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Abstract: To meet the demands of different wheat-based food products, traits related to end-use 
quality become indispensable components in wheat improvement. Thus, markers associated with 
these traits are valuable for the timely evaluation of protein content, kernel physical characteristics, 
and rheological properties. Hereunder, we report the mapping results of quantitative trait loci 
(QTLs) linked to end-use quality traits. We used a dense genetic map with 5199 SNPs from a 90K 
array based on a recombinant inbred line (RIL) population derived from ‘CO960293-2′/’TAM 111′. 
The population was evaluated for flour protein concentration, kernel characteristics, dough rheo-
logical properties, and grain mineral concentrations. An inclusive composite interval mapping 
model for individual and across-environment QTL analyses revealed 22 consistent QTLs identified 
in two or more environments. Chromosomes 1A, 1B, and 1D had clustered QTLs associated with 
rheological parameters. Glu-D1 loci from CO960293-2 and either low-molecular-weight glutenin 
subunits or gliadin loci on 1A, 1B, and 1D influenced dough mixing properties substantially, with 
up to 34.2% of the total phenotypic variation explained (PVE). A total of five QTLs associated with 
grain Cd, Co, and Mo concentrations were identified on 3B, 5A, and 7B, explaining up to 11.6% of 
PVE. The results provide important genetic resources towards understanding the genetic bases of 
end-use quality traits. Information about the novel and consistent QTLs provided solid foundations 
for further characterization and marker designing to assist selections for end-use quality improve-
ments. 

Keywords: bread wheat; quantitative trait loci; favorable allele; end-use quality; dough rheology; 
genetic biofortification 
 

1. Introduction 
Wheat (Triticum aestivum L.) is a ubiquitous cereal crop that provides caloric and nu-

trient requirements for humans [1]. The unique characteristics of wheat require unique 
processes to deliver a wide array of end-use products. In the U.S., based on market classes, 
different wheat has been used to produce broad-spectrum end products ranging from 
bread using hard wheat cultivars with high protein content and strong gluten to cakes 
using soft wheat cultivars with lower protein content and weaker gluten [2]. The quality 
of these products is contingent upon the inherent end-use quality characteristics of a given 
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genotype. Thus, improving specific end-use quality for millers, bakers, and consumers is 
one of the primary components of wheat improvement. 

The end-use quality in wheat can be dissected into traits such as the physical attrib-
utes of the kernels, the composition and profile of the protein fraction of the flour, the 
rheological properties of the dough, and the mineral-element nutritional quality, which 
are quantitatively inherited and influenced by environments. The kernel hardness index 
(HDI) is used primarily as a criterion for textural classification of grains ranging from 
extra soft (HDI ≤ 10) to extra hard (HDI > 90) based on the AACC method 55-31.01 [3]. 
Kernel hardness is primarily controlled by the puroindoline a (Pina) and puroindoline b 
(Pinb) proteins that are encoded by genes Puroindoline a (Pina-D1) and Puroindoline b (Pinb-
D1), at the hardness (Ha) locus on chromosome 5D [4]. The protein content is a determin-
ing factor for wheat producers to compete in grain markets and usually serves as an indi-
cator of grain quality. Gluten proteins are the dominant grain storage proteins and con-
stitute at least 80% of wheat flour proteins [5]. The amount and composition of three com-
ponents of gluten, including high-molecular-weight glutenin subunits (HMW-GSs) en-
coded by Glu-1 homoeologous genes on 1AL, 1BL, and 1DL, low-molecular-weight 
glutenin subunits (LMW-GSs) encoded by Glu-3 homoeologous genes on 1AS, 1BS, and 
1DS, and gliadins encoded by Gli-1 on 1AS, 1BS, and 1DS, and Gli-2 genes on 6A, 6B, and 
6D, influence dough rheology and end-use properties [6–9]. Although concentrations are 
low, wheat can be an important source of trace elements such as Zn, Fe, and Se for human 
health [10]. In contrast, due to environmental pollution, the accumulation of heavy metals 
such as Cd, Pb, and As in wheat grain may cause damage to human health [11]. Efforts 
have been devoted to understand mineral elements’ uptake and transport pathways that 
may relate to accumulations within the grain. A study has shown that the transportation 
of Zn and Cd involved the same proteins [12]. In rice and barely, the distribution of Cd 
involves heavy metal ATPase (HMAs) transporters [12,13]. However, the genetic mecha-
nism which controls the mineral element concentration within grains is largely unknown. 

The standard laboratory protocols for end-use quality analyses are time-consuming. 
For instance, a 10-g mixograph requires 8 min per sample plus an additional time for sam-
ple preparation, which depends on the operator’s speed. Moreover, the amount of seed 
available during early generations is often insufficient for extensive end-use quality anal-
ysis. These factors are the primary reason why quality analysis is often relegated toward 
the advanced stages of the wheat breeding cycle, when there is a significant reduction in 
the number of lines to be analyzed and the amount of seed is adequate. Thus, using mo-
lecular signatures as a proxy for end-use quality can be a valuable tool for wheat improve-
ment programs. A number of studies have been conducted which focus on identifying 
quantitative trait loci (QTLs) for end-use quality traits using mixographs. El-Feki et al. [14] 
reported QTLs for dough rheology on chromosomes 1A, 1B, 1D, 2B, 4A, 5D, 6A, 6B, 7B, 
and 7D. Echeverry-Solarte et al. [15] detected QTLs associated with grain protein content 
on chromosomes 1A, 1B, 2D, 3D, 6B, and 7B. The midline peak energy QTLs were mapped 
on 1B, 1D, 2D, 3D, 6B, and 7D, while midline peak time QTLs were mapped on chromo-
somes 1B, 1D, 2D, 3A, 5B, and 6B [15]. Dhakal et al. [2] reported that the dough rheology 
traits were mapped on 1A, 1B, 1D, and 7D. Little genetic information is available about 
wheat grain mineral element concentrations. Liu et al. [16] identified grain Zn concentra-
tion QTLs on chromosomes 1B, 2B, 3A, 3B, 3D, 4B, 5A, 6B, and 7A and QTLs associated 
with Fe on chromosomes 1A, 2A, 3B, 3D, 4B, 5A and 6B. Guttieri et al. [17] found the QTL 
associated with wheat grain Cd concentration on 5A. Understanding the genetic bases and 
identifying markers linked to end-use quality traits will allow breeders to better target 
loci within the breeding germplasm pool. 

The present study used a saturated genetic map derived from a 90K Illumina iSelect 
array and 217 recombinant inbred lines (RILs) derived from an elite-by-elite winter wheat 
cross. The QTL analysis was implemented for end-use quality traits using QTL IciMap-
ping software through the inclusive composite interval mapping function [18]. Based on 
this framework, the objectives of the present study were to quantify the genetic variation 
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and map QTLs linked to kernel characteristics, dough mixing parameters, and grain min-
eral element concentrations in hard red winter wheat. 

2. Materials and Methods 
2.1. Germplasms and Field Trials 

A population consisting of 217 RIL was generated by crossing between one elite line, 
‘CO960293-2′, and a popular cultivar, ‘TAM 111′. The maternal parent, CO960293-2, was 
developed by Colorado Agricultural Experiment Station and co-released by Colorado and 
Kansas Agricultural Experiment Stations [19]. The wheat streak mosaic virus resistance 
gene (Wsm2) in CO960293-2 was mapped and Kompetitive Allele Specific PCR (KASP) 
markers were developed [20,21]. The paternal parent, TAM 111, was developed and re-
leased by Texas A&M AgriLife Research [22]. It has excellent performance under drought 
stress but possesses Glu-D1 Dx2 + Dy12, which affects bread-making. It has a glutenin to 
gliadin ratio of 0.79 and a high molecular to low molecular weight ratio of 0.30 [23]. The 
RIL plus parents were phenotyped across eight environments in a randomized block de-
sign with two replications, and samples for end-use quality analysis were drawn from the 
first replication of three selected environments. The selected environments were Etter, TX 
(35°59’ N, 101°59’ W) in 2014 (ET14); Bushland, TX (35°06’ N, 102°27’ W) in 2014 (BS14), 
and Hays, KS (38°51’ N, 99°20’ W) in 2013 (HY13). 

