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Abstract: This study sought to simulate regional variation in staple crop yields in Chonnam Province,
Republic of Korea (ROK), in future environments under climate change based on the calibration
of crop models in the Decision Support System for Agricultural Technology Transfer 4.6 package.
We reproduced multiple-year yield data for paddy rice (2013–2018), barley (2000–2018), and soy-
bean (2004–2018) grown in experimental fields at Naju, Chonnam Province, using the CERES-Rice,
CERES-Barley, and CROPGRO-Soybean models. A geospatial crop simulation modeling (GCSM)
system developed using the crop models was then applied to simulate the regional impacts of
climate change on the staple crops according to the Representative Concentration Pathway 4.5 and
8.5 scenarios. Simulated crop yields agreed with the corresponding measured crop yields, with root
means square deviations of 0.31 ton ha−1 for paddy rice, 0.29 ton ha−1 for barley, and 0.27 ton ha−1

for soybean. We also demonstrated that the GCSM system could effectively simulate spatiotemporal
variations in the impact of climate change on staple crop yield. The CERES and CROPGRO models
seem to reproduce the effects of climate change on region-wide staple crop production in a monsoonal
climate system. Added advancements of the GCSM system could facilitate interpretations of future
food resource insecurity and establish a sustainable adaption strategy.

Keywords: climate change; crop model; region; simulation; staple crop; yield

1. Introduction

Increases in anthropogenic atmospheric greenhouse gases (GHGs) have led to an
accompanying elevation in global mean surface temperatures of 0.74 ◦C ± 0.18 ◦C over the
last 100 years (1906–2005), according to the Intergovernmental Panel on Climate Change
(IPCC) [1]. The IPCC opined that the global warming trends from 1986–2005 to 2081–2100
would vary depending upon different GHG concentration trajectory scenarios. The IPCC
report projects a temperature increase of 1.1 to 2.6 ◦C according to Representative Con-
centration Pathway (RCP) 4.5, and 2.6 to 4.8 ◦C based on RCP 8.5. It is also projected that
elevated temperatures seemingly vary geographically and by region. Therefore, adaptative
measures to climate changes that employ different strategies should be designed based on
an adequate understanding of the socio-economic and local environments particular to
each area.

The agricultural sector must produce sufficient food crops to meet the consumer de-
mand of the future. However, the estimated increase in the concentrations of atmospheric
GHGs and the combined elevation of temperature can impact crop production, which is
mainly affected by changes in evapotranspiration, plant growth rates, plant litter compo-
sition, and the nitrogen-carbon cycle [2]. There have been various scientific endeavors
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to measure global crop production, focusing on climate change [3–5]. It has been found
that in some situations, global and regional crop productivity in a changing climate will
fluctuate considerably due to the environmental variation among different regions [6–8],
and the probable impacts in a particular area may differ depending on the extent of these
fluctuations, as well as local crop responses, site-specific management, and socio-economic
circumstances [9,10]. Therefore, it is essential to explore the local impacts of climate change
on the production of crops of interest to enable the timely implementation of suitable
adaptation measures for each region.

Crop morphogenesis, which is mainly influenced by genetic mechanisms and the
combined effects of numerous eco-physiological processes within ecosystems, affects crop
productivity variation. In addition, crop production is impacted by a number of ecosystem
conditions (i.e., solar radiation, temperature, CO2 concentration, soil nutrients and water)
as well as field management. However, field experiments to evaluate the potential impacts
of these physical characteristics on crop production have not been able to clarify all the envi-
ronmental variables and their interactions. In this context, cropping system models that are
adequately calibrated and validated can be used to examine the combined effects of chemi-
cal, physical, and biological processes [11,12]. Of a large number of crop models available,
those frequently adopted for crop productivity assessments include the Agricultural Pro-
duction System Simulator (APSIM) [13], the multidisciplinary simulator for standard crops
(Stics) [14], the Root Zone Water Quality Model (RZWQM) [15], the Environmental Policy
Integrated Climate (EPIC) [16], the World Food Studies (WOFOST) [17], and several crop
models in the Decision Support System for Agrotechnology Transfer (DSSAT) package [18].
Agronomists and ecologists have generally used the crop models in the DSSAT package
to investigate crop productivities under different environmental conditions and potential
climate change scenarios. The DSSAT package, specifically version 4.7 (https://dssat.net,
accessed on 1 October 2021), comprises crop models for over 42 crops, including the CERES
models [19], CROPGRO [20], and SUBSTOR [21].

