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Abstract: Zinc finger homeodomain (ZF-HD) transcription factors play significant roles in plant
growth and responses to environmental stresses. In this study, 32 ZF-HD genes identified in the
tobacco (Nicotiana tabacum L.) genome were divided into six groups according to phylogenetic
analysis with Arabidopsis and tomato ZF-HD members. An examination of gene structures and
conserved motifs revealed the relatively conserved exon/intron structures and motif organization
within each subgroup. In addition, various stress-related elements are found in the promoter region
of these genes. The expression profiling analysis revealed that NtZF-HD genes expressed in different
tissues and could be induced by several abiotic stresses. Notably, NtZF-HD21 was highly expressed
in response to the drought treatments. Subcellular localization analysis and a virus-induced gene
silencing (VIGS) experiment were performed to investigate the potential functions of NtZF-HD21.
The subcellular localization indicated that NtZF-HD21 is a nuclear protein. Furthermore, gene
silencing of the NtZF-HD21 gene reduced the drought resistance of tobacco. These findings provide
insights for further biological functional analyses of the NtZF-HD genes in tobacco.

Keywords: Nicotiana tabacum; ZF-HD genes; genome-wide analysis; abiotic stresses

1. Introduction

Transcription factors (TFs), as a special class of proteins with the activity of binding
to specific regions of target gene promoters, play significant roles in plant growth and
development, stress resistance, and signal transduction [1–3]. Zinc finger homeodomain
(ZF-HD) TFs usually include the following two structural features: a cysteine-rich zinc
finger motif (ZF) and a conserved homeodomain (HD) [3]. ZFs contain zinc ions and
cysteine residues or histidine residues [4]. ZFs are widely found in diverse regulatory
proteins, which can specifically bind to DNA/RNA sequences and be actively involved
in protein–protein interactions [5,6]. The HD, as a DNA-binding domain (BD), consists of
about 60 amino acids that fold into a recognition helix that is able to specifically bind DNA
to activate or suppress the expression of target genes [7–11]. The proteins with an HD are
classified into six subgroups according to the presence of structural differences: leucine
zipper-associated HD (HD-ZIP), zinc finger motif-associated HD (ZF-HD), WUSCHEL-
related homeobox (WOX), Bell-type HD, finger domain associated to a HD (PHD finger)
and Knotted-related homeobox (KNOX) proteins [12].

Previous research studies revealed that ZF-HD genes participate in many essential bio-
logical processes in plants [13,14]. In Arabidopsis, a total of 17 ZF-HD genes were identified,
and the contributions of a number of ZF-HDs to various developmental processes have
been characterized [15–17]. For instance, overexpressing transgenic plants of AtZF-HD5
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reportedly exhibit a larger size of leaves [18]. AtZF-HD10 was detected highly expressed in
the hypocotyl axis in Arabidopsis and induced the expression of the hypocotyl-elongation-
related genes HFR1 (LONG HYPOCOTYL IN FAR-RED) and ATXTH17 (XYLOGLUCAN
ENDOTRANSGLUCOSYLASE/HYDROLASE 17) [19]. AtZF-HD8, expressed highly in
flower, revealed that they dominate significant roles in the development of flowering [7]. In
other species, it was also found that ZF-HD genes have important roles in leaf development
and flower bud development, such as SlZF-HD7 of tomato and FtZF-HD11 in Tartary
buckwheat (Fagopyrum tataricum) [20,21].

Furthermore, a large number of ZF-HD genes were found to respond to abiotic stresses
in plants [19,22–24]. AtZF-HD1 encoded a positive transcriptional regulator that was
reported to specifically bind to the ERD1 (Early Response to Dehydration Stress 1) promoter
region, whose expression was induced by salinity, dehydration, and ABA (abscisic acid)
treatments [22]. AtZF-HD4 could be induced under drought and salt treatments, implying
that AtZF-HD4 responds to abiotic stresses in Arabidopsis [25]. Previous studies indicated
that AtZF-HD10 interacted with TANDEM ZINC-FINGER PLUS3 (TZP) to modulate
hormone signaling in stress response [19]. More recently, a study showed that GmZF-
HD1 and GmZF-HD2 can bound to the promoter of GmCaM4 (Calmodulin Subtype 4)
in soybean, and the expressions of GmZF-HD1 and GmZF-HD2 were up-regulated upon
pathogen inoculation [26]. Additionally, the ZF-HD genes were involved in abiotic stress
in tomato and Chinese cabbage [3,20].