2.2. End-Use Quality Evaluations 
Kernel characteristics, flour protein content, and dough rheological characteristics 

were phenotyped following the procedures described in Dhakal et al. [2]. Briefly, for each 
RIL, about 30-g samples from the first replication of each environment were characterized 
for kernel hardness index (HDI), kernel diameter (KD), and single kernel weight (SKW) 
using SCKS 4100 (Perten Instruments, Hagersten, Sweden). About 80 g of tempered seed 
samples (14% moisture content) were milled using a Brabender Quadramat Jr. Precision 
laboratory roller mill (Brabender Instruments, South Hackensack, NJ, USA). The charac-
terization of flour protein content (FPC) was conducted using a real-time third generation 
diode array near-infrared spectroscopy (Model DA 7250, Perten Instruments, Hagersten, 
Sweden). Flour water absorption (WAB) and dough rheological properties were derived 
from a 10-g mixograph (National Manufacturing Co. Lincoln, NE, USA) based on AACC 
method 54–40.02 [3]. Measurements were computed at the peak, one minute before the 
peak (left of the peak), two minutes after the peak (right of the peak), tail (at the end of 
mixing), and at time_X (at the eight minutes of mixing). The variables at each level were 
the time, height, width, slope, and integral values. Grain samples of each genotype col-
lected from two replications of ET14 were digested in nitric acid and hydrogen peroxide 
as described in Guttieri et al. [24]. Concentrations of digested samples were measured at 
the University of Nebraska Redox Biology Center Proteomics and Metabolomics Core Fa-
cility for arsenic (As), calcium (Ca), cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), 
potassium (K), lithium (Li), magnesium (Mg), manganese (Mn), molybdenum (Mo), so-
dium (Na), nickel (Ni), phosphorous (P), sulfur (S), selenium (Se), titanium (Ti), and zinc 
(Zn) elements. 

2.3. Genotyping 
The current study used a previously developed genetic map developed using RIL 

population and a 90K SNP array [25]. Briefly, DNA from the replicated sets of parents and 
RILs was extracted using the CTAB method with minor modifications [26]. The popula-
tion was fingerprinted based on a hybridization-based approach of the Illumina Infinium 
iSelect assay (www.illumina.com, accessed on 2 January, 2017). A total of 8819 polymor-
phic SNPs were initially used for linkage map construction using JoinMap 4.0 [27]. In 
JoinMap, SNPs with significant segregation distortion based on the chi-square test and 
those with a similarity score of 1.0 were eliminated [28]. Effectively, 5199 SNPs were used 
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for the construction of a linkage map covering all 21 chromosomes. The physical positions 
of SNP were extracted according to the IWGSC RefSeq v1.0 [29] reference genome using 
bioinformatics tools described by Dhakal et al. [2]. 

2.4. Statistical and QTL Analyses 
The analysis of variance (ANOVA) for each trait across multiple environments was 

calculated using SAS 9.4 [30] MIXED Procedure (PROC MIXED) and the variance compo-
nents of genotype (G), environment (E), and genotype-by-environment interaction (GE) 
were estimated using TYPE III method of moments estimation. The broad-sense heritabil-
ity for end-use quality traits except mineral concentrations was calculated according to 
Fehr et al. [31] using the formula: 𝐻 =  𝜎ீ ଶ /( 𝜎ଶீ + 𝜎ீாଶ 𝐸)⁄ , where  𝜎ீ ଶ  is the genotype var-
iance, 𝜎ீாଶ  is the genotype-by-environment interaction variance, and E is the number of 
environments. The broad-sense heritability for mineral concentrations was calculated us-
ing the formula: 𝐻 =  𝜎ீ ଶ /( 𝜎ଶீ + 𝜎ீோଶ 𝑅)⁄ , where 𝜎ீோଶ  is the genotype-by-replication inter-
action variance and R is the number of replications. PROC CORR in SAS was used to 
compute Pearson correlations for the traits across all environments. 

QTL analysis was performed using QTL IciMapping software [18]. Single-trait QTL 
analysis was conducted in the individual environment and across environments. The ge-
netic positions of traits were determined by the integrated composite interval mapping 
(ICIM) function for additive effect (ICIM-ADD) and epistasis effect (ICIM-EPI) for across-
environment analyses. The threshold LOD value to declare a significant QTL for each trait 
was determined by 1000 permutation tests for ICIM-ADD for the individual environment 
and across environments. For detecting ICIM-EPI in across-environment analyses, it is too 
time-consuming to run permutations. Therefore, LOD = 5 was initially selected due to the 
computation power limit. However, the actual threshold LOD for each trait used in ICIM-
EPI can be referenced from ICIM-ADD [32]. The physical position of the QTL peak was 
calculated based on the physical and genetic positions of the flanking markers. The des-
ignation of identified QTLs was described in Dhakal et al. [2] and Yang et al. [32]. 

3. Results 
3.1. Analysis of Variance, Heritability, and Correlations 

The means, ranges, distributions, statistical analyses, and heritability for kernel char-
acteristics, dough rheological properties, and grain mineral element concentrations were 
summarized (Supplementary Table S1 and Figure S1). Generally, TAM 111 and 
CO960293-2 showed similar values in KD, SKW, FPC, and WAB. In contrast, CO960293-2 
showed significantly higher values for HDI and mixograph traits such as MLT and MPT 
compared to TAM 111. The FPC ranged from 10.09 to 15.55%, with the mean at 13.00%. 
The mean time of dough peak formation, represented by MPT, was 4.67 min and the range 
of MPT was 1.50 to 8.00 min. The dough breakdown resistance indicator MPW ranged 
from 7.57 to 46.94%, with the mean at 24.07%. For grain mineral elements, CO960293-2 
showed higher values of grain Mg, Na, P, S, K, Ca, Fe, Cu, Rb, Sr, Mo, Li, and Zn concen-
trations, while TAM 111 had higher values of Mn, Cd, Ni, Co, and Ti concentrations, alt-
hough these values were not significantly different. Concentrations of several mineral el-
ements were less than 1 mg kg−1, such as Cd, Mo, As, Ni, Co, Li, and Ti (Supplemental 
Table S1). The average grain mineral concentrations ranged from 0.01 (As) to 5264.47 mg 
kg−1 (K), and means of Cd, Fe, and Zn were 0.11, 46.07, and 44.33 mg kg−1, respectively. 
ANOVA revealed significant differences (p < 0.01) among genotypes for all kernel charac-
teristics and most of the mixograph traits. Only As, Cd, Co, Mo, and Ni concentrations 
showed significant differences (p < 0.05) among genotypes. Moderate to high heritability 
was found for most of the kernel characteristics and dough rheological traits except MTS 
and MTXS due to insignificant genotype effects. The highest heritability for dough rheo-
logical traits were MLT and MPT at 0.87. For grain mineral element concentrations, no 
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heritability was found for Ca, Cu, K, Li, Mg, Mn, Na, P, S, and Rb. The heritability for Fe, 
Zn, Sr, Mo, As, Ni, and Ti was generally low except for Cd (0.47) and Co (0.38). 