The IPCC scenarios project that regional variations will intensify in response to climate
change [1]. In this regard, ROK is seemingly vulnerable to climate change, much in the
same way or more than other regions. Therefore, it has been important for agricultural
policymakers, scientists, and stakeholders in ROK to assess the impacts of climate change on
crop productivity and create an appropriate crop plant for adaption. Different approaches
have been developed to address the impacts of climate change, such as those derived from
investigative field studies [22,23] and from studies using crop modeling practices [6,10].
Although recent crop modeling studies have attempted to project geographical variation
in crop productivity as influenced by climate change impacts [24], little research has been
conducted to investigate crop productivity variation at a regional scale in a changing climate
in ROK [6,9]. Due to this country’s complex topographical land characteristics, there are
deeper field and inter-regional variations in crop productivity. Therefore, the objective
of this study was to use a crop modeling approach to establish a scientific methodology
to address the issue of local variations by projecting the geospatial variations in paddy
rice, barley, and soybean yields in future environments under climate change in Chonnam
Province, ROK. The study outcomes can be employed as a decision support tool to deliver
the variation issue mentioned above.

2. Materials and Methods
2.1. Experimental Field Data for Rice, Barley, and Soybean

Field experiments were conducted at Jeollanamdo Agricultural Research and Ex-
tension Services (JARES; 35◦1′ N, 126◦45′ E; 14.7 m above sea level), Naju, Chonnam
Province, ROK (Figure 1). The provincial inland region of Chonnam lies between the
latitudes of 34◦17′ and 35◦29′ N and the longitudes of 126◦5′ and 127◦46′ E and has
a total area of ~12,247 km2. The 30-year average annual temperatures in this region,
where barley (Hordeum vulgare), rice (Oryza sativa), and soybean (Glycine max) can be
cultivated, range from ~12 to 15 ◦C, according to the Korea Meteorological Administra-
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tion (KMA) (https://data.kma.go.kr/, accessed on 1 October 2021). The corresponding
average annual total precipitation amounts vary from ~1200 to 1500 mm, of which ~60%
of the rainfall is concentrated between June and September. Based on the United States
Department of Agriculture classification system, the soil within the experimental area is
classified as a Fluvisol with a loam texture with total organic carbon, total nitrogen, and
available phosphate contents of 12.3 g kg−1, 1.0 g kg−1, and 13.1 g kg−1, respectively, and
a soil pH in H2O of 5.5. Additional specific soil properties can be found in Yun et al. [25].
In addition, weather data were recorded using an automated weather station (WS-GP1;
Delta-T Devices, Cambridge, UK).
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Figure 1. The study location map of Jeollanamdo Agricultural Research and Extension Services
(JARES) and Chonnam Province, Republic of Korea (ROK).

The field experiments were carried out from 2000 to 2018 at JARES to simulate barley,
rice, and soybean yields based on the determination of the genetic coefficients of each crop
cultivar (Table 1). We deliberately selected six varieties of rice and barley and nine soybean
varieties from among the available local crop cultivars bred by the National Institute of
Crop Science (http://www.nics.go.kr/english/index.do, accessed on 1 September 2021).
These crop cultivars were planted between the days of the year (DOY) 156 and 166 for rice,
DOY 271 and 296 for barley, and DOY 164 and 176 for soybean in each crop field arranged
as three randomized complete blocks with the planting densities of 27.3 hills m−2 for rice,
225 seeds m−2 for barley, and 22.2 seeds m−2 for soybean. During the 19 crop seasons,
the areas were managed with optimum N–P2O5–K2O fertilization of 80–70–35 kg ha−1

for barley, 90–45–57 kg ha−1 for rice, and 30–30–34 kg ha−1 for soybean. Paddy rice was
grown using flood irrigation, while barley and soybean were fully irrigated with a sprinkler
system. Crop yields were estimated by harvesting sample plants in each experimental plot
from a 2 m2 area for soybean and barley and 100 plants for rice. The plant samples for the
yield estimation were harvested after physiological maturity at four replications in each
crop field plot.

https://data.kma.go.kr/
http://www.nics.go.kr/english/index.do
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Table 1. Summary of crop cultivars, cultivation years, and planting dates and densities used in the
study.

