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Abstract: One of the major health risks for humans, especially for those living in large cities, is air
pollution. Air pollution consists mainly of emissions of particulate matter (PM), nitrogen oxides,
sulphur dioxide, ammonia and volatile organic compounds (VOCs). The organic carbon fraction
of particulate matter is a mixture of hundreds of organic compounds, such as polycyclic aromatic
hydrocarbons (PAHs), or polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), some of
which are mutagenic and/or carcinogenic. Because this particulate matter represents a serious threat
for human health, measures to reduce emissions and to eliminate contaminants need to be strongly
reinforced, with a focus on novel biotechnologies. In this review, we will explore the possibilities that
bacteria associated with plants may offer the amelioration of atmospheric contaminants in cities, and
we will discuss this strategy in the context of “Green Architecture”.

Keywords: atmospheric pollutants; plant-bacteria interactions; rhizoremediation; phylloremediation;
“Green Architecture”

1. Introduction

Around 55% of the global population (4.2 billion people) live in urban areas, and by
2050 it has been projected that 68% of the population will be urban (https://population.un.
org/wup/ (accessed on 3 March 2021). The number of megacities (those with more than
10 million inhabitants) is predicted to increase from 33 to 43 by 2030. The management of
urban growth in the context of sustainable development must, therefore, maximize the
benefits of agglomeration whilst minimizing the potential adverse impacts. One of the
major negative impacts for citizens living in large cities is air pollution. Metropolitan area
emissions constitute 52% of total emissions by weight; however, they cause nearly 75% of
the gross annual damage (GAD) in the USA [1]. Health impacts related to air pollution are
predicted to increase worldwide, and by 2030 it is estimated that total premature deaths
due to air pollution will reach 3.1 million annually (OECD Environment Outlook to 2030).
The estimated cost to the National Health Service and social care of diseases associated
with air pollution is estimated to be ₤5.56 billion between 2017 and 2025 in the UK [2]. In
addition to the health problem, the dispersion and deposition of particulate matter (PM)
also provoke negative effects on visibility, as well as on cultural heritage and agricultural
and natural ecosystems [3–6].

The major source of air pollution in big cities is on-road vehicles [7], although waste
incinerators, biomass burning, secondary aerosols, oil combustion, industrial exhaust and
suspended road dust are also important sources of contamination [8,9]. Air pollution
consists mainly of emissions of particulate matter (PM), nitrogen oxides, sulphur dioxide
(SO2), ammonia (NH3) and volatile organic compounds (VOCs). Atmospheric PMs are
complex mixtures of elemental carbon (EC), organic carbon (OC), ammonium, nitrates,
sulphates, mineral dust, trace elements and water. Fine particles (PM2.5), NH3, SO2 and
VOCs represent almost 50% of all emissions by weight [1]. Within PM2.5, OC, consisting
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of a mixture of hundreds of different organic compounds, may represent 10–70% of the
dry mass [10]. Therefore, OC and VOCs are some of the main elements in air pollution.
Aerosol particles, in particular PM2.5, have serious adverse effects on respiratory and
cardiovascular systems, and although they represent only 6% of the emissions, they cause
23% of total damage [11–13]. PM2.5 concentrations in many metropolitan areas exceed the
limits (15 µg m−3) recommended by the USA National Ambient Air Quality Standard [14].
Some of the VOCs and OC associated with PM2.5, such as benzene, toluene, ethylbenzene,
and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls
(PCBs) and polychlorinated dibenzo–p–dioxins and dibenzofurans (PCDD/Fs) [15,16], are
mutagenic and/or carcinogenic.

Consequently, air pollution has a clear negative effect on the economy; it decreases
labour productivity and increases the costs of public health (OECD outlook for 2030).
Activities to decrease emissions are being promoted by different national and international
organizations, which include taxes and tradable permits, development of eco-innovation
businesses and key actions in sectors such as energy, transport and agriculture. These
actions should be complemented with new strategies to ameliorate air quality.

In this review, we will focus on the removal of the main OC and VOCs in air pollution
by bioabsorbing and/or biodegrading and, therefore, detoxifying associations between
plants and bacteria in the context of “Green Architecture”, which is based on the inclusion
of green infrastructures to make citizen-friendly, energy-saving and climate-resilient cities.