Based on overall means, high correlations were found between KD and SKW (r = 
0.95), as well as WAB and FPC (r = 0.73). However, both KD and SKW were negatively 
and significantly correlated to FPC (r = -0.75 and -0.74) (Supplemental Table S2). The hard-
ness index was negatively correlated with KD (r = -0.32) and SKW (r = -0.39), but positively 
correlated with FPC (r = 0.20) (Supplemental Table S2). Generally, in the individual envi-
ronment, KD, HDI, and SKW showed low correlations with the dough rheological traits, 
suggesting kernel characteristics cannot be used as predictors for the dough properties 
(Supplemental Tables S3–S5). Flour protein content was positively correlated with MLV, 
MPV, MTV, and MTXV in all three environments (r = 0.19 ~ 0.48). Most of the dough rhe-
ological traits were highly correlated, especially among the midline time, integral, width, 
and value traits. Additionally, high correlations were consistently found between most of 
the midline time and integral traits. The MLT showed a perfect correlation (r = 1.00) with 
MPT in all the individual environments. The MLS showed negative moderate to high cor-
relations with MLI, MLT, MPI, and MPT but positive correlations with MTI in all three 
environments, suggesting that divergent selection is plausible. On the contrary, MRS 
showed positive correlations with MLI, MLT, MPI, and MPT because the nature of the 
opposite slope orientation during the dough strength build-up and breakdown stages 
showed consistent negative correlations between MLS and MRS in all three environments. 

Substantial significant (p < 0.05) correlations were found among grain mineral ele-
ment concentrations, except correlations between Fe with Na, P, S, Mn, Zn, Rb, and Li and 
correlations between Zn with K and Fe (Supplementary Table S4). Correlations among 
grain mineral element concentrations ranged from −0.14 (between Sr and Mn) to 0.96 (be-
tween Mg and Co). Highly significant (p < 0.0001) correlations were found between Cd 
and all other mineral elements. The correlations between grain mineral element concen-
trations and dough rheological traits were generally low. Grain Zn and Rb concentrations 
were found to be significantly correlated with MLV, MLW, MPV, MTI, and MTXI, ranging 
from 0.19 to 0.26. Meanwhile, significant negative correlations were found for Mg, P, and 
S with MRS, MTS, and MTXS, ranging from −0.14 to −0.20. Similar to dough rheological 
traits, correlations between grain mineral element concentrations and kernel characteris-
tics were generally low. The correlation between FPC and As was highly significant (p < 
0.0001). Similarly, a significant correlation (p < 0.01) was found between FPC and Cd at 
0.21. 

3.2. Consistent QTLs for End-Use Quality Traits 
A total of 209 unique QTLs associated with 32 end-use quality traits were identified 

from individual or across-environment analyses (Supplemental Table S6). There were 22 
QTLs associated with 12 end-use quality traits consistently detected from at least 2 indi-
vidual environments (Table 1). These consistent QTLs were identified on five chromo-
somes, including 1A, 1B, 1D, 2B, and 3B. 
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Table 1. Consistent and pleiotropic quantitative trait loci (QTL) for kernel characteristics and dough rheological traits in ‘CO960293-2′/‘TAM 111′ detected from at least two single 
environments and grain mineral element concentrations in single environments. 

QTL Name Chr Peak 
(Mbp) Trait a ENV b LOD Thresh-

old LOD c LOD 
(A) 

LOD 
(AbyE) PVE d PVE

(A) 
PVE 

(AbyE) Additive Alleles Increase 
trait e 

Pleiotropic 
QTL 

Qhdi.tamu.2B.56 2B 56 HDI MET-ADD, BS14, ET14 3.2–4.6 9.0–23.8 16.6 7.2 16.7–20.312.6 6.2 1.4–2.4 CO960293-2  

Qkd.tamu.2B.68 2B 68 KD MET-ADD, ET14, HY13 3.2–8.0 3.7–10.0 4.5 5.5 6.1–8.3 3.7 4.5 -0.01 TAM 111  
Qfpc.tamu.3B.695 3B 695 FPC MET-ADD, BS14, ET14 3.2–4.5 5.4–13.3 9.5 3.8 9.1–11.3 8.9 2.4 −0.1-(-0.2) TAM 111 Y 
Qmpt.tamu.1A.3 1A 3 MPT MET-ADD, BS14, ET14 3.2–4.6 8.9–12.8 9.2 3.6 5.2–7.1 3.6 1.7 −0.2–(−0.4) TAM 111 Y 

Qmpt.tamu.1B.5 1B 5 MPT MET-ADD, BS14, ET14, 
HY13 

3.2–8.0 14.4–59.8 57.2 2.5 17.3–28.827.7 1.1 0.5–0.8 CO960293-2 Y 

Qmpt.tamu.1D.417 1D 417 MPT MET-ADD, BS14, HY13 3.2–8.0 28.8–50.0 40.7 9.3 27.6–34.217.8 9.8 0.5–1.0 CO960293-2 Y 

Qmlt.tamu.1B.5 1B 5 MLT MET-ADD, BS14, ET14, 
HY13 3.2–8.0 20.6–47.4 46.8 0.6 20.1–27.225.5 1.7 0.6–0.8 CO960293-2 Y 

Qmlt.tamu.1D.1 1D 1 MLT MET-ADD, BS14, ET14 3.2–4.6 4.8–7.9 7.6 0.4 3.6–4.3 3.4 0.9 −0.2–(−0.3) TAM 111 Y 

Qmli.tamu.1B.5 1B 5 MLI 
MET-ADD, BS14, ET14, 

HY13 3.2–8.0 13.7–47.0 45.6 1.4 13.4–27.126.3 0.8 19.6–24.2 CO960293-2 Y 

Qmls.tamu.1B.5 1B 5 MLS MET-ADD, BS14, ET14, 
HY13 

3.2–8.0 10.2–15.6 11.2 4.4 14.2–21.914.0 7.9 −1.1–(−3.2) TAM 111 Y 

Qmpi.tamu.1B.5 1B 5 MPI MET-ADD, BS14, ET14, 
HY13 3.2–8.0 9.0–44.0 40.3 3.7 10.3–22.121.7 0.4 18.4–23.5 CO960293-2 Y 

Qmrt.tamu.1B.5 1B 5 MRT MET-ADD, BS14, ET14 3.2–4.5 6.3–19.3 17.3 2.0 9.3–18.8 16.1 2.7 0.3–0.4 CO960293-2 Y 
Qmli.tamu.1D.413 1D 413 MLI MET-ADD, BS14, ET14 3.2–4.8 29.2–36.2 12.5 16.7 17.6–31.3 6.3 11.3 9.6–29.4 CO960293-2 Y 

Qmtw.tamu.1D.413 1D 413 MTW MET-ADD, BS14, ET14 3.2–4.5 9.1–10.4 3.3 5.7 9.7–13.6 3.1 6.6 0.5–2.0 CO960293-2 Y 
Qmtxw.tamu.1D.413 1D 413 MTXW MET-ADD, BS14, ET14 3.2–4.6 7.5–10.4 2.8 4.7 7.4–13.6 2.4 5.1 0.5–2.0 CO960293-2 Y 

Qmli.tamu.1A.3 1A 3 MLI ET14, BS14 3.2 10.7–15.8   8.4~11.1   −5.4–(−17.4) TAM 111 Y 
Qmpi.tamu.1A.5 1A 5 MPI MET-ADD, BS14, ET14 3.2–4.5 11.5–14.0 10.7 3.3 6.7–10.6 5.1 1.6 −9.3–(−17.3) TAM 111  
Qmrs.tamu.1B.8 1B 8 MRS MET-ADD, BS14, ET14 3.2–4.5 5.6–12.6 12.1 0.5 9.5–14.7 11.0 3.7 0.3–0.5 CO960293-2 Y 

Qmpi.tamu.1D.66 1D 66 MPI MET-ADD, BS14, HY13 3.2–8.0 14.6–40.7 29.7 11.0 22.9–30.915.4 8.0 16.2–29.7 CO960293-2 Y 
Qmpi.tamu.1D.1 1D 1 MPI MET-ADD, BS14, ET14 3.2–4.5 5.7–6.3 4.4 1.9 2.9–3.9 2.0 0.8 −5.83–(−10.5) TAM 111 Y 
Qmtw.tamu.1D.1 1D 1 MTW MET-ADD, BS14, ET14 3.2–4.5 6.5–9.2 7.0 2.2 6.9–9.8 6.5 3.3 −0.8-(−1.6) TAM 111 Y 
Qmtxw.tamu.1D.1 1D 1 MTXW MET-ADD, BS14, ET14 3.2–4.6 6.5–7.9 6.2 1.7 6.9–8.9 5.4 2.5 −0.7–(−1.6) TAM 111 Y 
Qgco.tamu.3B.32 3B 32 GCO ET14 3.4 5.6   11.6   −0.003 TAM 111  
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Qgcd.tamu.3B.46 3B 46 GCD ET14 3.4 5.8   8.0   −0.006 TAM 111  

