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Abstract: Barley is the primary matrix for malting process of beer production. Farmers count
on increasing cultivation inputs, especially nitrogen fertilization, in order to reach a higher yield.
Nevertheless, an overuse of nitrogen, besides causing environmental damages, can determine a
deterioration of quality traits of malting barley, in particular an increase in grains protein content,
which should range between 10 and 11% as required by the mating industry. Over two successive
years, barley was grown under 4 different nitrogen (N) doses—0 kg N ha−1—N0; 20 kg N ha−1—N20;
40 kg N ha−1—N40 and 60 kg N ha−1—N60, and subject to a biostimulant treatment (Ecklonia
maxima seaweed extract). Barley yield and growth parameters increased with nitrogen and seaweed
application. N40 was already sufficient in the second year to reach the plateau of the highest
production. Biostimulant application increased 17.9% the nitrogen use efficiency, 15.7% the biomass
production, and 17.0% the yield with respect to untreated plants. Our results indicate that a significant
reduction in nitrogen is possible and desirable, combined with the application of a plant-based
biostimulant like seaweed extract, which determines an improvement in nitrogen use efficiency,
assuring a higher production and lower fertilization inputs.

Keywords: biostimulant; malting barley; protein content; nitrogen use efficiency; sustainable agriculture

1. Introduction

Among cereals, barley (Hordeum vulgare L.) ranks fourth for cultivated area and
production, after wheat, rice, and maize [1,2]. Barley is spread worldwide, occupying
about 47 million hectares with an average productivity of 3.0 tons per hectare and a
total production of 147 million tons [3]. In the last few decades, Europe has been the
largest producer of barley, with 60% of the world’s production, while Asia contributes
to 15%, followed by America, which produces 13% [3]. Since ancient times, barley has
had different use-destinations, including use as human food, animal feed, and alcoholic
drink production [4]. In particular, barley is the principal cereal for brewing industry [5–8],
where beer is one of the oldest known alcoholic beverages, and is obtained by fermentation
of malt wort in the presence of yeast. Beer products were found in pottery dating back at
least 9000 years, and brewing is thought to have existed in Egypt 5000 to 7000 years ago [9].
In the last few years, world beer consumption reached 1960 million hL, corresponding
to about 21.5 million tons of malt, at an average conversion rate of 11 kg malt to 1 hL of
beer [9].

Malt is obtained by the germination of barley grains under controlled conditions [10].
It is a process resulting in an increase of bioactive compounds and a modification of barley
grains endosperm due to the cytase enzyme group [11]. In brief, the main steps of the
malting process are as follows: (i) water absorption (swelling); (ii) germination; (iii) stoving
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with hot air for germination interruption; and (iv) stabilization of malted grain [12]. The
quality of malting barley depends on many factors, such as biological, environmental, and
technological factors [13,14], but the protein content in grains is the crucial factor of the
malting quality [15]. Indeed, when grains are low in protein content, brewing performance
may be reduced due to low enzyme activity and poor yeast nutrition [16,17]; instead, grains
with a higher protein content determine a malt with a lower extract yield [18]. Therefore,
the malting industry requires barley grains with an intermediate protein content, at an
optimal range between 10 and 11% [15]. Malt extract is also positively associated with
grain size [18], which is one of the most important parameters in the process of grain
selection by the malting industry. The optimal grain size is individuated as 2.5 mm, where
grains larger than that are known as plump grains [19] or as the retention fraction [20].
In addition, germination energy and grain germination ability are also crucial in order
to achieve high-quality uniform malt [21]. Finally, the obtained amount of malt affects
directly the amount of beer that can be produced [22]; the steps following the malting are:
(i) milling; (ii) mashing; (iii) fermentation; (iv) maturation; (v) filtration; (vi) stabilization;
and (vii) packaging [23].