2. BTEX, PAHs, PCBs and Dioxins: Origin and Toxicity

Among the most abundant contaminants in air pollution are BTEX, PAHs, PCBs and
dioxins (Figure 1). BTEX and PAHs are petroleum-derived compounds that are released
into the atmosphere as emissions from motor vehicles and aircraft exhaust systems, waste
incinerator smoke, fossil fuel home-heating systems, losses during petrol manufacturing,
accidental oil spills in gas stations or oil refineries and cigarette smoke, amongst others [9].
However, many are natural products that can also be released during volcanic eruptions
or forest fires [17,18]. PAHs and BTEX are considered carcinogenic, mutagenic and terato-
genic [15,16]. Global atmospheric emissions of the 16 PAHs listed as priority pollutants
by the US EPA (United States Environmental Protection Agency) were estimated to be
520 kilotons per year during the first decade of the 21st century [19,20]. PAHs are potential
carcinogens; in general, as the number of aromatic rings in the molecule increases, the risks
for health increase concomitantly. PAHs induce reactive oxygen species and PAH-DNA
adducts that are linked to lung, skin and bladder cancers in adult populations exposed
to high levels of ambient PAHs [21]. BTEX compounds are among the most abundantly
produced chemicals worldwide, with an annual production of 8–10 million tons of benzene,
5–10 million tons of toluene, 5–10 million tons of ethylbenzene and 10–15 million tons of
xylenes. Benzene has been classified by the International Agency for Research on Cancer
(IARC) as a class 1 carcinogen for humans. It causes acute and chronic leukaemia, although
the toxicity mechanisms are not well understood [22–24]. Toluenes, ethylbenzenes and
xylenes are toxic for humans (irritating to the skin, eyes and respiratory tract, and can
cause systemic toxicity by unknown mechanisms).

PCBs were banned in 1978 in the US and later on in many other countries, but prior
to banning they were produced in huge amounts (megatons) as insulators and dielectric
or coolant fluids for cables, electrical apparatus and heat transfer systems [25]. Trade
names of specific PCB mixtures include Aroclor, Clophens, Phenoclors and Pyralenes.
Chlorinated dioxins are generated as unwanted by-products in the chemical syntheses
of several pesticides, disinfectants and wood preservatives [26]. A predominant source
of chlorodioxin-contamination is the incineration of PCB-containing plastic insulators of
electrical cables or other halogenated organic compounds. Many municipal solid waste
incinerators are still emitting dioxin-contaminated fly ash. Both chlorodioxins and co-
planar PCBs cause immunotoxic and endocrine effects, as well as the induction of malign
tumours, whilst non-coplanar PCBs can cause neurotoxic and/or immunotoxic effects.
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High concentrations of chlorodioxins and also of some PCB congeners cause chloracne
and anaemia. Chronic or sub-chronic exposition to low concentrations may lead to liver
damage and reproductive effects, as well as cognitive deficiencies, affect levels of thyroid
hormones, and may cause several types of cancer [26,27].

Agronomy 2021, 11, x FOR PEER REVIEW 3 of 25 
 

 

 

Figure 1. (a) Chemical structures of different polycyclic aromatic hydrocarbons (PAHs), 

polychlorinated biphenyls (PCBs), dioxin and dioxin-like molecules; (b) Scheme for the aerobic 

bacterial degradation of phenanthrene. (c) A general scheme for the aerobic bacterial degradation 

of monochlorobenzene and for the anoxic bacterial dehalogenation and degradation of 

hexachlorobenzene to benzene and its oxidative mineralization to CO2. Both contaminants end up 

in the central bacterial metabolism pathways from which energy and biomass are obtained. In 

both cases, chlorine is released as an environmentally friendly chloride ion. 

PCBs were banned in 1978 in the US and later on in many other countries, but prior 

to banning they were produced in huge amounts (megatons) as insulators and dielectric 

or coolant fluids for cables, electrical apparatus and heat transfer systems [25]. Trade 

names of specific PCB mixtures include Aroclor, Clophens, Phenoclors and Pyralenes. 