Qgmo.tamu.3B.540 3B 540 GMO ET14 3.4 4.8   8.6   0.036 CO960293-2  

Qgcd.tamu.5A.577 5A 577 GCD ET14 3.4 5.5   8.0   −0.006 TAM 111  

Qgcd.tamu.7B.552 7B 552 GCD ET14 3.4 5.4   7.6   −0.006 TAM 111  
a FPC, flour protein content; GCD, grain Cd concentration; GCO, grain Co concentration; GMO, grain Mo concentration; HDI, hardness index; KD, kernel diameter; MLI, midline left 
integral; MLS, midline left slope; MLT, midline left time; MPI, midline peak integral; MPT, midline peak time; MRS, midline right slope; MRT, midline right time; MTW, midline tail 
width; MTXW, midline time_X width. b Environments: HY13, Hays, KS, 2013; BS14, Bushland, TX, 2014; ET14, Etter, TX, 2014; MET-ADD, multi-environment trial QTL analyses for 
additive effects. c LOD, logarithm of odds; LOD(A), LOD due to additive effect; LOD(AbyE), LOD due to additive-by-environment interaction effects. d PVE, phenotypic variance 
explained; PVE (A), PVE explained by additive effect; PVP(AbyE), PVE explained by additive-by-environment interaction effect. e For most traits in this manuscript, except for heavy 
metal element concentrations, a higher value indicates better performance. The origins of favorable alleles were determined by the value of additive effects. If the additive value was 
positive, it suggested an origination from the maternal parent, CO960293-2, and vice versa. 
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3.2.1. QTL for Kernel Characteristics and Flour Protein Content 
Eight HDI QTLs were detected on chromosomes 1A, 1B, 2B, 2D, and 5B from indi-

vidual and across-environment analyses (Supplemental Table S6, Supplemental Figures 
S2 and S3). These QTLs explained phenotypic variations ranging from 3.4 to 20.3%. The 
only consistent QTL, Qhdi.tamu.2B.56, was identified from ET14, BS14, and across-envi-
ronment analysis, explaining up to 20.3% of the phenotypical variation. The additive effect 
accounted for 67% of total phenotypic variations explained by Qhdi.tamu.2B.56. Its favor-
able allele from CO960293-2 increased the HDI up to 2.4%. The additive-by-environment 
interaction increased the HDI by 0.5% in BS14 and 0.9% in ET14 (Supplemental Table S6). 
Two QTLs, Qhdi.tamu.1B.303, which was identified from BS14 and the across-environment 
analyses, and Qhdi.tamu.5B.585, which was detected from ET14 and the across-environ-
ment analyses, increased the HDI by 1.3 and 1.2%, respectively (Supplemental Table S6). 

There were nine QTLs associated with kernel diameter (KD) identified from both in-
dividual and across-environment analyses. Similar to HDI, the only consistent QTL, 
Qkd.tamu.2B.68 explained 6.1 to 8.3% of phenotypical variations. Its favorable allele from 
TAM 111 increased KD by 0.01 mm (Table 1). Another 4 QTLs were detected on chromo-
somes 1D (190 Mbp), 4D (390 Mbp), 5A (610 Mbp), and 7A (581 Mbp) from the across-
environment and one individual environment QTL analyses, accounting for up to 7.3% of 
PVE. Favorable alleles of QTLs on 1D and 5A from TAM 111 increased the KD up to 0.01 
mm, while favorable alleles of QTLs on 4D and 7A from CO960293-2 also increased the 
KD up to 0.01 mm (Supplemental Table S6). 

A total of seven QTLs associated with FPC were mapped on chromosomes 3B and 
5B, explaining 3.7 to 11.3% of phenotypical variations (Supplemental Table S6, Supple-
mental Figures S2 and S3). One QTL, Qfpc.tamu.3B.695, was consistently detected, ac-
counting for 9.1 to 11.3% of PVE. Its favorable allele from TAM 111 increased the FPC up 
to 0.2%, and the additive-by-environment interaction increased FPC by 0.08% in HY13 
(Supplemental Table S6). 

Although no consistent QTL was identified for SKW, there were 11 QTLs identified 
that were associated with SKW on chromosomes 2A, 2B, 3A, 5A, 6A, and 7A, explaining 
up to 9.1% of phenotypic variations (Supplemental Tables S6). One SKW QTL detected 
from ET14 and the across-environment analyses, Qskw.tamu.5A.644, increased the SKW 
by 0.6 mg. 

3.2.2. QTLs Linked to Mixograph Parameters 
There were 150 QTLs identified which were associated with 23 mixograph mixing 

property traits on chromosomes 1A, 1B, 1D, 2B, 3B, 5B, 6D, 7B, and 7D from individual 
and across-environment analyses (Supplemental Table S6). Most QTLs (95.0%) for mixo-
graph mixing properties were mapped on chromosomes 1A, 1B, 1D, and 5B. A total of 3 
consistent QTLs associated with midline peak time (MPT) were identified on 1A (3 Mbp), 
1B (5 Mbp), and 1D (417 Mbp) (Table 1). Qmpt.tamu.1A.3 explained 5.2 to 7.1% of PEV. Its 
favorable allele from TAM 111 increased the MPT up to 0.4 min, and the additive-by-
environment interaction increased MPT by 0.22 min in BS14 (Supplemental Table S6). The 
second consistent QTL identified from all analyses, Qmpt.tamu.1B.5, explained 17.3 to 
28.8% of PVE with the favorable allele from CO960293-2 that increased the MPT up to 0.8 
min. The additive-by-environment interaction of Qmpt.tamu.1B.5 increased MPT by 0.14 
min in HY13 (Supplemental Table S6). The third consistent QTL, Qmpt.tamu.1D.417, was 
likely Glu-D1, explaining 27.6 to 34.2% of PVE. Its favorable allele was from CO960293-2, 
which increased the MPT up to 1.0 min. Consistent with moderate to high correlations 
among dough rheological traits, QTLs associated with several midline time and integral 
traits were identified at the same genomic regions as MPT. For instance, 2 consistent QTLs 
associated with MLT were identified on 1B (5 Mbp) and 1D (1 Mbp). Qmlt.tamu.1B.5 was 
detected in all analyses, accounting for 20.1 to 27.2% of PVE and increasing MLT by 0.8 
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min with the favorable allele from CO960293-2, while Qmlt.tamu.1D.1 only increased MLT 
by 0.3 min with the allele from TAM 111. The additive-by-environment interaction in-
creased the MLT by 0.21 min in HY13. Besides MPT and MLT, QTLs associated with MLI, 
MLS, MPI, and MRT were also identified on 1B at 5 Mbp, explaining up to 27.1% of PVE. 
Its favorable allele from TAM 111 increased MLS by 3.2% min−1. On the other hand, the 
favorable alleles from CO960293-2 increased MLI by 24.2% torque x min and MRT by 0.4 
min. Another consistent QTL, Qmlt.tamu.1D.1, explained 3.6 to 4.3% of PVE. The favorable 
allele of Qmlt.tamu.1D.1 was from TAM 111, while the additive effect increased the MLT 
by 0.3 min. Another MLT QTL on 1D near 417 Mbp was identified from one individual 
environment and/or the across-environment analyses, explaining 10.2 to 30.8% of total 
PVE with favorable alleles from CO960293-2 (Supplemental Table S6). Its additive effect 
explained 19.7 of the total 30.8% PVE and increased MLT by 0.5 min. 