Tobacco is a significant economic crop and a representative model plant widely culti-
vated all over the world. Biotic and abiotic stresses can severely decrease tobacco quality
and yield. Although the ZF-HD gene family has been extensively studied in many species,
such as Arabidopsis [11], tomato [20], rice [27], and apple [28], systematic and compre-
hensive identification had not been conducted in tobacco. Previous studies provided
the necessary information for the data-predicted NtZF-HD gene family in tobacco due
to the improved annotation of genome-wide sequencing of tobacco [29,30]. In this study,
a comprehensive genome-wide investigation and expression analysis of the NtZF-HD
gene family in tobacco were performed, including phylogenetic analyses, protein domain
organization, gene structure, promoter analysis, expression pattern, and VIGS analysis.
The results of this study indicate that the tobacco ZF-HD gene family members might play
multiple roles in various biological processes, including development and responses to
various stresses.

2. Materials and Methods
2.1. Identification of Tobacco ZF-HD Proteins

The genome data of the tobacco (N. tabacum), N. sylvestris, N. tomentosiformis and
tomato (Solanum lycopersicum) were downloaded from the Sol Genomics Network (https:
//solgenomics.net/) (accessed on 21 October 2019) [31] and the genome data of the Ara-
bidopsis were downloaded from TAIR (http://www.arabidopsis.org/) (Accessed 21 October
2019) [32]. The previously reported sequences of Arabidopsis and tomato ZF-HD full-length
protein were used as queries to carry out BLASTP searches against the tobacco annotation
database under the E-value cutoff of 0.01. Then, the resulting sequences were subjected to
the Pfam (PF04770) [33] and SMART (http://smart.embl-heidelberg.de/) (accessed on 21
October 2019) [34] databases to determine the number of the ZH-FD domain. After remov-
ing the incomplete sequences and repeating manually, the remaining numbers were named
based on their physical locations on the chromosome/scaffold and were submitted to the
ProtParam online toolkits (http://au.expasy.org/tools/protparam.html) (accessed on 21
October 2019) for the calculation of Biochemical characteristics, including Mw (molecular
weight), theoretical pI (isoelectricpoint), and subcellular localization [35].

2.2. Phylogenetic Analysis and Classification

The proteins of tobacco, N. sylvestris, N. tomentosiformis, Arabidopsis, and tomato ZF-HD
members, as shown in the Table S1, were aligned using ClustalX 2.0. The phylogenetic tree
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was constructed using the Neighbor-Joining (NJ) method in MEGA 7 with the p-distance
method and pairwise deletion setting. A bootstrap statistical analysis was conducted with
1000 replicates to detect the reliability of each branch [36].

2.3. Gene Structure, Motif Analysis, and Cis-Elements Analyses

The gene structure of tobacco ZF-HD genes was analyzed by GSDS (http://gsds.
cbi.pku.edu.cn) (accessed on 21 October 2019) using the coding sequence (CDS) [37] and
genomic sequence. The online site Multiple Em for Motif Elicitation (MEME; http://meme-
suite.org/) (accessed on 21 October 2019) was applied to identify conserved motifs of
the ZF-HD full-length protein sequences [38]. The promoter region of tobacco ZF-HD
genes was extracted by Promoter 2.0, and the cis-elements of promoters were analyzed by
PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (accessed on
21 October 2019) [39].

2.4. Syntenic Analysis of NtZF-HD Genes

To explore the syntenic relationship of the orthologous genes obtained from tobacco
and other tested plant species (Arabidopsis, tomato, grape, rice, and maize), syntenic analysis
maps were investigated by the Systeny Plotter of Tbtools (https://github.com/CJChen/
TBtools) (accessed on 21 October 2019) [40].

2.5. Plant Material and Stress Treatment

Cultivated tobacco (Nicotiana tabacum L. Cv. K326) plants were used in this study.
Different organs, including the root, stem, leaf, and flower were used to analyze the tissue-
specific expression patterns. The tobacco seeds were germinated on MS medium in a light
incubator at 25 ◦C for two weeks. The tobacco seedlings were transferred and exposed
to drought and salt stress treatment for 0, 3, and 6 h. These treatments were performed
as previously described by Khatun et al. with some modification [41]. Drought stress
treatment involved transferring seedlings to dry paper at 0, 3, and 6 h. Roots of seedlings
were submerged in 150 mM NaCl during salt stress treatment at 0, 3, and 6 h. After different
treatments, leaf samples from three biological replicates were collected and frozen in liquid
nitrogen immediately and transferred to −80 ◦C for RNA extraction.

