GTX 1080 Ti” for the training
stage and test stage. Therefore, this section will be divided into three different sub sections:
Section 5.1 analyzes the variety classification problem from scratch by using deep transfer
learning. Then, we present the experiments for the ripening problem in Section 5.2. Finally,
we present the results for the combined two-stage problem in Section 5.3. The results
obtained during the experiments for the first problem were used to configure parameters
for the next problem, and the same approach was used for the second and third (combined)
problems.

5.1. Variety

Our first problem is plum variety image classification. Using DL, it is important to
notice that the images are collected in the field and, thus, in the fruit’s natural environment,
with trees and leaves. Additionally, the fruit images are tokens of different weeks and
years; thus, they are in different ripening stages (from the fruit set with small size to the
time of harvest). For the plum variety study, we will use two different approaches, both of
them based on CNN AlexNet. The first technique consists of training the network from
scratch with different hyper parameters. The second methodology is based on transfer
learning using a pre-trained model.

5.1.1. Original CNN

We used the CNN AlexNet architecture to make our first experiments by training the
network from scratch. This set of experiment was our first approach to tackle this problem,
which is a typical image classification one. The network architecture slightly changed, and
we substituted the last fully connected layer by one, with three outputs computing softmax.
Each output corresponds to a class of our three classes problem: Angeleno, Red Beaut and
Black Diamond.

To perform the training process, we used the 2018 image database (Table 1). From
this group of images, by using different image preprocessing techniques, we created two
distinct image datasets: DR based on resizing and RC created by using a resize and crop
process, both described in Section 4.1. Both datasets have a training set, a validation set
and a test set size of 84%, 8% and 8%, respectively.

We tested another two parameters related with image transformations in our first
set of experiments: the crop size for data augmentation and image normalization. Both
techniques are described in Section 4 and are data transformation processes for better
representation or augmentation data. We tested crop sizes of 227 and 200 pixels, and we
tested also the normalization process using the mean image (MI) and mean pixel (MP). The
other parameters were kept constant at a certain learning rate (0.01), and the number of
epochs for training was 300. All parameter value combinations were tested, and the results
are presented using mean accuracy in percentage and standard deviation (Table 2).

All the experiments have results in the range [87%, 89%]. These are mean values of
10 repetitions with standard deviation of less than 1.5%, which indicates that the random
component inherent to the initialization of the network parameters does not affect accuracy
results in a significant manner. The accuracy results are those obtained by using the
validation dataset disjoint from the training set; however, some preliminary conclusions
can be made. The experiments that use mean pixel (MP) have slightly better performances
over those who use mean image (MI). The RC dataset works better with 227 crops and
the DR dataset has better results with 200 crop size. This is due to the image process
transformations used to build each dataset; the RC has already a crop in width. We also
conclude that our network with best accuracy uses the RC dataset, with a crop size of
227 and normalization process based on MP with LR of 0.01. We computed the confusion
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matrix for our three classes problem by using our best network parameters. Two confusion
matrices, usual and normalized, were made by using the test subset (8%) of the dataset
(unused and disjoint). The detailed results can be observed in Figure 16.

Table 2. Experiment results for the plum classification problem using DL from scratch with different
parameters values, 2 different datasets (RC and DR), 2 normalization methods (mean image and
mean pixel), w different crop sizes for data augmentation (227 and 200), learning rate of 0.01 and
300 epochs during training. Mean accuracy results and standard deviation were obtained from 10
repetitions of each experiment.

Network/Method Data Set Crop Size Normalization Accurracy (%) S.D.

AlexNet From Scratch

RC 227 MP 88.32 0.58

RC 200 MP 87.73 0.35

RC 227 MI 87.54 1.36

RC 200 MI 87.98 0.38

DR 227 MP 87.34 0.58

DR 200 MP 88.21 0.74

DR 227 MI 87.66 0.21

DR 200 MI 87.99 0.16

Figure 16. Confusion matrices for the best experiment results: RC, 227 and MP. Three classes:
Ang—Angeleno; BD—Black Diamond; RB—Red Beaut. (left) Normalized; (right) normal.