There were 3 QTLs identified on 1D at 413 Mbp associated with MLI, MTW, and 
MTXW, showing pleiotropic effects for highly correlated traits (r = 0.78, p < 0.0001). It was 
likely this genomic region associated with the Glu-D1 gene explained MLI, MTW, and 
MTXW up to 31.3, 13.6, and 13.6% of PVE, respectively. Their favorable alleles from 
CO960293-2 increased the MLI, MTW, and MTXW up to 29.4, 2.0, and 2.0 percent points, 
respectively. Besides MPT, one consistent MLI QTL showed an association on 1A at 3 
Mbp, and one consistent MPI QTL was identified on 1A at 5 Mbp. Qmli.tamu.1A.3 was 
identified from BS14 and ET14, explaining 8.4 to 11.1% of PVE. The favorable allele from 
TAM 111 increased MLI up to 17.4%. Qmpi.tamu.1A.5 explained up to 10.6% of PVE. Con-
sistent with the other QTL identified in this genomic region, the favorable allele of 
Qmpi.tamu.1A.5 from TAM 111 increased MPI up to 17.3% torque × min. 

There were two genomic regions on 1B and 1D only associated with one consistent 
QTL, respectively. Qmrs.tamu.1B.8 detected in ET14, BS14, and across-environment anal-
yses accounted for 9.5 to 14.7% of PVE. Its favorable allele from CO960293-2 and the ad-
ditive effect increased MRS by 0.5% min−1. Qmpi.tamu.1D.66 explained 22.9 to 30.9% of 
PVE in HY13, BS14, and across-environment analyses. The favorable allele of 
Qmpi.tamu.1D.66 from CO960293-2 increased the MPI by up to 29.7% torque × min. 

3.2.3. QTLs for Grain Mineral Element Concentrations 
Due to the heritability of Li, Rb and Sr were 0 (Supplementary Table S1). Identified 

QTL associated with Li, Rb, and Sr were unreliable. Therefore, five QTLs were identified 
for grain concentrations of Co, Cd, and Mo on chromosomes 3B, 5A, and 7B, accounting 
for 7.6 to 11.6% of PVE (Table 1). There were 3 QTLs associated with Cd concentration, 
Qgcd.tamu.3B.46, Qgcd.tamu.5B.540, and Qgcd.tamu.7B.552, which accounted for 8.0, 8.0, 
and 7.6% of PVE, respectively. All the GCD QTLs showed negative additive effects, sug-
gesting that alleles increased grain Cd concentration were from TAM 111. One QTL asso-
ciated with Co concentration was on chromosome 3B at 32 Mbp, accounting for 11.6% of 
total PVE. The allele from TAM 111 increased grain Co concentration by 0.003 mg kg−1. 
One QTL was identified on chromosome 3B at 540 Mbp for grain Mo concentration, ac-
counting for 8.6% of total PVE. The favorable allele from CO960293-2 increased Mo con-
centration by 0.036 mg kg−1. 

3.3. Pleiotropic QTL 
Based on QTLs identified at least twice from single and across environment analyses, 

nine genomic regions were found to be associated with more than one trait and thus con-
sidered to have pleiotropic effects (Figure 1). On chromosome 1A, the genomic region 
between 3 and 6 Mbp was clustered with QTL for MLI, MLT, MLV, MPT, MPI, MTV, 
MTW, MTXV, and MTXW with TAM 111 favorable alleles that explained up to 15.1% of 
total PVE (Supplementary Table S6). The genomic region on 1B between 3 and 8 Mbp was 
co-located with MLT, MLS, MLI, MPT, MPV, MPI, MRT, MRS, MRW, MRI, MTV, MTW, 
MTI, MTXV, MTXW, and MMST. The alleles from this genomic region that increased the 
phenotypic values mainly were from CO960293-2, except for MLS, MPV, MTI, MTXI, and 
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MMST. There were three genomic regions co-located with multiple dough rheological 
traits on chromosome 1D. They were at 1 Mbp, between 64 and 76 Mbp, and Glu-D1. The 
favorable alleles of the 1 Mbp region from TAM 111 explained up to 10.6% of total PVE. 
Favorable alleles of the other two pleiotropic regions on 1D from either TAM 111 or 
CO960293-2 explained up to 30.9 and 34.2% of total PVE. Two genomic regions on chro-
mosome 5B were co-located with multiple traits. QTL for three dough rheological traits, 
including MLI, MPT, and MRT, were clustered at 424 Mb on 5B with CO960293-2 favora-
ble alleles, explaining up to 5.4% of total PVE. 

 

Q
m
li.tam

u.1A
.3

Q
m
pt.tam

u.1A
.3

Q
m
pi.tam

u.1A
.5

Q
m
tv.tam

u.1A
.6

Q
m
txv.tam

u.1A
.6

Q
m
lv.tam

u.1A
.6

Q
m
rw
.tam

u.1A
.6

Q
m
tw
.tam

u.1A
.6

Q
m
txw

.tam
u.1A

.6

Q
m
ri.tam

u.1A
.11

Q
m
rv.tam

u.1A
.74 Q

w
ab.tam

u.1A
.514

1A

Q
m
m
st.tam

u.1B
.2

Q
m
pv.tam

u.1B
.2

Q
m
ti.tam

u.1B
.2

Q
m
txi.tam

u.1B
.2

Q
m
li.tam

u.1B
.5

Q
m
ls.tam

u.1B
.5

Q
m
lt.tam

u.1B
.5

Q
m
pi.tam

u.1B
.5

Q
m
pt.tam

u.1B
.5

Q
m
rt.tam

u.1B
.5

Q
m
rw
.tam

u.1B
.5

Q
m
tv.tam

u.1B
.5

Q
m
txv.tam

u.1B
.5

Q
m
rs.tam

u.1B
.8

Q
m
tw
.tam

u.1B
.8

Q
m
txw

.tam
u.1B

.8

Q
m
pv.tam

u.1B
.15 Q
hdi.tam

u.1B
.303

1B

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

Q
m
tw
.tam

u.1D
.1

Q
m
txw

.tam
u.1D

.1

Q
m
lt.tam

u.1D
.1

Q
m
pi.tam

u.1D
.1

Q
m
pt.tam

u.1D
.1

Q
m
pw
.tam

u.1D
.1

Q
m
rw
.tam

u.1D
.1

Q
m
txv.tam

u.1D
.1 Q

m
ls.tam

u.1D
.64

Q
m
tv.tam

u.1D
.65

Q
m
txv.tam

u.1D
.65

Q
m
pi.tam

u.1D
.66

Q
m
ri.tam

u.1D
.66

Q
m
rt.tam

u.1D
.73

Q
m
m
st.tam

u.1D
.76

Q
kd.tam

u.1D
.190

Q
m
li.tam

u.1D
.413

Q
m
pi.tam

u.1D
.413

Q
m
pt.tam

u.1D
.413

Q
m
ri.tam

u.1D
.413

Q
m
tw
.tam

u.1D
.413

Q
m
txw

.tam
u.1D

.413

Q
m
ls.tam

u.1D
.414

Q
m
lt.tam

u.1D
.414

Q
m
rt.tam

u.1D
.414

Q
m
ls.tam

u.1D
.417

Q
m
lt.tam

u.1D
.417

Q
m
m
st.tam

u.1D
.417

Q
m
pt.tam

u.1D
.417

Q
m
ti.tam

u.1D
.417

Q
m
txi.tam

u.1D
.417

1D

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270



Agronomy 2021, 11, 2519 11 of 20 
 

 

 
Figure 1. The locations of QTL peaks for end-use quality identified from individual and across-environment QTL analyses 
and grain mineral traits from individual environment analysis in the ‘CO960293-2′/‘TAM 111′ RIL population. In each sub-
figure, markers are represented by horizontal stripes inside a linkage group and the corresponding wheat chromosome is 
listed above each linkage group. Genetic distances (centiMorgans, cM) were listed on the left ruler of each sub-figure. 
QTLs were designated in the format as Qtrait.tamu.chrom.Mb. 