2.6. RNA Extraction and RT-qPCR Analysis

Total RNA was extracted using the method of Ren et al. [42] and the first-strand
complementary DNA (cDNA) was synthesized using the PrimeScript™ RT reagent Kit
(TaKaRa). Using Primer3 software (http://bioinfo.ut.ee/primer3/) (accessed on 21 October
2019) [43], we designed the RT-qPCR primers (Table S2). RT-qPCR was performed on an
ABI7500 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) with 2 µL
template cDNA. The internal control used was the transcript of tobacco ribosomal protein
gene L25 (GenBank No. L18908). At least three biological replications and three technical
repeats of all reactions were performed, and the relative expression levels of each gene was
analyzed using the 2−∆∆CT method [44].

2.7. Subcellular Localization

The subcellular localization of NtZF-HD proteins was predicted using the online Plant-
mPLoc server (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/) (accessed on 21 Octo-
ber 2019) [45]. The coding regions of NtZF-HD21 without the stop codon were amplified
from tobacco cDNA and inserted into the PYG57 vector, generating the 35S::NtZF-HD21–
GFP fusion construct. According to the previous study [46], the recombinant 35S::NtZF-
HD21-GFP vector and the control vector were transformed into Agrobacterium competent
cell GV3101 and then injected in the leaves of N. benthamiana. After the incubation, the
confocal microscope (TCS-SP8 Leica, Wetzlar, Germany) was used to investigate Green
Fluorescent Protein (GFP) signal under a 488 nm exciting light, and the nuclear localization
signal was confirmed by 4,6-diamidino-2-phenylindole (DAPI) dye staining.

http://gsds.cbi.pku.edu.cn
http://gsds.cbi.pku.edu.cn
http://meme-suite.org/
http://meme-suite.org/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://github.com/CJChen/TBtools
https://github.com/CJChen/TBtools
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http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
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2.8. VIGS (Virus-Induced Gene Silencing)

The VIGS vector system including TRV2 (empty vector), TRV1 (auxiliary vector), and
TRV2::PDS (positive control) was used in this experiment. The conserved sequences of
NtZF-HD21 gene were selected from the SGN-VIGS website (https://vigs.solgenomics.
net/) (accessed on 21 October 2019) [47]. The conserved sequences were inserted into the
TRV2 vector with the KpnI site and EcoRI site. The new vector named as TRV2::NtZF-HD21
was introduced into an Agrobacterium competent cell GV3101. The detailed VIGS operating
methods were performed as previously described by Gao et al. (2013) [48].

3. Results
3.1. Identification of NtZHD Genes in Tobacco

To identify NtZF-HD family genes, we used the ZF-HD numbers of Arabidopsis as
queries to the BLASTP search. A total of 32 ZF-HD genes were identified in tobacco and
designated NtZF-HD1 to NtZF-HD32 based on their physical locations on the chromosomes
(Table S3). The results showed that 12 NtZF-HDs were mapped on seven chromosomes
and 20 NtZF-HDs were localized on scaffolds.

As shown in Table S3, the ORF (open reading frame) lengths of the NtZF-HD genes
range from 417 bp (NtZF-HD28) to 3078 bp (NtZF-HD2). Their isoelectric points (pIs) range
from 6.37 (NtZF-HD25) to 10.25 (NtZF-HD28), and their molecular weights (MWs) range
from 15.59 (NtZF-HD28) to 113.63 kDa (NtZF-HD2).