Crop Cultivar and Cultivation Year Planting Date in DOY ♩

Rice

Chopyong (2013–2015), Chonnam-3
(2013–2015), Ilmi (2016–2018), Nampyong

(2016–2018), Saemnuri (2018),
Hwangkeum (2016–2018)

DOY 156–166

Barley

Doosan 29 (2000–2018), Heenchal-naked
(2012–2018), Hopum (2005–2018), Jinyang

(2000–2018), Saechal (2000–2018),
Saechal-naked (2000–2018)

DOY 271–296

Soybean

Daewon (2011–2018), Daweon
(2006–2014), Daepung (2013–2014),

Haepoom (2014–2018), Pungsannamul
(2003–2018), Pungwon (2011–2014),

SeoNam (2003–2005, 2008–2010), SoWeon
(2003–2006), Tawkwang (2011–2018)

DOY 161–176

♩ DOY represents day of the year.

2.2. Crop Models

Crop models are conceptually designed to simulate productivity in relation to envi-
ronmental and biophysical factors (Figure A1). Of the crop models available for the crop
production simulation, we employed CERES-Rice, CERES-Barley, and CROPGRO-Soybean
from the DSSAT package [15] to simulate the impacts of climate change on rice, barley, and
soybean, respectively, in Chonnam Province, ROK. The DSSAT crop models are process-
based management-level simulation models developed to reproduce field conditions of
crop morphogenesis, crop yield, soil water, and soil nutrient balance associated with crop
growth. In this study, we used the CERES-rice, CERES-barley, and CROPGRO-soybean
models differently to simulate all the cultivars (Table 1) from common practice. We used
the Genotype Coefficient Calculator tool in the DSSAT package to determine the generic
coefficients of each cultivar. We also manually calibrated the coefficients proposed by
Goodin et al. [26]. The parameter values determined for each cultivar are presented in
Tables 2–4. In the CERES and CROPGRO models, climate, CO2 concentration, and soil data
are independent variables. However, it appears that the long-term global environment
depends on global greenhouse gases, including CO2 concentration. Therefore, it seems that
CO2 concentration can affect crop growth via changes in temperature and solar radiation.
The crop models determine the net biomass production using the radiation use efficiency
(RUE) approach. Impacts of elevated CO2 concentration on RUE were formulated em-
pirically using curvilinear multipliers [27]. The empirical formula uses a y-intercept in a
modified Michaelis–Menten equation to fit crop responses to a range of CO2 concentrations:

R =
Rm · CO2

CO2 + Km
+ Ri (1)

where R is RUE, as linked to yield or other responses; Rm is the asymptotic response limit
of (R − Ri) at a high CO2 concentration; Ri is the intercept on the y-axis; and Km is the
value of the substrate concentration (i.e., CO2), at which (R − Ri) = 0.5 Rm. Analogous
methodologies have been adopted to simulate the effect of CO2 on cropping systems in
EPIC [13], Agricultural Production Systems Simulator [28], and Sirius [29].
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Table 2. Genetic coefficients of six rice cultivars.

Coeff. † Default ‡ Ilmi Nampyeong Saenuri Hwangkeum Chopyong Chonnam-3

P1 220.0 320.0 300.0 200.0 400.0 320.0 390.0
P2O 12.0 12.8 12.8 12.8 12.8 12.8 12.8
P2R 35.0 20.0 90.0 10.0 45.0 35.0 20.0
P5 510.0 530.0 550.0 530.0 670.0 500.0 530.0
G1 55.0 65.0 65.0 65.0 65.0 65.0 65.0
G2 0.025 0.022 0.022 0.021 0.024 0.021 0.021
G3 1.0 1.2 1.2 1.3 1.2 1.2 1.2
G4 1.0 1.0 1.0 1.0 1.0 1.0 1.0

† P1, Time period (expressed as growing degree days [GDD] in ◦C above a base temperature of 9 ◦C) from seedling emergence during
which the rice plant is not responsive to changes in photoperiod; P2O, Critical photoperiod or the longest day length (in hours) at which
the development occurs at a maximum rate; P2R, Extent to which phasic development leading to panicle initiation is delayed (expressed as
GDD in ◦C) for each hour increase in photoperiod above P20; P5, Time period (expressed as GDD in ◦C) from the beginning of grain filling
(three to four days after flowering) to physiological maturity with a base temperature of 9 ◦C; G1, Potential spikelet number coefficient as
estimated from the number of spikelets per g of main culm dry weight (less lead blades and sheaths plus spikes) at anthesis; G2, Single
grain weight (g) under ideal growing conditions, that is, non-limiting light, water, nutrients, and absence of pests and diseases; G3, Tillering
coefficient (scaler value) relative to IR64 cultivar under ideal conditions; and G4, Temperature tolerance coefficient. ‡ Default values are
from the Japanese cultivar in CERES-Rice version 4.6.