3.4. Interactions of Epistasis and Epistasis-by-Environment 
There were 254 interactions of epistasis and epistasis-by-environment with a com-

bined LOD ≥ 5 for all the end-use quality traits that were collected from multiple environ-
ments, except for HDI, KD, and MTXS (Supplemental Table S7; Supplemental Figure S4). 
However, none of these epistasis and epistasis-by-environment interactions had a com-
bined LOD > 10. Among all the consistent QTLs, none were involved with interactions. 
However, there were fours QTL, Qmlv.tamu.1B.2, Qmti.tamu.1B.2, Qmtxi.tamu.1B.2, and 
Qmri.tamu.1A.11, that were at least detected from one individual and MET analyses and 
that were involved in epistasis and epistasis-by-environment interactions. The epistasis of 
Qmlv.tamu.1B.2 explained 1.6% of PVE, while the epistasis-by-environment interaction ex-
plained 1.0% of total PVE. The additive-by-environment interactions of the TAM 111 allele 
increased the MLV by 0.6% in ET14, and epitasis-by-environment interactions between 
Qmlv.tamu.1B.2 and Qmlv.tamu.5B.581 increased MLV by 0.3 and 0.4% in HY13 and BS14, 
respectively. Similar results were found between the interactions involved with 
Qmti.tamu.1B.2 and Qmtxi.tamu.1B.2. The epistasis of these two QTLs both explained 1.9% 
of total PVE, while the epistasis-by-environment interaction both explained 1.2% of total 
PVE. The epistasis between Qmri.tamu.1A.11 and Qmri.tamu.4A.608 explained 1.4% of to-
tal PVE, while the epistasis-by-environment interaction accounted for 0.7% of total PVE. 
The epistasis-by-environment interactions of the favorable allele from TAM 111 increased 
the MRI by 6.1% torque × min in HY13. 

For MPT, there were 12 QTLs that showed epistasis interactions, with their LOD 
ranging from 2.8 to 6.0, while the epistasis-by-environment interactions’ LOD ranged 
from 0.4 to 3.3 (Supplemental Table S7). The phenotypic variations explained by epistasis 
interactions ranged from 0.6 to 1.7%, while the phenotypic variations explained by epista-
sis-by-environment interactions ranged from 0.04 to 0.8%. Interactions of 2 TAM 111 al-
leles at Qmpt.tamu.1D.479 and Qmpt.tamu.2D.27 decreased the MPT by 0.19 min. How-
ever, the interaction of the TAM 111 allele of Qmpt.tamu.1A.41 and the CO960293-2 allele 
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of Qmpt.tamu.6D.7 had the highest epistasis LOD of 6.0. Additionally, this interaction in-
creased the MPT by 0.18 min, and their interaction with HY13 increased the MPT by 0.1 
min. 

For FPC, there were 17 epistasis interactions identified on chromosomes 1D, 3A, 4B, 
5B, 6A, 6B, 6D, 7A, and 7D (Supplemental Table S7). The total LOD ranged from 5.0 to 7.6, 
and the PVE explained by epistasis and epistasis-by-environment interactions ranged 
from 2.7 to 4.4% and 1.0 to 3.2%, respectively. Three epistasis interactions, Qfpc.tamu.2D.27 
by Qfpc.tamu.4B.597, Qfpc.tamu.3B.166 by Qfpc.tamu.5B.624, and Qfpc.tamu.2A.770 by 
Qfpc.tamu.7A.660, had epistasis and epistasis-by-environment interactions with a com-
bined LOD value greater than seven. The TAM 111 allele of Qfpc.tamu.3B.166 and the 
CO960293-2 allele of Qfpc.tamu.5B.624 increased the FPC by 0.1%. The epistasis-by-envi-
ronment interactions increased the FPC by 0.06 and 0.04% in HY13 and BS14, respectively. 
The interaction between Qfpc.tamu.2A.770 and Qfpc.tamu.7A.660 explained the largest PVE 
among all the interactions and increased the FPC by 0.1% in ET14 through epistasis-by-
environment interactions. 

4. Discussion 
End-use quality analysis is an indispensable component in wheat breeding pro-

grams. However, testing and evaluating end-use quality traits are often challenged by the 
high cost and a large amount of grain required at early generation stages and often con-
founded by the environment and genetic-by-environment interactions [33,34]. Under-
standing the complex genetic bases of grain end-use quality traits and developing trait-
associated molecular markers for marker-assisted selections can help breeders develop 
wheat cultivars with superior end-use quality more efficiently. Substantial efforts have 
been devoted to discover QTLs associated with end-use quality traits. Unfortunately, the 
knowledge of genetic and genomic bases of end-use quality in wheat is limited. 

In the present study, we observed substantial phenotype variations among most of 
the end-use quality traits in this CO960293-2/TAM 111 RIL population. CO960293-2 had 
higher values than TAM 111 in most dough rheological traits, consistent with CO960293-
2 having better end-use quality. CO960293-2 had higher grain mineral concentration val-
ues for most of the testing elements, while TAM 111 had a higher single kernel weight. 
This was consistent with previous findings that the mineral concentration tends to de-
crease when yield increases due to dilution effects [24,35]. However, the grain Cd concen-
tration of TAM 111 was higher than CO960293-2, suggesting TAM 111 may have unique 
Cd uptake and distribution mechanisms. 

The correlations among most of the mixograph parameters were high, especially 
among midline value, slope, width, integral, and time parameters, suggesting one set of 
mixograph parameters is enough to evaluate the dough rheology characteristics. Con-
sistent with Tsilo et al. [34] and Dhakal et al. [2], significant correlations were observed 
between mixograph traits and kernel traits in individual and across-environment anal-
yses. The results of the correlation in the present study suggest that FPC and HDI might 
not be a good predictor of the mixing properties of the dough. Most of the grain mineral 
concentrations were extensively correlated in this study. Guttieri et al. [24] reported that 
correlations of P with Fe and Zn were > 0.5. However, in this study, the correlations of P 
with Fe and Zn were low, which were similar to findings reported by Morgounov et al. 
[36]. Single kernel weight is a component of grain yield and is usually negatively corre-
lated with grain mineral concentrations. Consistent with Guttieri et al. [24], Zn and S were 
found to be significantly negatively correlated with SKW, while Cd concentration was 
positively correlated with SKW. 

Moderate to high heritability for all kernel characteristics and most dough rheologi-
cal traits except for MTS and MTXS (Supplementary Table S1) indicated that genetic fac-
tors controlled a large part of phenotypical expressions. These results were consistent with 
Dhakal et al. [2] and Tsilo et al. [34], who reported a wide heritability range from 0.41 to 
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0.98 for mixograph parameters and kernel characteristics. In terms of grain mineral ele-
ment concentrations, zero to low heritability was found for all the mineral element con-
centrations, except for Cd and Co, where moderate heritability was found. Guttieri et al. 
[24] found that the heritability of mineral elements varied by yield, ranging from low to 
high. The mineral elements that consistently showed moderate to high heritability were 
Cd and Li, whereas the heritability of Co was consistently low for trials both in higher-
yielding Nebraska and and lower-yielding Oklahoma. Besides Cd, selection for improved 
mineral nutrients is likely affected by environmental conditions, especially under adverse 
conditions. [24] 