3.2. Phylogenetic Analysis of the NtZF-HD Family Members

To further elucidate the phylogenetic relationships of the NtZF-HD family proteins, a
neighbor-joining (NJ) tree was constructed based on the multiple sequence alignment of
the 32 tobacco ZF-HD members and their homologs in Arabidopsis thaliana, N. sylvestris,
N. tomentosiformis, rice, and tomato (Figure 1). The 32 NtZF-HD members were classified
into eight groups (I–VIII), together with their Arabidopsis and tomato homologs based
on previously reported [20,23]. Groups V and II contained the smallest (one) and largest
(nine) number of proteins, respectively. Groups IV and VI both account for 19% of the
total NtZF-HD proteins. Groups I and III both included three members of the NtZF-HD
proteins. Only groups II, III, and IV contained rice members, suggesting that the member of
these groups in the ZF-HD gene family occurred before the divergence of dicotyledon and
monocotyledon. Notably, groups VII and VIII only contained tobacco and tomato members,
suggesting that these ZF-HD numbers might occur after the divergence of Arabidopsis and
were unique to Solanaceae plants. Interestingly, a large number of NtZF-HD members from
different groups could be clustered with NtomZF-HD and NsylZF-HD members, implying
that these species had a closer evolutionary relationship. However, in group V, NtZF-HD1
was clustered only with NsylZF-HD13 and NsylZF-HD17, suggesting that the NtomZF-HD
from N. tomentosiformis may be lost after interspecific hybridization.

3.3. Structural Analysis and Motif Composition of the NtZF-HD Family

The multigene family analysis of genetic structural diversity can provide important
insights into the evolutionary information of NtZF-HD genes. To further explore the
evolution of the ZF-HD genes in tobacco, the number and arrangement of their exon–intron
structures were identified (Figure S2). The members of different groups exhibited different
exon–intron organization. Among the 32 NtZF-HD genes, there were 15 NtZF-HD genes
with intronless and clustered into groups III, IV, and V. The remaining 17 NtZF-HD genes
coding sequences were interrupted by introns, and the number of exons varied from one to
eight. The remaining NtZF-HD genes belonged to groups I, II, and VI (Figure S2B). The
introns of the NtZF-HD gene were obtained by evolutionary inheritance or by mutations
in the evolutionary process, and whether the emergence of introns affects the function of
these genes is a worthy question for further research.

https://vigs.solgenomics.net/
https://vigs.solgenomics.net/
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To further investigate the structural characteristics of the ZF-HD proteins in tobacco of
the ZF-HD proteins in tobacco, the conserved motifs of the 32 NtZF-HD, 17 AtZF-HD, and
22 SlZF-HD proteins were analyzed using the online MEME tool. A total of 10 conserved
motifs were identified and named as motifs 1 to 10 (Figure S2C). These motifs contained 20
to 49 amino acids, and their amino acid sequences are shown in the Supplementary Table S4.
The NtZF-HD proteins were clustered into the same group that usually has a similar motif
distribution, which is consistent with that of the SlZF-HD proteins. Notably, all NtZF-HD
proteins have motif 3, and all proteins except for NtZF-HD12 have motif 1. Interestingly,
similar conditions exist in SlZF-HD proteins, with only one protein, SlZF-HD1, without
motif 1. Moreover, some conserved motifs existed only in specific groups. For example,
motif 5 and motif 6 were only presented in group IV with a high specificity, while they
could only be found in groups II and III. The specific distribution of conserved motifs in
each group may reflect the specific functions of NtZF-HD genes in tobacco.

3.4. Syntenic Analysis of NtZF-HD Genes

To further understand the evolutionary relationship among the tobacco ZF-HD genes,
the syntenic analysis was carried out for tobacco and five other plant species, including
dicotyledonous plants (Arabidopsis, tomato, and grape) and monocotyledonous plants (rice
and maize) (Figure 2A). The results showed that there was a syntenic relationship between
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six of the NtZF-HD genes with ZF-HD genes in Arabidopsis, six ZF-HD genes in grape, four
ZF-HD genes in tomato, two ZF-HD genes in maize, and two ZF-HD genes in rice. The
numbers of predicted collinear pairs between tobacco and Arabidopsis, tomato, grape, rice,
and maize were seven, seven, six, three, and two, respectively. Meanwhile, only one ZF-HD
gene (NtZF-HD5) was predicted to form collinear pairs with ZF-HD genes of all the other
five species, suggesting that this ZF-HD gene may exist before the differentiation of these
species and has maintained a collinear relationship since then. Interestingly, one collinear
gene pair was identified between tobacco and tomato/grape/Arabidopsis species, but no
collinear gene pairs were found in the rice and maize genome, indicating that this pair may
have appeared after the divergence of dicot and monocot (Figure 2B, Table S5).
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of ZF-HD genes that formed syntenic pairs between ZF-HD and the other four selected species, which
was visualized by the Venn diagram.
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3.5. Promoter Analysis of NtZF-HD Family Genes