Table 3. Genetic coefficients of four barley cultivars.

Generic
Coefficient † Default ‡ SaeChal SaeChal-

Naked Doosan 29 Jinyang Hopum HeenChal-
Naked

P1V 5 10 10 10 10 10 10
P1D 75 23 23 20 20 20 20
P5 450 200 200 180 180 200 100
G1 30 22 22 22 20 22 22
G2 35 55 49 35 40 35 45
G3 1.0 1.5 1.5 1.5 1.5 1.5 1.5

PHINT 60 90 90 93 83 80 80
† P1V, Optimum temperature required for vernalization (day); P1D, Photoperiod response (% reduction in the rate per 10 h drop in the
photoperiod); P5, Grain filling (excluding lag) phase duration (◦C day); G1, Kernel number per unit canopy weight at anthesis; G2, Standard
kernel size under optimum conditions (mg); G3, Standard non-stressed mature tiller weight (g); and PHINT, Interval between successive
leaf tip appearances (◦C day). ‡ Default values are from the Default cultivar in CROPGRO-Soybean version 4.6.

Table 4. Genetic coefficients of seven soybean cultivars.

Coeff. † Default ‡ Daewon Taekwang Pungsan Haepoom Daepung Pungwon Dawon

CSDL 14.60 14.80 14.61 13.92 13.58 12.04 12.57 12.02
PPSEN 0.129 0.345 0.32 0.344 0.287 0.266 0.249 0.241
EM-FL 15.5 21.0 21.0 22.5 19.2 18.0 18.0 16.5
FL-SH 5.0 6.0 6.0 6.0 9.0 8.0 9.0 9.0
FL-SD 12.0 13.0 13.0 12.0 13.0 14.0 16.0 16.0
SD-PM 29.5 34.5 34.0 34.0 35.5 32.0 32.0 32.6
FL-LF 26.0 18.0 18.0 18.0 18.0 26.0 26.0 26.0

LFMAX 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.02
SLAVR 375 375 375 400 375 385 375 390
SIZLF 180 180 180 150 180 180 170 180

WTPSD 0.19 0.19 0.19 0.19 0.15 0.19 0.18 0.17
SFPDV 23.0 23.0 22.0 24.0 23.0 21.0 21.0 22.0

† CSDL, Critical short day length below which reproductive development progresses with no day-length effect for short-day plants
(hour); PPSEN, Slope of the relative response of development to photoperiod with time (positive for short day plants) (1/hour); EM-FL,
Time between plant emergence and flower appearance (R1) (photo-thermal days); FL-SH, Time between first flower and first pod (R3)
(photo-thermal days); FL-SD, Time between first flower and first seed (R5) (photo-thermal days); SD-PM, Time between first seed (R5) and
physiological maturity (R7) (photo-thermal days); FL-LF, Time between first flower (R1) and end of leaf expansion (photo-thermal days);
LFMAX, Maximum leaf photosynthesis rate at 30 ◦C, 350 vpm CO2, and high light (mg CO2/m2s−1); SLAVR, Specific leaf area of cultivar
under standard growth conditions (cm2/g); SIZLF, Maximum size of full leaf (three leaflets) (cm2); WTPSD, Maximum weight per seed (g);
and SFPDV, Average seed per pod under standard growing conditions (#/pod). ‡ Default values are the M Group 000 cultivar from in
CROPGRO-Soybean version 4.6.
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The minimum variables for driving model simulations are daily solar radiation, maxi-
mum and minimum temperatures, and precipitation. In addition, the required parameters
include crop genetic coefficients, physical and hydraulic soil characteristics, initial soil
nitrogen and soil water conditions, and typical crop management metadata (i.e., the plant-
ing date, planting depth, plant population density, and the amounts and methods of
irrigation and fertilizer applications). There are eight genetic coefficients in CERES-rice,
seven in CERES-barley, and twelve in CROPGRO-soybean (Tables 2–4). The three models
characterize the growth process of the related crop species using these genetic coefficients.