It is possible to observe that Angeleno is the most accurate class, and Red Beaut is the
worst in terms of accuracy with a 15% gap; it is also related with the number of images
of each class used on the training stage and proportional to those used on testing. The
confusion matrix allows us to calculate other evaluation metrics; we computed precision,
recall and F-measure for each class using the data presented in Figure 16. The Angeleno
class was 0.932, 0.927 and 0.929, respectively. The Red Beaut class was 0.709, 0.678 and
0.693. The Black Diamond class was 0.852, 0.870 and 0.861. The system’s overall F-measure
was 0.869. For further analysis and experiments, we will consider the mean pixel as a
normalization process as well as the use of the RC dataset.

5.1.2. Transfer Learning

The next set of experiments is based on the transfer learning technique. We used a pre-
trained model of AlexNet that includes part of the architecture and part of the weights, and
we introduced some changes. We trained the entire network with some parameterizations
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(Section 4.5). Based on the scheme presented in Figure 15, we introduced some changes in
the top layers, particularly to the top two layers.

For transfer learning, we substituted the last fully connect layer (fc8) for a new one
with three outputs (one for each class). We also substituted the penultimate layer (fc7)
for a new identical layer. In this manner, the first six layers are imported from the pre-
trained model including weights and biases, and the last two layers are replaced; thus, they
have no trained values. We could replace all the classification layers from the model (last
three) (see Figure 15) by using the feature extractor from the pre-trained model (first five
convolutional layers); however, preliminary tests showed that the last two layers or even
only the last one possess better results for this kind of classification problem.

Thus, we used two different network models for the transfer learning process: The
first one only replaced the last fully connected layer, and the second replaced the last two
fully connected layers. In both cases, they use the feature extractor output, illustrated in
Figure 17, and are computed by using an example image. These outputs are passed by a
pooling processor for data dimension reduction and will be the inputs for the classification
part composed of the fully connected layers. We also introduced a learning rate multiplier
for the new layers (10 times).

The new set of experiments for the transfer learning method take in account the results
of the previous set of experiments presented in Table 2. There, we saw that the MP method
for normalization stands out, as well as the combination of RC with a crop size of 227 and
DR with crop size of 200 with a slight advantage to RC. We used three different image
databases, one from 2018 and the other from 2019; finally, a larger one that combine images
collected during those 2 years was used.

In Table 3, the results obtained for the validation datasets after training the networks
with the expressed parameters values are presented. Some parameters stay constant for all
sets of experiments: mean pixel for normalization, learning rate multiplier (10×) for new
layers, 300 epochs for each experiment and 10 repetitions. We trained the 2018 database
image using the two different technique described earlier, the resize and crop(RC) and
direct resize (DR), and we used the parameters values that achieved the best results in the
previous experiments (Table 2). The dataset RC with a crop size of 227 and dataset DR with
a crop size of 200 both used the mean pixel (MP). The RC dataset obtained more than 0.4%
in accuracy compared with DL, achieving 93.66%. We also tested the influence of one or
two completely new layers in the transfer learning process. We conclude that the use of two
new layers is slightly better in terms of accuracy, which is 93.86% compared with 93.66%.
Therefore, we took in account the obtained results and extended the experiments to the new
image databases, which is from year 2019 and the combination of 2018 and 2019. We kept
the best parameters values tested before: dataset process RC, crop size 227, normalization
using MP and two new layers. We obtained the following results: for year 2019, accuracy
was 88.93%, and for the combined years 2018 and 2019, accuracy was 91.66%.

Table 3. Experiment results for the plum classification problem using transfer learning with 3 different image data bases:
results for mean accuracy and standard deviation from 10 repetitions for each experiment.

Network/Method Data Set Year Crop Size Normalization N. Layers Lr(X) Acc. (%) S.D.

AlxNet TL

RC 2018 227 MP 1 10 93.66 0.11

DR 2018 200 MP 1 10 93.26 0.54

RC 2018 227 MP 2 10 93.85 0.13

RC 2019 227 MP 2 10 88.93 0.04

RC 2018/19 227 MP 2 10 91.66 0.14

The results shown in Table 3 are expressed in accuracy percentage, obtained from
the validation sets. We used the network configuration with the best performance for the
2018 database, and we kept the network parameters for the 2019 database and for the 2018