To further investigate the potential response patterns of ZF-HD genes, cis-elements
in promoter regions of 32 NtZF-HD gene were analyzed by the online PlantCARE tool
(Figure 3, Table S6). One or more MYB binding sites (v-myb avian myeloblastosis viral
oncogene homolog) were identified in promoters of all the NtZF-HD genes, except NtZF-
HD5 and NtZF-HD11. In addition, the hormone-response elements were also identified
in promoter regions, including estrogen response element (ERE), abscisic acid response
element (ABRE), TCA-element and CGTCA-motif. Furthermore, 17 of the NtZF-HD genes
contain at least one wound-responsive element (WUN-motif), 15 of the NtZF-HD genes
contain at least one anaerobic induction element (ARE), and 11 of the NtZF-HD genes
contain at least one stress-responsive element (TC-rich repeats), implying that these NtZF-
HD genes may be involved in various stress responses.
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3.6. Expression Profiles of NtZF-HD Family Genes

To preliminarily elucidate the roles of NtZF-HD genes in tobacco growth and devel-
opment, the relative expression levels of NtZF-HD genes in six different tissues including
young leaves, mature leaves, aging leaves, roots, stems, and flowers were analyzed using
RT-qPCR (Figure S2). A number of the NtZF-HD genes were expressed in a tissue-specific
manner; for example, in group I, NtZF-HD19 was highly expressed in young leaves and
flowers. In group II, NtZF-HD7 was only expressed in root, and the expression of NtZF-
HD30 was detected in the stems exclusively. NtZF-HD3, NtZF-HD13, and NtZF-HD16
were mainly expressed in all leaf stages. Similarly, NtZF-HD22 of group III was found to
be highly expressed in aging leaves. Other tissue-specific expression patterns were also
detected; in group VI, NtZF-HD11 and NtZF-HD25 were highly expressed in young leaves
and flowers. The tissue-specific expression pattern of these genes may be involved in the
mediation of various developmental processes of tobacco.
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In addition, to further investigate the expression patterns of tobacco NtZF-HD genes
under abiotic stress, 16 NtZF-HD genes were detected to determine their expression lev-
els under drought and NaCl treatment (Figure 4A,B). Genes in group I (NtZF-HD21)
and IV (NtZF-HD4 and NtZF-HD27) could be induced and up-regulated significantly
under drought treatment. Furthermore, NtZF-HD12 and NtZF-HD18 in group II had
up-regulations of the transcription levels under salt and drought treatment. Moreover,
in group VIII, NtZF-HD16 and NtZF-HD25 were up-regulated under salt and drought
treatments, whereas NtZF-HD24 in group VI was down-regulated by salt and drought
treatments. These expression analyses would provide a valuable resource for researching
the roles of NtZF-HD genes in control of the stress responses.
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3.7. Subcellular Localization of NtZF-HD Proteins

According to previous reports, the ZF-HD protein, as a transcriptional activator, was
located in the nucleus [18]. The prediction of subcellular localization indicated that almost
all NtZF-HD proteins are located in the nucleus except for NtZF-HD14, which is located in
the chloroplast and nucleus (Table S3).

To further investigate the subcellular localization of NtZF-HD proteins, NtZF-HD21
was selected to examine the subcellular localization. We constructed an NtZF-HD21-GFP
fusion protein to detect the transient expression of NtZF-HD21 in the leaf of Nicotiana
benthamiana. The NtZF-HD21-GFP fusion protein was predominantly observed in the
nucleus and was able to overlap the staining signal of the dye 4,6-diamidino-2-phenylindole
(DAPI) staining signal (Figure 5A). This result indicated that the NtZF-HD21 protein is
a nuclear localization protein, which is consistent with its essential characteristics as a
transcription factor.
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NtZF-HD21 gene conferred the drought tolerance of tobacco.
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3.8. Effect of NtZF-HD21 Gene Silencing on Drought Resistance