Barley production and quality are influenced by several management factors, includ-
ing sowing dates, fertilizer rates, and plant density [24]. Nowadays, agriculture requires
frequent and considerable application of fertilizer in order to reach and maintain high
productions; it is estimated that 50 MT of nitrogen fertilizer per year is applied to agri-
cultural land worldwide [25]. However, for malting barley, in addition to achieving high
production, it is crucial not to overcome the grain protein content required by industry, and
therefore the nitrogen management must be accurate; this crop usually requires a nitrogen
content in grains lower than 1.85% [26,27]. Basal nitrogen fertilization, made between
sowing and the end of tillering, increases grain yield of crops and grain protein content,
but decreases grain size, resulting in a decrease in malt extract [19,28]. In addition, other
researches also highlighted that yield increases when nitrogen rate increases, but quality
of malting barley decreases due to the higher protein content in grains [29,30]. Overall,
optimizing N fertilization is a fundamental goal for farmers and the scientific community.
Indeed, an over-application of nitrogen can have dangerous effects both on the environ-
ment, including volatilization, microbial immobilization, runoff, and leaching [25], and also
on crops, such as superfluous vegetative growth, which render the plants more susceptible
to pathogen attacks [31]. Therefore, there is an economic and ecological pressure on farmers
to optimize the N uptake efficiency of crop plants [32].

Plant-based biostimulants offer a possible alternative to traditional agrochemical in-
puts; they are products obtained from organic fresh substances with bioactive compounds,
including vitamins, minerals, chitin/chitosan, amino acids, and poly- and oligosaccha-
rides [33–35]. The action mechanisms of biostimulants are known to elicit plant growth,
carbon and nitrogen metabolism, productivity, and product quality [36,37], but also to
increase the tolerance to abiotic stress [36,38], and to improve nutrient use efficiency [39–41].
Among the several types of biostimulants, seaweed extract is widely used and include red,
green, and brown macro-algae; seaweeds represent 10% of the world total marine produc-
tivity, comprising around 10,000 species [42]. The beneficial effects of biostimulants on
plants can be attributed to direct and indirect stimulation mechanisms [43]. Khan et al. [44]
and Battacharyya et al. [42] reported the ability of seaweed extract to: increase tolerance to
abiotic and biotic stress, increase nutrient uptake, improve crop growth, photosynthesis,
yield, and quality.

Seaweed extracts have found wide use in horticulture as plant biostimulants, but not
much research was carried out on their application on cereals and specifically on malting
barley. Application of seaweed increases the grain yield of barley, as well as a reduction in
nitrogen content of the grains [45,46]. In addition, field studies have demonstrated that the
application of a seaweed extract increases the frost resistance of winter barley [47], as well
as the tolerance to salt stress. Moreover, no studies were found in the literature about the
interaction between biostimulant application and nitrogen rate on malting barley.
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Therefore, the current work was aimed to investigate the effect of different nitrogen
doses and their interaction with biostimulant application on yield and quality traits of
malting barley.

2. Materials and Methods
2.1. Experimental Design, Nitrogen Fertilization Doses, and Biostimulant Characteristics

The experiment was carried out at the Department of Agricultural Sciences of Portici
(Naples, Italy; N 40◦48.87′; E 14◦20.82′; 70 m a.s.l.) for two consecutive years (2018–2019,
I year; 2019–2020, II year). The experimental design was a split-plot design with three
replicates (randomized blocks), with nitrogen treatment considered as the main factor, and the
biostimulant application as the sub-factor. The four different nitrogen (N) fertilization levels
were 0 kg N ha−1—N0; 20 kg N ha−1—N20; 40 kg N ha−1—N40 and 60 kg N ha−1—N60,
and the two biostimulant treatments were treated –Bio and not treated –Control, for a total
of 24 plots per year (4 fertilization levels (F) × 2 biostimulants (B) × 3 replicates); each
experimental plot (replicate) covered 10 m2.

The optimal dose of nitrogen (N60) was calculated according to the Campania Region
fertilization plan [48]. The nitrogen was applied as ammonium nitrate (26%) in a single
application at the beginning of stem elongation stage. At the same phenological phase,
the first biostimulant application occurred, using a commercial plant-based biostimulant,
Kelpak®, marketed by Kelp Products (Pty) Ltd. (Cape Town, South Africa), and control
plants were sprayed with tap water simultaneously. In particular, as reported on the
product label, the used biostimulant is a seaweed extract of Ecklonia maxima (34% w/w),
obtained through ‘cold cell burst’, and characterized by a very high auxin-to-cytokinin
ratio (11.0 mg L−1 and 0.031 mg L−1, respectively) and pH 4.0–4.6; however, more details
of its composition are reported in Di Mola et al. [49] and in Rouphael et al. [50]. During
each of the two growing periods, three applications of biostimulant were made by spraying
the malting Barley plants every three weeks at a concentration of 3.0 mL L−1.