Agronomy 2021, 11, 2353 18 of 26

and 2019 joined database in order to perform more detailed tests. We tested the networks
using the test sets for each image database, and we calculated the confusion matrices for
the three cases Figure 18. For the 2018 database, we obtained an overall accuracy of 93.4%,
and the Angeleno class is the most accurate, reaching 96.5%, in contrast to Red Beaut,
which had 86.0%. Finally, the Black Diamond variety had 92.3%. The gap of almost was
10%, which is derived from the number of images of each class that made up the dataset.
Classes with fewer images had worst accuracy results: In this case, the Black Diamond
image dataset was smaller than one-third of the other two classes (Table 1). This fact results
in an increase in the probability of overfitting, and this may occur at an earlier stage of
the training process. When overfitting occurs, the accuracy results for training are not
extended for the unused test-set. The 2019 database is even smaller than the 2018 one, and
the accuracy is 88.4%; in this case, the class with less images and less accuracy is Angeleno.

Figure 17. Convolutional layer 5 (conv5) output. 256 matrices 13 × 13, before overlapping max pool.

Figure 18. Normalized confusion matrices for transfer learning experiments with the best results
using 3 different image databases. Results obtained after learning process and applied to test datasets:
(left) 2018 dataset, (center) 2019 dataset and (right) 2018 and 2019 combined dataset.

Finally, we built a general dataset combining the images from 2018 and 2019 after
training. The result obtained for the classification process using the test dataset was 90.1%.
Here, we can observe that the Red Beaut class is the most accurate, 93.3%; it is also the class
with the highest number of images, which is almost 7000. For all three image databases
used, the accuracy results are higher then 90%, which is a very secure result for this kind
of classification problem, using images captured in real fruit environment. Using the
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data depicted in the confusion matrices (Figure 18), we computed precision, recall and
F-measure for the 2018/2019 dataset for each class, and we obtained the following results:
Angeleno (0.915, 0.905 and 0.910), Black Diamond (0.920, 0.838 and 0.877) and Red Beaut
(0.847, 0.933 and 0.889). The methodology based on deep transfer learning presents better
results than the methodology based on training the network from scratch. As explained
earlier, the fruit images have a high variation; however, the network performs well, as
observed in Figure 19 (where nine images per class correctly classified by the system are
depicted).

Figure 19. Classification results for the 3 classes problem, with some example images extracted from
the 2018/2019 dataset: (left) Angeleno, (center) Red Beaut and (right) Black Diamond.

5.2. Ripening Classification Process

The classification process is based on convolutional neural networks with an archi-
tecture based on AlexNet, using transfer DL. The images database and subsets are the
same as the previous study (Table 1); however, we will only use the subset of 2018 due
to the labeling process in field. For this problem, the 2018 image database is organized
in a different manner. The image database is divided in ripening weeks for each variety,
resulting in 10, 3 and 11 classes for Angeleno, Black Diamond and Red Beaut, respectively.
In this manner, we will have there networks with more classes and with fewer images,
which a challenge for us. To build the datasets for each of the three networks, we use the
resize and crop process (RC), as well as the split in training validation and test subsets,
described in Section 4.1.

With respect to the ripening study of the three plum varieties, we considered two sets
of experiments: one using the usual data augmentation process also applied to the precious
experiments, based on mirroring and crops, and the other in addition to the usual uses,
with an additional data augmentation process based on positive and negative rotation
described in Section 4.3. The experiments are characterized by the use of transfer learning
with two new final layers. The learning rate multiplier for this new layer is 10×. Each
variety of experiments uses images from the 2018 image database. Each image database is
split into labeled folders, and each folder is for each ripening week. The datasets were built
by using RC with 512 square crop and data augmentation crop size of 227. Each dataset
was also split in training validation and test sets. Images are normalized with MP, the
training stage includes 300 epochs, and it is performed 10 times for statistical purposes.
Mean accuracy and standard deviation are calculated. Table 4 shows the main parameters
and the obtained results. The experiments use the training sets to evolve the networks, and
the final results are calculated over the disjoint validation sets.