2.3. Geospatial Simulation of the Climate Change Impacts

The geospatial crop simulation modeling (GCSM) scheme was formulated using each
of the CERES-rice, CERES-barley, and CROPGRO-soybean crop models. In the present
study, the GCSM system used previously [6,30] was further developed to simulate the
potential impacts of climate change on regional projections of rice, barley, and soybean
yields. Using shell scripting in the Linux operating system, the GCSM scheme was designed
to run the crop models as many times as planned using pixel-based two-dimensional
climate and soil data (Figure 2). We also designed that model so that input parameter
conditions of interest could be manipulated in the GCSM, including cultivar selection,
planting date, planting density, soil fertilization, and environmental modification options
(i.e., temperature, solar radiation, and CO2 concentration). The GCSM strategy allows
the whole geographical region to be divided into a two-dimensional array of pixels, with
each pixel representing an area of 1 km × 1 km. The pixel-by-pixel soil data provided by
the National Academy of Agricultural Science (NAAS), ROK (http://soil.rda.go.kr/eng/,
accessed on 1 September 2021), and the projected climate data provided by the KMA were
preprocessed and used as input for the crop models to generate pixel-by-pixel projected
crop yield values for the next 100 years. We predetermined the eight probable soil input
archives for crop cultivation in Chonnam Province from the combined soil information
using the generic soil input list of the DSSAT package (Table A1). A detailed soil inventory
can be accessed in Hong et al. [31].
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2.4. Data for the Crop Simulation

The CERES-rice, CERES-barley, and CROPGRO-soybean models were calibrated and
validated using the rice, barley, and soybean datasets, respectively; these were obtained
from the JARES experimental fields (Table 1). Thereafter, the models in the GCSM were
applied to simulate the future impacts of climate change on these crops for the whole
geographical region of Chonnam Province, ROK.

The environmental data applied to simulate the impact of climate change on rice,
barley, and soybean yields in this study included: (1) soil data, (2) projected climate data,
and (3) projected CO2 concentration data. We obtained grid-based pixel soil data from

http://soil.rda.go.kr/eng/
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digital soil maps (1:5000) for the entire Chonnam Province provided by the NAAS. These
soil data were used to aggregate information about topsoil properties, soil type, adequate
soil depth, and soil structure for the region to determine soil input parameters of the crop
models in the GCSM system. The GCSM system was designed to analytically select one of
the eight prospective soil input libraries, preset for crop cultivation in Chonnam Province,
based on the combined soil information using the generic soil input inventory of the DSSAT
package v4.6). We used Chonnam Province climate data from 12 years (1999–2011) with
a 1 km ground resolution as a baseline for the crop model input in the GCSM regime.
These grid-based climate data were obtained utilizing a dynamic downscaling method to
determine high-resolution regional agro-climate indices using a regional climate model,
namely, the Weather Research and Forecasting Model [32].

2.5. Climate Projections

The regional climate model, HadGEM3-RA, and the general circulation model,
HadGEM2-AO, were used to simulate regional climate change projections for Chonnam
Province under two GHG concentration trajectory scenarios, i.e., RCP 4.5 and RCP 8.5 [1].
The prediction of climate variables included temperature and precipitation. We obtained
climate change scenarios from the Coordinated Regional climate Downscaling Experi-
ment (CORDEX) initiative produced by the Task Force for Regional Climate Downscaling
and created by the World Climate Research Programme in 2009. Large-scale climate
variables from HadGEM2-AO were dynamically downscaled to a physically consistent
evolution on a lesser scale (0.44 × 0.44◦) scale using the HadGEM3-RA model. Additional
information on these climate models can be found on the CORDEX-East Asia website
(http://cordex-ea.climate.go.kr/, accessed on 1 September 2021). Chonnam Province tem-
perature and precipitation changes associated with CO2 concentrations under the RCP4.5
and RCP8.5 scenarios were simulated for future years, particularly 2044–2056 centered
on 2050, 2064–2076 centered on 2070, and 2094–2106 centered on 2100. Regional shifts
estimated from the baseline regional climate data were integrated into the primary climate
change trend to produce regional projections of daily climate data (Table 5). We used
these projected data to comprise interannual climate changeability. These variations in
temperature and precipitation were superimposed on the 12-year baseline. This approach
was formerly used to estimate daily climate change in the Central Great Plains, USA [33],
and for the whole topographical region of ROK [6].

Table 5. Projections of temperature (T) and precipitation (P) changes associated with the elevated
CO2 concentrations according to the Representative Concentration Pathway (RCP) scenarios.