2.2. Crop Practices

The sowing of barley seeds occurred on 4 December 2018 and 10 December 2019;
in both years the pre-crop was lettuce. The chosen variety for the trial was “Exstase”
(Adaglio Sementi, Oviglio (AL), Italy). “Extase” is a variety of distichous barley suitable
for beer production, and is characterized by precocity, high productivity, good resistance
to diseases, and excellent hectolitre weight. In addition, its low protein content makes it
perfect for malting.

According to ordinary practices, no irrigation water was supplied, and neither fertil-
ization (phosphorus and potassium) was required. However, weed and pathogen control
complied with the ordinary practices for barley cultivation. On 5 July and 10 June, barley
was harvested during the first and second year, respectively.

2.3. Experimental Site: Soil and Climate Characteristics

In both years, the physical and chemical analysis of the test soils were made, and
the results are reported in Table 1. Both soils were sandy-loam, according to the USDA
classification, with a high content of organic matter, phosphorus, and potassium.

As a typical Mediterranean climate with a mild winter, the temperatures did not reach
below zero in both years (Figure 1A,B, for first and second year, respectively).

In particular, the mean value of temperatures during the growing periods (from
December 1 to both harvests) was 14.1 ◦C and 13.5 ◦C, for the I and II year, respectively.
However, in the II year, the mean temperature of winter season (December–March) was
higher than that of the I year (11.3 vs. 10.2 ◦C) and similarly for the spring season (April-first
ten days of June, corresponding to II year’s harvest), it was 17.2 vs. 15.8 ◦C, respectively.
This explains the difference in the growing cycle duration of both years: 213 vs. 183 days,
for the I and II year, respectively. Instead, the total rainfalls in the two growing periods
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were 443 and 419 mm, during the I year and II year, respectively, with a quite uniform
distribution in both years.

Table 1. Physical and chemical properties of the soil in both years.

Parameters Unit I Year II Year

Texture
-Coarse sand % 35.9 35.5
-Fine sand % 43.1 43.9
-Silt % 12.0 11.7
-Clay % 9.0 8.9
N-total (Kjeldahl method) % 0.177 0.188
P2O5 (Olsen method) ppm 103.5 377.8
K2O (Tetraphenylborate method) ppm 671.7 1130.6
Organic matter (Bichromate method) % 4.17 3.62
N-NO3 ppm 17.76 66.00
N-NH4 ppm 19.06 29.89
pH 7.45 7.43
Electrical conductivity dS m−1 0.212 0.220
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Figure 1. Maximum and minimum air temperature trends, and rainfall during the two growing
seasons of Barley (2018–2019 = I Year (A); 2019–2020 = II Year (B)). (I, II and III represent 10 days
intervals of each month).

2.4. Growth, Yield Assessments, and Nitrogen Use Efficiency (NUE) Determination

At harvest, a 3 m−2 sampling area was cut and weighed, in order to determine
the total biomass and grain yield, both expressed as tons ha−1; the harvest index was
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calculated by dividing grain yield per total biomass. In addition, on a sub-sample per
each replicate, culms, leaves, and spikes were separated, weighed, and oven-dried until
reaching a constant weight, for determining the percentage incidence of each part on total
dry matter. The spikes were also counted, and plant height was determined.

The NUE was determined as the ratio between grain yield expressed as kg ha−1, and
the sum of N resulting from ammonium nitrate and N present in the soil (kg N ha−1); the
NUE value was expressed as kg kg−1 N.

2.5. Grain Quality Determinations

On three samples of 100 seeds per each replicate, the mean weight of kernels was
calculated and expressed as g 1000 kernels −1. Then, these seed samples were used for
determining the percentage germinability through a germination test on Petri dishes
for 15 days. In addition, hectolitre weight, which is a measure of grain ripening, was
determined and expressed in kg hL−1, and on a 50 seeds sample per replicate, the grain
diameter was also measured. Finally, nitrogen content of the grains was determined by the
Kjeldahl method [51], and the data were used for calculating protein content, according to
the following formula [52]:

protein (%) = N content × 6.25

2.6. Satistical Analysis

All data were subjected to the variance analysis (3 way ANOVA) by SPSS software
package (SPSS version 22, Chicago, IL, USA), using a general linear model. The nitrogen
treatments were considered as the main factor, and the biostimulant application as the
sub-factor (split-plot). Means were separated according to the Duncan’s Multiple Range
Test (at p < 0.05 and p < 0.01). The relationship between nitrogen use efficiency and N
fertilization rate was investigated as a linear regression analysis.