In the QTL analysis, the consistent HDI QTL found on 2B near 56 Mbp were close to 
the QTL associated with soft durum wheat (Triticum turgidum subsp. durum) grain hard-
ness [37]. Smith et al. [38] also found HDI QTL on 2B were likely associated with pentosans 
and polar lipids in the endosperm, demonstrating the contribution of grain hardness from 
durum wheat. Dhakal et al. [2] reported a consistent QTL for HDI on chromosome 1A 
near 475 Mbp, which is not far from Qhdi.tamu.1A.520 identified in the current study that 
may associate with Glu-A1. A previously reported HDI QTL on 1D was associated with 
Glu-D1, suggesting that the gluten strength can influence grain hardness [39]. Although 
no previous studies showed Glu-A1 influences grain hardness, it is possible that the ho-
mologous locus can also influence grain hardness. It is known that the Ha locus and Ha-
linked puroindoline a (Pina) and puroindoline b (Pinb) located on chromosome 5DS mod-
ulate grain hardness in wheat [40]. However, no HDI QTL was detected on 5D in this 
study, suggesting the diverse genetic background of bread wheat. Qhdi.tamu.5B.585 was 
found on 5B near 585 Mbp, co-locating with flour protein content in a RIL population 
crossed between TAM 112 and TAM 111 [2]. However, no co-location of HDI and FPC 
QTL was observed in this study. The QTLs for SKW and KD were identified on several 
chromosomes, consistent with the finding that several QTLs associated with KD and SKW 
were identified on 5A, 6A, and 7A [41,42]. The only consistent QTL for KD, 
Qkd.tamu.2B.68, was physically close to the photoperiod response locus gene on 2B (Ppd-
B1). Germplasms that carry photoperiod-insensitive alleles tend to flower early, enabling 
them to escape the late-season abiotic stresses. These also have longer times in the grain-
filling stage, enabling them to reach their grain dimension potential [43]. An SKW QTL 
only identified in ET14, Qskw.tamu.2B.65, was located at the genomic region near Ppd-B1, 
conferring the high correlation between KD and SKW in this study. Consistent with a 
previous report, the Ppd-B1 region was found to be associated with thousand-grain weight 
[44]. Qskw.tamu.6A.608 was 4.8 Mbp away from the kernel weight QTL QTkw.dms-6A.3 
reported by Semagn et al. [41]. The genomic region on 5A near 644 Mbp showed an asso-
ciation with KD and SKW and was, at the same position, compared to the test weight QTL 
QTwt.dms-5A.1 reported by Semagn et al. [41]. Dhakal et al. [2] reported QTLs for KD and 
SKW on the long arm of chromosomes 2D and 7D in TAM 111. It was unexpected that no 
QTL was identified on 2D and 7D in this study, since TAM 111 served as a parent for both 
studies. 

The FPC is a quantitative trait controlled by several genes and QTLs distributed 
throughout the wheat genome [2,15,41,45–47]. The only consistent FPC QTL identified on 
chromosome 3B, Qfpc.tamu.3B.695, explained noticeable phenotypic variations. The pro-
tein content QTL reported by Alemu et al. [45] and Semagn et al. [41] were located at the 
same genomic regions but were about 100 Mbp away from Qfpc.tamu.3B.695, suggesting 
the novelty of this QTL. Qfpc.tamu.3B.695 was very close to Endo-1,3(4)-beta-glucanase 1 
at 689 Mb and was involved with seed germination and associated with grain hardness 
affected by protein and carbohydrate interactions [48,49]. However, no association be-
tween Endo-1,3(4)-beta-glucanase 1 and FPC was reported. Several FPC QTLs were iden-
tified on chromosome 5B, consistent with previous findings [15,41]. Although not corre-
lated with SKW, which is considered a yield component, the FPC QTL on 5B near 680 Mbp 
overlapped with a yield QTL reported by Semagn et al. [41]. 
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The dough rheological properties were often used as the direct factors to determine 
the wheat gluten strength that affected the end-use quality. The QTLs for dough rheolog-
ical property traits were identified to be clustered on 1A, 1B, 1D, and 5B in this study, 
consistent with the previous findings that these traits were controlled by multiple genes 
or QTLs [2,34,46,50,51]. Numbers of studies have confirmed that HMW-GSs encoded by 
Glu-D1, Glu-B1, and Glu-A1 influenced dough rheological properties [52–54]. In the cur-
rent study, the genomic region on 1D near 413 Mbp was associated with many mixograph 
traits linked to the Glu-D1 loci. Dhakal et al. [2] reported the segregation of Glu-D1a alleles 
(Dx2 + Dy12 subunit), which was inferior to Glu-D1d alleles (Dx5 + Dy10 subunit) in dough 
mixing strength [6,55]. The favorable alleles of all the QTLs of major effects associated 
with Glu-D1 were from CO960293-2, consistent with the fact that CO960293-2 (Glu-D1d) 
had superior end-use quality compared to TAM 111 (Glu-D1a). A dough rheological trait 
QTL, Qmpv.tamu.1B.558, which was flanked by markers Bx7OE and IWB8798, was only 
detected once in the study. Bx7OE was linked to the 1Bx7 subunit encoded by Glu-B1, 
which has important contributions to gluten functionality [52]. No dough rheological trait 
QTL was found to be associated with Glu-A1. However, a WAB QTL, Qwab.tamu.1A.514, 
was physically close to Glu-A1, indicating that HMW-GSs can influence the protein con-
centration, which was consistent with the fact that HMW-GSs account for ~10% of total 
protein [56]. Three genomic regions clustered with multiple dough rheological trait QTLs 
were found on the short arms of 1A, 1B, and 1D, physically close to the Gli-A1, Gli-B1, and 
Gli-D1 loci that associated with γ-, δ-, and ω-gliadins or, immediately downstream LMW-
GSs encoded by genes Glu-A3, Glu-B3, and Glu-D3 [57,58]. Unsurprisingly, Dhakal et al. 
[2] also observed dough rheological trait QTLs clustered on the short arms of 1A, 1B, and 
1D, since TAM 111 served as a parent in both studies. A genomic region on 1D near 66 
Mbp was identified for a few dough rheological trait QTLs. It was likely that this region 
may be physically close to Gli-D3 and had not been reported to be associated with dough 
rheological traits before [59]. 

It is estimated that more than 33% of the children and women in developing countries 
do not receive the Zn element [60]. Insufficient Zn intake has been correlated with the 
prevalence of stunting in children under age five [61]. Improving beneficial metal element 
accumulation in wheat is critical for maintaining good human health and has become a 
priority of many breeding programs. In this study, the accumulation of Zn was not con-
sistent and no QTL was identified in this CO960293-2/TAM 111 population. Similarly, 
Guttieri et al. [17] could not identify QTLs associated with Zn concentration in a GWAS 
study, suggesting selection for grain Zn concentration likely will be ineffective and that 
genetic improvement for Zn is difficult to achieve within the Great Plains hard winter 
wheat germplasm. On the contrary, numbers of QTL associated with Zn have been iden-
tified throughout the wheat genome [10,62,63]. Molybdenum is a trace element that is es-
sential for animals and plants. Molybdenum has been utilized explicitly in enzymes and 
two of them, aldehyde oxidase and sulfite oxidase, exist both in humans and plants 
[64,65]. Gwen et al. [66] and Wang et al. [67] reported genetic bases of Mo accumulation 
in rice. However, little information is available about either physiological or genetic bases 
of Mo accumulation in wheat. This study identified a QTL of grain Mo concentration on 
3B, shedding light on molecular investigations of Mo concentration in wheat. Bhatta et al. 
[68] identified three marker-trait associations on wheat chromosomes 3A, 6D, and 7D for 
grain Co concentration based on a synthetic hexaploid wheat association panel. The QTL 
identified on 3B in this study is the potential novel QTL for grain Co concentration. Be-
sides beneficial mineral elements, wheat also contains some heavy metals such as Cd, Pb, 
and As, which will cause prostate, lungs, and testes cancers as well as organs damages if 
excessively consumed [11]. Guttieri et al. [17] reported a Cd QTL on 5A homologous to 
the durum wheat grain Cd accumulation Cdu1 locus and homologous rice loci OsHMA3 
[69], likely co-located with the Qgcd.tamu.5A.577 identified in this study, which is physi-
cally close to the Vrn-A1 gene. Besides grain Cd concentration, Vrn-A1 has been found to 
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be associated with copper tolerance [70]. Wang et al. [10] found wheat grain Cd concen-
tration QTLs on chromosomes 1B, 1D, 4A, 4B, 5A, 6B, and 7B. However, no QTL on 3B 
was reported before, indicating novel loci associated with Cd concentration identified in 
this study. 