Figure 20 shows the graph of the training process of one of the experiments using
500 epochs, particularly for ripening of Angeleno with 10 weeks ripening cycle. Table 4
shows all sets of experiments conducted as well as the results in mean accuracy percentage.
We are able to infer that the additional data augmentation process increases the accuracy
results at over 20%. The accuracy values for the set of experiments without additional
data augmentation are in the range of [72%; 76%], in contrast with the much higher values
obtained using the rotation with additional data augmentation in the range of [94%; 98%].
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The variety Black Diamond with only three classes corresponding to 3 weeks of ripening is
the most accurate, reaching 98%. In addition to the large number of classes for the other
two plum varieties, 10 and 11, the results are very precise: 94.8% for Angeleno and 94.7%
for Red Beaut. We also note the importance of the ratio number of images per class for
an effective training of the CNN, even when using transfer learning. The overall mean
value for accuracy of the ripening problem in knowing the variety is 95.5%, which a very
strong value considering the number of classes, the image acquisition process in the real
environment and the very unperceptive changes in two consecutive weeks.

Table 4. Plum ripeness analysis experiments using the default data augmentation process and using
an additional data augmentation process with 2 image rotations. Datasets are based on RC process;
images are from the 2018 database; ripening weeks and variety; and results of mean accuracy and
standard deviation are in percentages.

Aditional Data Augmentation Data Set Yeqr Weeks Variety Acc. (%) S.D.

None
RC 2018 10 Angeleno 72.80 0.38

RC 2018 3 Black Diamond 75.70 0.58

RC 2018 11 Red Beaut 73.50 0.74

Rotation 2x
RC 2018 10 Angeleno 94.80 0.69

RC 2018 3 Black Diamond 98.00 0.42

RC 2018 11 Red Beaut 94.70 0.41

Figure 20. The graph shows the learning phase of the convolutional neural network for the ripening
problem of Angeleno with 10 weeks cycle during 500 epochs: (blue) plot of the loss for the training
set, (orange) plot of loss for the validation set with a frequency of 10 epochs, (green) plot of the
accuracy for the validation set and (red) plot of accuracy for the validation set considering the top
2 classes.

As in the previous experiments, we also calculated the confusion matrices for each
variety for the ripening problem (Figures 21–23). The Angeleno variety has a ripening
cycle of 10 weeks; thus, we consider 10 different classes for the ripening problem. The
classes located in the extremities of the cycle have better results: first 2 weeks, zero and
one, and last 2 weeks, 8 and 9 Figure 21. These are the classes where there are more fruit
image variabilities. The false negatives of a certain class are false positives of the others,
and they are almost located in adjacent classes, typically one week earlier and one week
later. The Black Diamond variety has 3 weeks worth of documented ripening cycles (the
Black Diamond ripening cycle is 8 weeks long; however, due to logistical problems in
2018, we only documented 3 weeks); thus, the accuracy results are more precise than the
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other varieties, and all ripening weeks have accuracy results higher than 90% Figure 22.
The Red Beaut variety has a ripening cycle that is 11 weeks long, and it is the largest
analyzed; however, the accuracy results stay high. Once again, the first 2 weeks have
stronger accuracy results; then, the results decrease during the intermediate weeks until
they rise again in the last ripening week Figure 23.

Figure 21. Normalized confusion matrix for Angeleno ripening cycle; disjoined test set; 10 weeks,
from week 0 to week 9.

Figure 22. Normalized confusion matrix for Black Diamond ripening cycle; disjoined test set; 3
weeks, from week 0 to week 2.
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Figure 23. Normalized Confusion Matrix for Red Beaut ripening cycle; disjoined test set; 11 weeks,
from week 0 to week 10.

5.3. Variety and Ripening

In the previous two sections (Sections 5.1 and 5.2), we described our approach for
two distinct problems: plum variety and plum ripening, respectively. Both problems were
tackled as independent problems. According to Figure 2, the problem can be divided into
two problems or observed as a combined problem of two stages. Thus, we may consider
the variety and ripening as a chained problem with two stages, where the ripening stage
depends on the variety stage. The combined problem can also be observed as a estimation
problem of ripening of a plum image with unknown variety. We used the combined system
with two stages of CNNs to estimate the ripening week of an image without previous
knowledge of the variety. We used the 2018 sub-database and the RC method for dataset
construction, and the accuracy results were calculated over the unused test set.