3. Results
3.1. Growth Parameters

The statistical analysis highlighted the significant effect of N fertilization on the
incidence percentage of leaves and spikes on total dry matter, and the influence of the
growth season (year) on the culms and spikes percentage. Whereas, neither an effect of
the biostimulant application nor an interaction between the factors were recorded for the
incidence percentage (Table 2).

The incidence percentage of leaves on total dry matter increased with nitrogen fertil-
ization dose. In particular, the mean value of N40 and N60 treatments was 9.4% vs. 7.6%
of the other two treatments (Figure 2). Instead, the incidence of spikes showed an inverse
trend: it was 62.2% in N0 and N20 (mean value of the two treatments) vs. 58.9% of the
most fertilized treatments (N40 and N60; Figure 2). In the second year, the incidence of
culms on the total dry matter was higher than the first year, the trend was opposite for
spikes incidence, which was higher in the first year (Figure 3).

Table 2. Statistical analysis (significance (p value) and interaction) of growth parameters, yield and its components.

Significance Culms % Leaves % Spikes % Yield Biomass Height HI Spike nb. m−2

Year (Y) 0.01 ns 0.01 0.01 0.01 0.01 ns 0.01
Biostimulant (B) ns ns ns 0.01 0.01 0.05 ns 0.05
Fertilization (F) ns 0.01 0.01 0.01 0.01 0.01 ns 0.01

Y × B ns ns ns ns ns ns ns ns
Y × F ns ns ns 0.05 ns ns ns ns
B × F ns ns ns ns 0.05 0.05 ns 0.05

Y × B × F ns ns ns ns ns ns ns ns

ns: non-significant, 0.05 and 0.01: significance levels.
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Figure 2. Culms, leaves and spikes percentage of barley as affected by nitrogen fertilization levels
(not fertilized = N0; fertilized with 20 kg N ha−1 = N20; fertilized with 40 kg N ha−1 = N40 and
fertilized with 60 kg N ha−1 = N60). Different letters indicate significant differences according to
Duncan’s test (p < 0.05). ns = non-significant.

3.2. Yield and Its Components

Barley yield, biomass production, plant height, and number of spikes per square meter
were affected by all the experimental factors (N fertilization, biostimulant application and
year). In addition, the interaction of the year and fertilization levels (Y × F) was found
significant only on yield, while the interaction of the biostimulant and N fertilization
(B × F) affected only the biomass production, plant height, and number of spikes per
square meter (Table 2).

In both years, N fertilization boosted barley yield, which on average was higher in
the second year (+5.3%; Figure 4A). Indeed, the highest yield values were observed in
the second year at both doses N40 and N60. Nonetheless, the latter treatments were not
significantly different from N60 of the first year. Anyway, N40 and N60 were not signifi-
cantly different in both years, but N40 was already sufficient in the second year to reach
the plateau of the highest production (Figure 4A). Whereas, the biostimulant application
significantly increased the yield by 17.0% in comparison to the control (Figure 4B).