RCP Scenario Year CO2
(ppm)

T Change
(◦C)

P Change
(%)

4.5
2050 480 +0.9 +3
2070 520 +1.9 +6
2100 540 +2.3 +7

8.5
2050 530 +1.5 +3
2070 680 +2.7 +7
2100 940 +4.3 +10

2.6. Statistical Analysis

We used four statistical agreement criteria to assess the model performance of the
simulation of yield. These criteria were the p-value from a paired t-test; mean absolute error
(MAE), Equation (2); root means square deviation (RMSD), Equation (3); and Nash-Sutcliffe
model efficiency (NSE) [34], Equation (4).

MAE =
∑n

i=1|Si −Mi|
n

(2)

http://cordex-ea.climate.go.kr/
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RMSD = [
1
n

n

∑
i=1

(Si −Mi)
2]

1/2

(3)

NSE = 1− ∑n
i=1(Si −Mi)

2

∑n
i=1

(
Mi −Mavg

)2 (4)

where n is the number of data pairs and Si, Mi, and Mavg represent ith simulated, ith
measured, and mean measured values, respectively. The NSE determines how well the
plot of the measured data compared to the simulated data resembles the 1:1 line. The NSE
values change from −∞ to 1. The nearer the value is to one, the more precise the model is.
The smaller or closer it is to zero, the lower the model estimate accuracy is.

3. Results
3.1. Simulation of Rice, Barley, and Soybean Yields

The CERES-rice, CERES-barley, and CROPGRO-soybean models reproduced field
variations in rice, barley, and soybean yields for multiple years and different cultivars (data
not shown) with a significant agreement (Figures 3 and A2, and Table 6). The simulated
rice yields agreed with the measured rice yields with a p-value of 0.66 according to a two-
sample t-test, an RMSD of 0.209 ton ha−1, and an NSE of 0.96 in model calibration, having
a p-value of 0.99 according to a two-sample t-test, an RMSE of 0.455 ton ha−1, and an NSE
of 0.24 in model validation. Simulated soybean yields agreed with the measured soybean
yields with a p-value of 0.80 according to a two-sample t-test, an RMSD of 0.141 ton ha−1,
and an NSE of 0.97 in model calibration, having a p-value of 0.51 according to a two-sample
t-test, an RMSE of 0.424 ton ha−1, and an NSE of 0.81 in model validation. Simulated
barley yields agreed with the measured barley yields with a p-value of 0.69 according
to a two-sample t-test, an RMSD of 0.132 ton ha−1, an NSE of 0.94 in model calibration,
having a p-value of 0.48 according to a two-sample t-test, an RMSE of 0.453 ton ha−1, and
an NSE of 0.60 in model validation. Together, the crop models could reproduce the yields
of rice, soybean, and barley with p-values of 0.64, 0.62, and 0.42, respectively, according to
two-sample t-tests, having RMSD values of 30.6, 27.0, and 29.3 ton ha−1 and NSE values of
0.89, 0.94, and 0.77, respectively.
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Table 6. Statistical indices of mean absolute error (MAE), root mean squared deviation (RMSD), two-sample t-test (p), and
Nash-Sutcliffe model efficiency (NSE) of the simulated (Sim) and measured (Meas) rice, soybean, and barley yields in
calibration (Cal) and validation (Val).

Crop Evaluation
Sim Meas MAE RMSD p

(a = 0.05) NSE
ton ha−1

Rice
Val

(2017–18) 7.00 ± 0.615 7.00 ± 0.535 0.319 0.455 0.99 0.24

Cal
(2013–16) 6.29 ± 1.712 6.41 ± 1.071 0.171 0.209 0.66 0.96

Soybean
Val

(2014–18) 4.12 ± 1.034 4.00 ± 0.974 0.312 0.424 0.51 0.81

Cal
(2003–13) 2.69 ± 0.868 2.66 ± 0.846 0.126 0.141 0.80 0.97

Barley
Val

(2010–18) 3.89 ± 0.697 3.75 ± 0.729 0.213 0.453 0.48 0.60

Cal
(2000–09) 3.85 ± 0.502 3.81 ± 0.552 0.112 0.132 0.69 0.94

As CO2 concentration increases, rice, soybean, and barley yields are projected to
increase up to a plateau of about 400 ppm (Figure 4). Conversely, rice yield decreases
as temperature elevates, soybean yield generally maintains constant, showing a bit of
fluctuation, and barley yield increases until 2.5 ◦C. The combined effects of temperature
and CO2 on these crop yields show a slow decline in rice, a plateau in soybean, and an
increase until 2.5 ◦C in barley, and the same for the temperature responses.
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3.2. Geographical Simulation of the Climate Change Impacts