Virus-induced gene silencing (VIGS) is a natural mechanism of plants’ defense to virus
invasion at post-transcriptional gene silencing [48]. VIGS is widely used in the study of
gene function related to physiological pathways such as plant stress resistance, growth
and development, and metabolic regulation [49]. To further investigate the functions of
NtZF-HD numbers, NtZF-HD21 was selected to verify the function in response to drought
stress by the VIGS system. The albino phenomenon of plants infected with TRV2-PDS
as a positive control indicated that the recombinant plasmid was expressed in the plant
(Figure 5B). There was no obvious difference in the phenotype between plants infected
with TRV2-NtZF-HD21 silent plants and TRV2 negative-controlled plants. Subsequently,
the silent plants and negative controlled plants were treated under drought stress for three
weeks before re-watering treatment for three days. The results showed that the survival
rate of silent plants was significantly lower compared with that of negative-controlled
plants (Figure 5C,D), suggesting that the NtZF-HD21 gene was able to enhance the drought
tolerance of tobacco.

4. Discussion

Previous research showed that ZF-HD transcription factors are only found in plants
and play significant roles in plant developmental processes and various environmental
stress responses [50]. A total of 32 members of the NtZF-HD genes were identified in the to-
bacco genome using BLASTP searches. The NtZF-HD genes were studied using phylogeny,
gene structure, motif organization, synteny, cis-elements, and expression profiles.

The 32 NtZF-HD members were clustered into eight groups according to the phy-
logeny analysis of Arabidopsis and tomato NtZF-HD members. NtZF-HD genes of the
same group contain similar gene structures and motif organization, suggesting that the
previous evolutionary relationship and classification analysis of NtZF-HD genes were reli-
able. In addition, some NtZF-HD genes of the same group contained similar cis-elements
types, implying that they may reflect similar functions in plant development and abiotic
stress responses.

Increasing evidence indicates that ZF-HD genes regulate the development of plants.
The AtZF-HD5 in group III was reported to specifically regulate the size of leaves. NtZF-
HD22 and NtZF-HD26 were clustered with AtZF-HD5 and highly expressed in the leaves
(Figures 1 and 4), suggesting its possible contribution to the growth and development
of leaves. In addition, the AtZF-HD8 in group IV was reported to be involved in flower
and leaf development. The NtZF-HD10 formed a collinear pair with AtZF-HD8, which
expressed highly in flower and leaves, suggesting that they might have similar biological
functions in flower and leaf development. Whereas, in the same group, AtZF-HD10 was
reported to regulate the growth of root [19] and clustered with NtZF-HD4, which highly
expressed in the roots, implying that NtZF-HD4 may be involved in root development.

Previous studies have indicated that a number of ZF-HD genes mediated responses to
drought and salinity stresses. AtZF-HD4 in group II, which has been reported to be involved
in regulating drought and salt stress responses [25], was clustered together with NtZF-HD6
and NtZF-HD12. Interestingly, the promoter regions of NtZF-HD6 and NtZF-HD12 were
found to harbor the cis-elements of the MYB binding site and TC-rich repeats element, and
these genes could be induced under drought and salt treatments. These findings suggested
that these genes may confer stress responses in tobacco. Notably, the overexpression of
AtZF-HD1 altered ABA sensitivity, dehydration tolerance, and the expression levels of
ABA/stress-regulated genes [22]. In group I, NtZF-HD5, NtZF-HD19, and NtZF-HD21 were
clustered with AtZF-HD1. In the present study, these genes were found to harbor the ABRE
element (Figure 1 and Table S6), suggesting that they might participate in drought response
and ABA signaling. Moreover, NtZF-HD21 was up-regulated significantly under drought
stress treatment. Furthermore, the VIGS experiment demonstrated that NtZF-HD21 can
regulate the drought tolerance of tobacco plants (Figure 5).
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Overall, most NtZF-HD genes were expressed in different tissues and induced by
drought and salinity abiotic stresses treatment in tobacco. Hence, we further suggested
that NtZF-HD genes may play significant roles in various developmental processes and
environmental stress responses in tobacco.

5. Conclusions

In this study, 32 ZF-HD genes were identified in Nicotiana tabacum. These genes were
grouped into six groups based on the evolutionary analysis. Genes divided into the same
group tend to have a similar exon–intron organization, motifs, and cis-acting elements. We
also conducted expression patterns analysis of NtZF-HD genes, suggesting that they may
be important for regulating plant responses to abiotic stresses and development. Notably,
NtZF-HD21 was significantly induced by drought treatments, and it was able to enhance
the drought tolerance of tobacco. Overall, the results from this study will be helpful to the
further investigations of the function of tobacco NtZF-HD genes.
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