The application of a biostimulant increased the biomass production as well, with an
increase of about 15.7% with respect to untreated plants. The percentage increase due to
biostimulant application was lower for plant height and number of spikes per square meter
(4.2% and 9.0%, respectively; Table 3). Interestingly, barley plants sprayed with a seaweed
biostimulant exhibited no significant differences for all measured parameters in N20, N40
and N60 fertilization levels, whereas these latter were higher than the N0 dose. Instead,
in control treatment, N20 dose was not significantly different from N40 dose, with N60
registering the highest values, notwithstanding the fact of being not significantly different
from the N40 dose (Table 3). In contrast, the harvest index was not affected by any of the
experimental factors, and it registered 35.6% on average (Table 3).
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Figure 3. Culms, leaves and spikes percentage of barley as affected by growing season (2018–2019 = I
Year; 2019–2020 = II Year). Different letters indicate significant differences according to Duncan’s test
(p < 0.05). ns = non-significant.
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Figure 4. Yield of barley as affected by growing season (2018–2019 = I Year; 2019–2020 = II Year) and nitrogen fertilization
levels (not fertilized = N0; fertilized with 20 kg N ha−1 = N20; fertilized with 40 kg N ha−1 = N40 and fertilized with
60 kg N ha−1 = N60)—(A) and by biostimulant application (treated with biostimulant = Bio and not treated = Control)—(B).
Different letters indicate significant differences according to Duncan’s test (p < 0.05).
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Table 3. Biomass production, plant height, harvest index (HI) and number of spikes per square meter
of barley as affected by biostimulant (treated with biostimulant = Bio and not treated = Control) and
nitrogen fertilization levels (not fertilized = N0; fertilized with 20 kg N ha−1 = N20; fertilized with
40 kg N ha−1 = N40 and fertilized with 60 kg N ha−1 = N60), and by growing season (2018–2019 = I
Year; 2019–2020 = II Year). Different letters indicate significant differences according to the Duncan
test (p < 0.05). HI = harvest index.

Treatments Biomass t ha−1 Plant Height cm HI % Spikes n◦ m−2

Bio N0 6.9 ± 0.6 c 59.7 ± 2.6 c 34.4 ± 1.2 361.5 ± 23.9 b

N20 10.5 ± 1.3 a 73.2 ± 2.2 ab 35.1 ± 1.8 567.3 ± 46.0 a

N40 11.6 ± 1.2 a 79.4 ± 2.6 a 36.9 ± 3.1 619.1 ± 23.5 a

N60 11.6 ± 1.0 a 76.8 ± 3.3 a 37.1 ± 1.5 635.7 ± 30.5 a

Control N0 6.9 ± 0.6 c 61.2 ± 3.1 c 32.9 ± 1.4 390.6 ± 27.1 b

N20 7.4 ± 0.4 bc 65.7 ± 2.9 bc 34.3 ± 2.9 433.1 ± 20.4 b

N40 9.8 ± 0.8 ab 72.4 ± 1.9 ab 34.3 ± 1.7 553.3 ± 42.4 a

N60 11.1 ± 0.7 a 78.2 ± 2.5 a 40.1 ± 1.7 625.9 ± 29.0 a

I Year 8.3 ± 1.7 b 66.5 ± 2.3 b 35.4 ± 1.7 489.4 ± 33.9 b

II Year 10.6 ± 0.9 a 75.1 ± 2.6 a 35.8 ± 1.2 557.3 ± 37.5 a

3.3. Yield Quality

No interaction between all the experimental factors was found for all qualitative
parameters. Protein content and hectolitre mass were affected by all three factors. Whereas,
1000 seed weight and kernel diameters were affected by both biostimulant application and
nitrogen levels. Finally, N-use efficiency was influenced by year and biostimulant, while
germinability was influenced by neither of the studied factors (Table 4).

Table 4. Statistical analysis (significance (p value) and interaction) of quality parameters.

Significance 1000 Seeds
Weight

Protein
Content Germinability Hectolitre

Mass
Kernel

Diameter NUE

Year (Y) ns 0.01 ns 0.01 ns 0.01
Biostimulant (B) 0.05 0.01 ns 0.01 0.05 0.01
Fertilization (F) 0.01 0.05 ns 0.01 0.01 ns

Y × B ns ns ns ns ns ns
Y × F ns ns ns ns ns ns
B × F ns ns ns ns ns ns

Y × B × F ns ns ns ns ns ns
ns: non-significant, 0.05 and 0.01: significance levels. NUE: Nitrogen use efficiency.