We employed the CERES-rice, CERES-barley, and CROPGRO-soybean models in the
GSCM system to simulate the potential influences of climate change on rice, barley, and
soybean yields in the whole geographical area of Chonnam Province, ROK. As a result,
these crop yields were projected for the target years 2050, 2070, and 2100 with the RCP 4.5
and RCP 8.5 scenarios. According to the RCP 4.5 scenario, Ilmi rice yields decreased by
4.0% and 6.9% in 2050 and 2070, respectively, showing a 1.3% increase in 2100 (Figure 5). In
contrast, Daewon soybean yields showed small increases at 4.0%, 3.5%, and 3.9% in 2050,
2070, and 2100, whereas SaeChal-naked barley yields increased 20.8%, 26.3%, and 17.5% in
2050, 2070, and 2100, respectively (Figures 6 and 7). Regarding the RCP 8.5 scenario, rice
and soybean yields were projected to increase slightly compared to the baseline, whereas
barley yields were projected to increase gradually (Figures A3–A5). However, we found
that the crop yields under RCP 8.5 fluctuated more than those under the RCP 4.5 during
the projected years. Furthermore, we found that the barley yields showed the highest
geospatial variation, with values between ±20.9% and 30.9% of the mean values, followed
by the rice yields. We also found that crop yields were projected to be comparatively higher
in the coastal areas of Chonnam Province but lower in the interior mountainous regions.
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Figure 5. Simulated variations in Ilmi rice yield under the potential climate change impacts of
Representative Concentration Pathway (RCP) 4.5 in 2044–2056 centered on 2050 (b), 2064–2076
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Province, Korea. The values in the parentheses represent the yield change percentages in comparison
with the baseline yield.
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Figure 6. Simulated variations in SaeChal-naked barley yield under the potential climate change
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in the parentheses represent the yield change percentages in comparison with the baseline yield.
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represent the yield change percentages in comparison with the baseline yield.
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4. Discussion

In this study, we successfully calibrated and validated CERES-rice, CERES-barley,
and CROPGRO-soybean models for yield simulations of rice, barley, and soybean grown
in the JARES fields, following which we reproduced the geographical variation in crop
yield in the Chonnam region of South Kore. Based on earlier reports, we surmised that
these crop models could be employed to simulate climate change impacts on the yields of
these crops. A recent study demonstrated this capability by reproducing barley and paddy
rice productions under the temperature gradient chamber system in the region of interest
using the CERES-barley and CERES-rice models [6,10]. In addition, it was previously
reported that models could simulate the CO2 effects of a free-air CO2 enrichment system
on the productivity of the crop of interest [35–37]. However, although these models
provided successful outcomes for these studies, they need to be further developed to
address more sophisticated issues and important future field crop research. For example,
the improvement could include but is not limited to detailed modeling of crop development
and growth performance, as well as plant-water-soil-nutrient interactions.

The current study further utilized a previously developed GCSM system [6,30] to
simulate the potential impacts of climate change on regional projections of rice, barley, and
soybean yields. As a result, we adequately represented spatial variations in these crop
yields within geographical regions of the whole of Chonnam Province, showing higher
yields in the coastal areas and lower yields in the inner mountainous regions. Although
there have been sufficient research endeavors to compute global crop production, particu-
larly considering the influences of climate change [38,39], it is not possible at present to
measure the collective impact of climate change on global agricultural productivity [40].
These complexities are mainly attributable to difficulties in classifying appropriate culti-
vated lands, insecurities in climate projection models, as well as genetic, environmental,
and regional inconsistencies in crop production. Furthermore, the global land distribution
suitable for growing crops is prone to continuous change resulting from the current driv-
ing forces of environmental fluctuations, socio-economic development, and the potential
impacts of climate change [5]. Therefore, it is also probable that the unpredictability in
regional and global crop productivity will substantially change over time [7,41]. There
has been some effort elsewhere to reproduce geospatial variations in the effects of climate
change on staple crops, such as paddy rice in Southeast Asia [42] and maize and beans
in East Africa [43]. However, it is necessary to design a two-dimensional crop modeling
system to project spatiotemporal crop productivity at a fine grid scale to determine local
variations in crop production. To the best of our knowledge, the present study is the first in
which the effects of climate change on rice, barley, and soybean have been simulated using
a fine grid (1 km)-based local yield projection.