Table 5 shows the detailed accuracy results for the overall two-stages system. The
results were divided into three variety classes. Each class contains the partial results for
each ripening week, and the overall for all weeks are shown in bold. The last result is the
overall result calculated for all variety classes, and it reaches 89.4%. Therefore, our two-
stages classification system is able to estimate the ripening week of a plum using an image
acquired in a real environment. It performs the classification task with an overall accuracy
of 89.4%. The most accurate variety class on estimating the ripening week is Angeleno with
91, 48%, followed by Red Beaut with 87.5% and Black Diamond with 85.3%. As expected,
the accuracy results for the combined problem is lower than any of the problems studied
independently (variety or ripening). As far as we know, there is a lack of research in fruit
ripeness analysis using computer vision for images captured in the field and including
the variety problem; however, we may compare our results with [18], which performs
ripeness analysis on palm oil fruit with some constraints in the image-capture process
and presents accuracy results between 80% and 90%. If we consider our one problem
approach (only the ripeness), the obtained results are higher than 94%. Considering the
two problem approach, which includes variety classification and ripeness analysis and is a
more complex classification problem, the overall results reach 89.4%. All the experiments
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include a high time consumption training stage, between 2 and 3 hours depending on the
number of images used; however, classifying a particular image using one of the trained
networks is an almost instantaneous process.

Table 5. Plum variety and ripening study accuracy results in percentage: ripening results by variety,
by ripening week and overall.

Data Set Year Variety Week Acc (%)

RC 2018 Angeleno 0 94.80

RC 2018 Angeleno 1 94.80

RC 2018 Angeleno 2 92.90

RC 2018 Angeleno 3 88.16

RC 2018 Angeleno 4 85.32

RC 2018 Angeleno 5 80.58

RC 2018 Angeleno 6 76.79

RC 2018 Angeleno 7 86.27

RC 2018 Angeleno 8 90.06

RC 2018 Angeleno 9 92.90

RC 2018 Angeleno All 91.48

RC 2018 Black Diamond 0 87.00

RC 2018 Black Diamond 1 80.04

RC 2018 Black Diamond 2 79.17

RC 2018 Black Diamond All 85.30

RC 2018 Red Beaut 0 88.61

RC 2018 Red Beaut 1 86.76

RC 2018 Red Beaut 2 86.76

RC 2018 Red Beaut 3 84.92

RC 2018 Red Beaut 4 87.69

RC 2018 Red Beaut 5 88.61

RC 2018 Red Beaut 6 77.53

RC 2018 Red Beaut 7 85.84

RC 2018 Red Beaut 9 80.30

RC 2018 Red Beaut 9 73.84

RC 2018 Red Beaut 10 90.45

RC 2018 Red Beaut All 87.5

RC 2018 All All 89.4

6. Conclusions

The cultivation of plums in Extremadura is very important, as the main activity of the
region is centred on the primary sector. The digitalization in modern agriculture arrived to
stay, and it is a fundamental tool nowadays. The crops are tracked by set of modern sensors
that provide important information to farmers, allowing them to observe, in real time, the
state of their crops. This modernization process results in important cost savings and in
higher quality harvests. In this research study, we present and detail a research investigation
with a tool based on DL that is able to differentiate three different plum varieties as well as
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their ripeness state by using images analysis. This system novelty consist of unsupervised
and unconstrained conditions with respect to image acquisition. The algorithm was
designed to work with uncontrolled photographic acquisition conditions. Therefore, the
users can take a photograph with any device, camera, smartphone, etc., in the plum’s real
environment, the orchard, regardless of the climatic conditions, light, focus and without
centering or zoom restrictions. The system presents an accuracy of 92.83% for three varieties
of plum by using images acquired directly in the field, Angeleno, Red Beaut and Black
Diamond, with different ripening cycles. The system demonstrates a mean accuracy of
95.5% in the analysis of the ripeness of the plum, with knowledge its variety. This has
allowed us to obtain a robust classification system that will allow users to differentiate
between these varieties and their ripeness week. In future studies, we should try the same
study but by using other more recent network architectures in addition to AlexNet.

The incorporation of artificial intelligence, particularly computer vision-based algo-
rithms, in agriculture will allow farmers and technicians to have decision support systems
available to them thanks to the amount of data that can be analyzed in a short period of
time. The system presented in this article, once implemented in easy-to-use devices for
farmers such as smartphones, will provide them with a tool that will allow them to observe
the state of their orchards. The data presented in this paper are very promising for the
advancement of Extremadura’s countryside.
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