Biostimulant application boosted significantly all parameters with 3.9%, 24.2%, 3.8%,
and 2.3% increase for 1000 seeds weight, protein content, hectolitre mass, and diameter,
respectively (Table 5). All quality parameters increased as well when N fertilization
doses increased, but with different trends. Indeed, the highest value for all parameters
was recorded in N60 treatment, which was always different from N20, and N0, but not
significantly different from N40 except for protein content (Table 5). Particularly, protein
content was 10.7% on average, but it overcame the maximum limit of 11.5% fixed by the
malting processing industry, at the highest fertilization level (N60). Instead, it was just
over the limit (11.8% on average) in biostimulant-treated plants (Table 5). Interestingly, in
both years kernel diameter overcame 2.5 mm, the minimum limit for high-quality kernels
(Table 5). Similarly, hectolitre mass was also higher on average in biostimulant-treated
plants and during the second year. On the other hand, germinability was not influenced by
the studied factors and registered around 83.0% as average (Table 5).
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Table 5. Average seed weight, protein content, germinability, hectolitre mass, and diameter of
barley kernels as affected by growing season (2018–2019 = I Year; 2019–2020 = II Year), biostimu-
lant (treated with biostimulant = Bio and not treated = Control) and nitrogen fertilization levels
(not fertilized = N0; fertilized with 20 kg N ha−1 = N20; fertilized with 40 kg N ha−1 = N40 and
fertilized with 60 kg N ha−1 = N60). Different letters indicate significant differences according to the
Duncan test (p < 0.05).

Significance 1000 Seeds
Weight g

Protein
Content %

Germinability
%

Hectolitre
Mass kg hL−1

Kernel
Diameter mm

I Year 41.7 ± 1.2 8.8 ± 0.3 b 84.5 ± 1.6 66.3 ± 1.1 b 3.45 ± 0.05
II Year 42.5 ± 0.6 12.6 ± 0.5 a 81.5 ± 1.4 69.3 ± 0.6 a 3.49 ± 0.04

Bio 42.9 ± 0.8 a 11.8 ± 0.6 a 81.3 ± 1.5 69.1 ± 0.7 a 3.51 ± 0.05 a

Control 41.3 ± 1.0 b 9.5 ± 0.4 b 84.7 ± 1.4 66.6 ± 1.1 b 3.43 ± 0.03 b

N0 39.6 ± 1.0 b 9.6 ± 0.8 b 86.3 ± 2.1 64.9 ± 1.2 b 3.36 ± 0.06 c

N20 40.7 ± 1.9 b 10.1 ± 0.8 b 83.5 ± 1.8 66.3 ± 1.2 b 3.44 ± 0.06 bc

N40 42.9 ± 0.7 ab 10.8 ± 0.9 b 81.7 ± 1.9 69.1 ± 1.3 a 3.50 ± 0.05 ab

N60 45.1 ± 0.7 a 12.1 ± 0.7 a 80.5 ± 2.2 71.2 ± 0.7 a 3.59 ± 0.05 a

3.4. Nitrogen Use Efficiency

Nitrogen use efficiency is inversely correlated with nitrogen levels, although the effect
of this factor was not significant (Figure 5; Table 4). Biostimulant application elicited a 17.9%
increase with respect to untreated plants. Similarly, the second year was characterized by a
higher NUE (+28.6%) (Figure 6).
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Figure 5. Nitrogen use efficiency (NUE) of barley vs. nitrogen fertilization levels (not fertilized = N0;
fertilized with 20 kg N ha−1 = N20; fertilized with 40 kg N ha−1 = N40 and fertilized with
60 kg N ha−1 = N60).
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Figure 6. Nitrogen use efficiency (NUE) of barley as affected by growing season (2018–2019 =
I Year; 2019–2020 = II Year), biostimulant (treated with biostimulant = Bio and not treated = Control).
Different letters indicate significant differences according to Duncan’s test (p < 0.05).

4. Discussion

Globally, beer consumption is greater than wine and other alcoholic drinks, especially
in terms of volume, but it is lower in terms of economic value due to the lower market price
of beer with respect to other beverages [3]. Barley is the primary matrix for the malting
process; therefore, the increase in beer consumption is closely linked with an increase in
barley cultivation. Between 2014 and 2020, the total cultivated area for barley production
increased by about 15% in Italy [53]. However, the increase in cultivated areas is not
sufficient to satisfy the market demand, hence, farmers opt to increment cultivation inputs
like nitrogen fertilization in particular, in order to considerably increase yield.