Future fluctuations in temperature and precipitation could create crop water demands
and declines in yields; however, elevated CO2 levels have improved crop yields in US
agriculture [33,44,45]. Yield declines could negate CO2 fertilization effects on crops due to
the increase in temperature, which could be mitigated by appropriate cultivar selection
and a reasonable planting time. Hence, this finding indicates that temperature changes
could either positively or negatively affect crop productivity depending on the cultivar
selection, as evidenced by the effects of temperature on crop yields in the Chonnam region
(see Figures 4–7). It appears that temperature effects on a crop cultivar could dominate the
impacts of other climate factors. Therefore, various cultivation options, including planting
and cultivar alternatives, might be measures to overcome the potential impacts of climate
change on crop production in future years.

Previously, the CERES-rice model was applied to project the potential impacts of
climate change on paddy production for other short-grain rice-producing regions in East
Asia [10]. This model was also employed to simulate the effects of climate change on
rice yield at different altitudes in mountainous landscapes [9]. The study findings indi-
cated that temperature effects in the lower latitudinal areas would dominate the impact.
For the latitudinal range of approximately 34◦ to 42◦, CO2 fertilization would negate
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any unfavorable consequences of temperature. The current study results are consistent
with this finding, which we projected to be somewhat similar for the rice and soybean
yields in Chonnam Province (see Figures 3, 5, A3 and A5). For crops grown at higher
latitudes (i.e., >42◦), positive effects on yield would be primarily attributable to the effect
of temperature with minor impacts of CO2 fertilization. Thus, the combined effects of
CO2, temperature, precipitation and solar radiation on crop yields in diverse latitudinal
regions were mainly attributed to CO2 and temperature [10,45]. Whereas these study
results demonstrated a general resemblance to those presented by Adams et al. [44] and
Hatfield et al. [46], conveying that different climate change projections with maximum and
minimum temperature variability in various regions might show different results. This
matter supports the current study effort and further investigations, which are essential to
address the accompanying issues of food insecurity. However, a limitation of the present
study is that the regional projection results are likely biased as the climate projection model
employed depended on the regional down-scaled ensemble model based on the single
general circulation model projection.

5. Conclusions

This research demonstrated that the CERES-rice, CERES-barley, and CROPGRO-
soybean models could be utilized at a local scale to investigate the effects of climate change
on rice, barley, and soybean production under the climate of Chonnam Province, ROK. We
found that the future productivity of rice, barley, and soybean in the Chonnam region is
likely to be dominated by the temperature elevation, counterbalancing the effects of CO2
fertilization. Furthermore, the developed GCSM system using the CERES and CROPGRO
models in the DSSAT package could simulate geospatial variations in crop productivity
under different climate change scenarios. A strength of the study is that the regional
topographical productivity variation issue can be delivered using the developed GCSM
system based on the well-evaluated crop model. Although the GCSM system formulated
in this study needs additional adjustment to meet requirements as an independent tool
for scientists and stakeholders, we believe that this system could be effectively applied
to simulate geographical variations of the impacts of climate change on staple crops.
This well-formulated system can eventually be utilized as a decision support tool to
address the geographical productivity variation issue. In addition, this technique could
also be employed to explore feasible clarifications for easing the insecurity surrounding
food safety measures.
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Appendix A

Table A1. Soil information summary for the generic soil input inventory of the Decision Support
System for Agrotechnology Transfer (DSSAT) package v4.6 used in this study.

ID Texture
Depth
(cm)

Soil Water † (cm3 cm−3)

CLL DUL

IB00000002 Medium silty clay 150 0.228 0.385
IB00000003 Shallow silty clay 60 0.228 0.385
IB00000005 Medium silty loam 150 0.108 0.218
IB00000006 Shallow silty loam 60 0.108 0.218
IB00000008 Medium sandy loam 150 0.052 0.176
IB00000009 Shallow sandy loam 60 0.052 0.176
IB00000011 Medium sand 150 0.024 0.096
IB00000012 Shallow sand 60 0.024 0.096

† Volumetric water content of the topsoil averaged among 5, 15, and 30 cm at the crop lower limit (CLL) and at
the drained upper limit (DUL).
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