5. Conclusions 
This study used a RIL population derived from elite lines to detect substantial genetic 

variations and identified QTLs for wheat end-use quality traits. A total of 209 QTLs in 33 
genomic regions were detected for these traits, in which 22 consistent QTLs in nine ge-
nomic regions were for kernel quality and dough rheological traits and five were QTLs 
associated with grain mineral element concentrations. Based on the physical locations, 
some QTLs were close to the loci that were previously well studied or known genes for 
function associated with end-use quality. Novel and stable QTLs for dough rheological 
traits were reported in this study on 1D between 64 to 66 Mbp and on 5B at 424 Mbp. QTLs 
on these two genomic regions mainly contributed by additive effects for several traits, 
such as MPI, MPV, MRI, and MRS on 1D and MLI and MPT on 5B. The SNP markers 
closely linked to QTL can be used in designing KASP markers to accelerate the improve-
ment of wheat end-use quality. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/agronomy11122519/s1, Figure S1: Boxplot analysis of end-use quality traits. Traits in-
cluded are: a) Flour protein content, b) Hardness index, c) Kernel diameter, d) Midline left integral, 
e) Midline left slope, f) Midline left time, g) Midline left value, h) Midline left width, i) Midline 
mixing stability or tolerance, j) Midline peak integral, k) Midline peak time, l) Midline peak value, 
m) Midline peak width, n) Midline right integral, o) Midline right slope, p) Midline right time, q) 
Midline right value, r) Midline right width, s) Midline tail integral, t) Midline tail slope, u) Midline 
tail value, v) Midline tail width, w) Midline time_X integral, x) Midline time_X slope, y) Midline 
time_X value, z) Midline time_X width, aa) Single kernel weight, ab) Water absorption, ac) As con-
centration, ac) As concentration, ad) Ca concentration, ae) Cd concentration, af) Co concentration, 
ag) Cu concentration, ah) Fe concentration, ai) K concentration, aj) Li concentration, ak) Mg concen-
tration, ai) Mn concentra-tion, am) Mo concentration, an) Na concentration, ao) Ni concentration, 
ap) P concentration, aq) Rb concentration, ar) S concentration, as) Sr concentration, at) Ti concentra-
tion, au) Zn concen-tration. X-axis is environment: BS14, ET14, ans HY13. Y-axis represents the cor-
responding trait value under the respective environments. Descriptive statistics are on top of each 
boxplot. Figure S2: LOD profile and additive effects of end-use quality QTL detected in the environ-
ments a)BS14, b) ET14, c) HY13, and grain mineral concentraiton in environment  d) ET14. Traits 
are Flour protein content, Hardness index, Kernel diameter, Midline left integral, Midline left slope, 
Mid-line left time, Midline left value, Midline left width, Midline mixing stability or tolerance, Mid-
line peak integral, Midline peak time, Midline peak value, Midline peak width, Midline right inte-
gral, Midline right slope, Midline right time, Midline right value, Midline right width, Midline tail 
in-tegral, Midline tail slope, Midline tail value, Midline tail width, Midline time_X integral, Midline 
time_X slope, Midline time_X value, Midline time_X width, Single kernel weight, Water absorp-
tion, As concentration, As concentration, Ca concentration, Cd concentration, Co concentration, Cu 
concentration, Fe concentration, K concentration, Li concentration, Mg concentration, Mn concen-
tration, Mo concentration, Na concentration, Ni concentration, P concentration, Rb con-centration, 
S concentration, Sr concentration, Ti concentration, Zn concentration. The top panel of each figure 
shows LOD profile with chromosomal position along the x-axis (cM of 21 chromo-somes) and LOD 
score on the y-axis. The bottom panel of each figure show an additive effect profile with chromoso-
mal position along the x-axis (cM of 21 chromosomes) and additive effect values on the y-axis (val-
ues of each trait have different units). Positive additive effects means that the favorable alleles in-
creasing traits were from CO960293-2 while negative values indicate that the favorable alleles in-
creasing the traits were from TAM 111. Figure S3: LOD profile of additive, additive-by-environment 
detected in the multi-environment QTL analysis for a) Flour protein content, b) Hardness index, c) 
Kernel diameter, d) Midline left integral, e) Midline left slope, f) Midline left time, g) Midline left 
value, h) Midline left width, i) Midline mixing stability or tol-erance, j) Midline peak integral, k) 
Midline peak time, l) Midline peak value, m) Midline peak width, n) Midline right integral, o) Mid-
line right slope, p) Midline right time, q) Midline right value, r) Midline right width, s) Midline tail 
integral, t) Midline tail slope, u) Midline tail value, v) Midline tail width, w) Midline time_X integral, 
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x) Midline time_X slope, y) Midline time_X value, z) Midline time_X width, aa) Single kernel weight, 
ab) Water absorption. LOD profile with chromosomal position is shown on the x-axis (cM of 25 LGs) 
and LOD score on the y-axis. Positive additive effects mean that the favorable alleles increasing 
traits were from CO960293-2 while negative values indicate that the favorable alleles increasing the 
traits were from TAM 111. Figure S4: Epistatic interaction for LOD > 5 between QTL for flour protein 
content, midline left integral, midline left slope, midline left time, midline left value, midline left 
width, midline mixing stability or tolerance, midline peak integral, midline peak time, midline peak 
value, midline peak width, midline right integral, midline right slope, midline right time, midline 
right value, midline right width, midline tail integral, midline tail slope, midline tail value, midline 
tail width, midline time_X integral, midline time_X value, midline time_X width, single kernel 
weight, water absorption. The numbers on the rings represent the peak cM position of the on chro-
mosomes and numbers on each line show the total LOD score of that epistasis effects.  The detailed 
information were listed in Table S7. Table S1. Analysis of variance, heritability and mean perfor-
mance. Table S2. Cor-relation matrix for kernel characteristics and rheological properties for data 
averaged across en-vironments. Table S3. Correlation matrix for kernel characteristics and rheolog-
ical properties for environment BS14. Table S4. Correlation matrix for kernel characteristics, dough 
rheological properties, and grain mineral concentrations for environment ET14. Table S5. Correla-
tion matrix for kernel characteristics and rheological properties for environment HY13. Table S6. 
QTL for end-use quality traits detected once from individual and across environment analyses. Ta-
ble S7. Epistasis and epistasis by environment interactional effects of end-use quality traits. 
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Abbreviations 
ANOVA analysis of variance 
CTAB cetyltrimethylammonium bromide 
FPC flour protein concentration 
GCD grain Cd concentration 
GCO grain Co concentration 
GMO grain Mo concentration 
HDI hardness index 
HMW-GS high molecular weight glutenin sub-unit 
ICIM inclusive composite interval mapping 
KASP Kompetitive Allele Specific PCR 
KD kernel diameter 
MLI midline left integral 
MLS midline left slope 
MLT midline left time 
MLV midline left value 
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MLW midline left width 
MMST midline mixing stability or tolerance 
MPI midline peak integral 
MPT midline peak time 
MPV midline peak value 
MPW midline peak width 
MRI midline right integral 
MRS midline right slope 
MRT midline right time 
MRV midline right value 
MRW midline right width 
MTI midline tail integral 
MTS midline tail slope 
MTV midline tail value 
MTW midline tail width 
MTX midline time_X integral 
MTXS midline time_X slope 
MTXV midline time _X value 
MTXW midline time _X width 
QTL quantitative trait loci 
RIL recombinant inbred line 
SKW single kernel weight 
WAB water absorption 
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