Indeed, our findings highlighted a rising trend in the yield when nitrogen levels
were increased. Nevertheless, already, 40 kg N ha−1 proved sufficient to reach the highest
production. O’Donovan et al. [30] studied the effects of several factors, including N rate
(ranging between 0 and 120 kg N ha−1), on malting barley production in Canada; they
reported a trend in yield increase similar to our results, but with a production plateau
between 60 and 90 kg N ha−1. Similarly, Dordas [54] found that when 60 kg N ha−1

dose was applied, the yield of four barley cultivars was not different from that recorded
at 120 kg N ha−1, and both doses elicited a 27% increase over unfertilized treatment. In
addition, Jankovic and co-authors [29] tested the effect of four N doses (50, 70, 90, and
110 kg N ha−1) on winter malting barley cultivated in Serbia, and they highlighted an
increase in yield when the nitrogen levels increased, but without any significant differences
between the four doses, highlighting that N50 seemed sufficient to reach the highest
production. In the current research, the highest yield reached by the application of N40
and N60 was mainly due to their higher number of spikes per square meter (+38.9% over
the mean value of the treatments N0 and N20) but was also attributed to the average
seed weight (+9.6%) and finally to hectolitre mass (+6.9%). Other studies reported a
different increase in kernel weight when N fertilization increased, depending on different
varieties; however, the values are in line with our results [29,30]. Similar to our findings,
Jankovic et al. [29] reported an increase in volume grain weight reaching a mean value of
69.45 kg hL−1 in fertilized treatments, slightly higher than that recorded in our experiment
(67.9 kg hL−1).

Despite these positive features related to nitrogen fertilization, this is a practice re-
quiring careful management, because the malting industry requires a protein content in
barley grains ranging between 10 and 11% [15]. The nitrogen content in barley grain is
closely linked to N rate; several studies reported an increase in protein content when
the nitrogen rate increases [29,30]. Our findings also showed a similar trend, but our
values (10.1–12.1%, from N20 and N60, respectively) are consistent only with the results
of O’Donovan et al. [30], which reported values of grain protein ranging between 10.5%
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at 30 kg N ha−1 and 12% at 120 kg N ha−1. Not only grains protein content, but also
grain size is one of the greater discriminants for the selection by the malting industry.
Indeed, it is known that malt extract is positively associated with grain size [18]. 2.5 mm
is considered the optimal grain size; in our research, barley grains always overcame
this limit, even reaching 3.6 mm in N60 treatment, higher than the values recorded by
O’Donovan et al. [30], that oscillated between about 2.52 (N30) and 2.56 (N120). Fi-
nally, another crucial feature of the malting process is seed germinability, which was
affected neither by nitrogen nor by the biostimulant application. It is possible that this
quality trait is mainly affected by the gene pool and to a lesser extent by the applied
agricultural practices.

The biostimulant used in the current research is an extract of Ecklonia maxima (34%
w/w), characterized by a high rate of auxins/cytokinins; its application had a positive effect
on barley yield, with a 17% increase compared to untreated plants. Szczepanek et al. [55]
tested different application times and doses of the same biostimulant (Kelpak®) on spring
barley, where they depicted that the early application (at tillering—two tillers detectable)
of the biostimulant (2 l ha−1) elicited a grain yield increase, which was closely linked to
the average weight of 1000 kernels. On the other hand, we also recorded around a 4%
increase of the same trait and a significant increase in biomass production (+15.7% over
untreated plants) but not in harvest index, opposite to the report of Szczepanek et al. [55].
In addition, our data on harvest index are also lower than those of the other research [55].
In previous research, Featonby-Smith and van Staden [45] tested different dilutions and
types of applications of seaweed extract on barley and similarly found an increase in grain
yield, even reaching 50% with an increase in the number of ears (~28.3%) as well.

Interestingly, we recorded a significant interaction between the biostimulant appli-
cation and nitrogen dose for biomass production, plant height and number of spikes per
square meter. Moreover, biostimulant application also enhanced other quality traits, par-
ticularly a 3.8% and 2.3% increase for hectolitre mass and grain diameter, respectively. In
addition, protein content was affected by seaweed application, which exhibited about a
24% increase, reaching an 11.8% value, which is still accepted by the malting industry.
Instead, Featonby-Smith and van Staden [45] recorded a decrease in grain nitrogen content
of treated plants, but without statistical differences; however, the data converted in protein
content (9.2% on average) are similar to our results. Moreover, Szczepanek et al. [55] did
not note an increase in grain nitrogen content of treated plants with seaweed treatments,
which was 16.4 g kg−1, corresponding to 10.2% of protein, not that different from our data.

NUE is the result of two components: N uptake efficiency (NUpE), which is nitrogen
uptake of crop per unit of N available (soil and fertilizer) and N utilization efficiency
(NUtE), which is grain dry matter yield per unit crop N uptake at harvest (NUtE) [56].
These components can have a different and contrasting role in NUE determination. Several
studies have reported that improvements in NUE are due to the improvements in NUpE at
a low N supply [57,58]. Some researchers have stated a greater contribution of N utilization
efficiency in the same conditions [59,60]. In the current research, we only determined
the NUE that demonstrated a significant enhancement in treated plants (about +18%
over untreated plants). Similarly, Goni et al. [61] reported an increase in NUE ranging
between 29.86% and 60.28% on barley treated with a biostimulant derived from extracts of
Ascophyllum nodosum. Considering the low NUE of cereals, which take up between 36%
and 42% of applied N fertilizer [62], these positive results attributable to the biostimulants
application are much more interesting. On the other hand, in previous studies we found a
similar effect of several biostimulants in different vegetable crops [41,63,64]. Conversely,
the NUE decreased when the N dose increased, due to the fact that grain yield does not
linearly increase with N supply [65]. Our results are in agreement with the findings of
Albrizio et al. [66], who reported a decrease in wheat and barley NUE as consequence of
high N availability. In addition, our findings are consistent with the results of Dordas [54],
who found a reduction of marginal NUE in barley at the highest dose of N fertilization. On
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the other hand, an NUE decrease was also recorded in other crops: tobacco [67], annual
ryegrass [68], lettuce [64], and tomato [69].

5. Conclusions

Nitrogen input optimization is attracting a lot of attention to address the use efficiency
overall. 40 kg N ha−1 dose seems sufficient to obtain the best productive performance, and
especially in the hottest year (II year), in which the cycle is faster. On the other hand, the
nitrogen use efficiency resulted in being inversely correlated with the nitrogen dose and
was higher in the second year. Nitrogen supply had a positive effect also on average seed
weight, hectolitre mass and grain diameter. The application of Ecklonia maxima seaweed
extract application boosted yield and some components of production, with a stronger
effect than nitrogen fertilization for some of them, such as the number of spikes m−2. In
addition, it increased the protein content of grains, which is a crucial quality trait of malting
barley, but still remained within the acceptable values of the malting industry (11.8%).
Therefore, our results indicate that a significant reduction in nitrogen dose (about −35%
with respect to the calculated dose corresponding to 60 kg ha−1) is possible and desirable,
combined with the application of a plant-based biostimulant, specifically seaweed extract,
which determines an improvement in nitrogen use efficiency, assuring a high production
and lower fertilization inputs.
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21. Frančáková, H.; Líšková, M.; Bojňanská, T.; Mareček, J. Germination index as an indicator of malting potential. Czech J. Food Sci.
2012, 30, 377–384. [CrossRef]

22. Li, J.; Båga, M.; Rossnagel, B.G.; Legge, W.G.; Chibbar, R.N. Identification of quantitative trait loci for β-glucan concentration in
barley grain. J. Cereal Sci. 2008, 48, 647–655. [CrossRef]

23. Pascari, X.; Ramos, A.J.; Marín, S.; Sanchís, V. Mycotoxins and beer. Impact of beer production process on mycotoxin contamina-
tion. A review. Food Res. Int. 2018, 103, 121–129. [CrossRef]

24. Cammarano, D.; Hawes, C.; Squire, G.; Holland, J.; Rivington, M.; Murgia, T.; Roggero, P.P.; Fontana, F.; Casa, R.; Ronga, D.
Rainfall and temperature impacts on barley (Hordeum vulgare L.) yield and malting quality in Scotland. Field Crop. Rese 2019, 241,
107559. [CrossRef]

25. Ladha, J.K.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; Van Kessel, C.; Richter, D.D.B.; Chakraborty,
D.; Pathak, H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Sci. Rep.
2016, 6, 1–9. [CrossRef]

26. Malt, U.K. The Maltsers’ Association of Great Britain 2019. Available online: https://www.ukmalt.com/ (accessed on
16 September 2021).

27. HGCA. Introductory Guide to Malting Barley; HGCA, Caledonia House: London, UK, 2001; p. 24.
28. Prystupa, P.; Peton, A.; Pagano, E.; Gutierrez Boem, F.H. Sulphur fertilization of barley crops improves malt extract and

fermentability. J. Cereal Sci. 2019, 85, 228–235. [CrossRef]
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