Chlorinated dioxins are generated as unwanted by-products in the chemical syntheses of 

several pesticides, disinfectants and wood preservatives [26]. A predominant source of 

chlorodioxin-contamination is the incineration of PCB-containing plastic insulators of 

electrical cables or other halogenated organic compounds. Many municipal solid waste 

incinerators are still emitting dioxin-contaminated fly ash. Both chlorodioxins and co-pla-

nar PCBs cause immunotoxic and endocrine effects, as well as the induction of malign 

tumours, whilst non-coplanar PCBs can cause neurotoxic and/or immunotoxic effects. 

High concentrations of chlorodioxins and also of some PCB congeners cause chloracne 

and anaemia. Chronic or sub-chronic exposition to low concentrations may lead to liver 

damage and reproductive effects, as well as cognitive deficiencies, affect levels of thyroid 

hormones, and may cause several types of cancer [26,27]. 

The toxicity of PAHs, PCBs and chlorodioxins for animals and humans is based on 

their capacity to bind to the aryl hydrocarbon receptor (AhR), which leads to the tran-

scription of target genes, among them, the genes of the cytochrome P450-monooxygenases 

(CYP) [27,28]. CYPs are generally found in the liver and are normally responsible for the 

detoxification of toxic compounds taken up by the body. CYPs activate these contami-

nants, including BTEX, by partial oxidation, transforming the poorly water-soluble com-

pounds into easily secreted soluble ones or organo-soluble metabolites such as phenols, 

dihydrodiols, quinones or epoxides [29–31]. The epoxide intermediates can be converted 

through the action of an epoxide hydrolase into highly reactive diols that are mutagenic, 

carcinogenic and teratogenic [30,32]. These metabolites bind to and disrupt DNA and 

RNA, leading to tumour formation and genotoxic effects. 

Figure 1. (a) Chemical structures of different polycyclic aromatic hydrocarbons (PAHs), polychlori-
nated biphenyls (PCBs), dioxin and dioxin-like molecules; (b) Scheme for the aerobic bacterial degra-
dation of phenanthrene. (c) A general scheme for the aerobic bacterial degradation of monochloroben-
zene and for the anoxic bacterial dehalogenation and degradation of hexachlorobenzene to benzene
and its oxidative mineralization to CO2. Both contaminants end up in the central bacterial metabolism
pathways from which energy and biomass are obtained. In both cases, chlorine is released as an
environmentally friendly chloride ion.

The toxicity of PAHs, PCBs and chlorodioxins for animals and humans is based on
their capacity to bind to the aryl hydrocarbon receptor (AhR), which leads to the tran-
scription of target genes, among them, the genes of the cytochrome P450-monooxygenases
(CYP) [27,28]. CYPs are generally found in the liver and are normally responsible for the
detoxification of toxic compounds taken up by the body. CYPs activate these contaminants,
including BTEX, by partial oxidation, transforming the poorly water-soluble compounds
into easily secreted soluble ones or organo-soluble metabolites such as phenols, dihydrodi-
ols, quinones or epoxides [29–31]. The epoxide intermediates can be converted through the
action of an epoxide hydrolase into highly reactive diols that are mutagenic, carcinogenic
and teratogenic [30,32]. These metabolites bind to and disrupt DNA and RNA, leading to
tumour formation and genotoxic effects.

Not all the contaminants have the same capacity to produce deleterious effects; for
example, the binding of chlorinated dioxins and PCBs to the AhR depends on the number of
chlorines and their position in the molecule. 2,3,7,8-tetrachlorodibenzo-p-dioxin (Figure 1a)
is the most toxic dioxin [33]; however, in molecules that contain the chlorine atoms in
other positions of the aromatic ring structure (i.e., 1,2,3,4-tetrachlorodibenzo-p-dioxin),
the resulting chemical compounds are less toxic. Similarly, the non-chlorinated dioxin
molecule is nearly non-toxic. In both cases, the above-mentioned molecules are not able to
bind or bind poorly to the AhR-receptor. The so-called co-planar PCBs that carry chlorine
substituents on their lateral position, similar to the Seveso dioxin, as shown for 3,3′,4,4′-
tetrachlorobiphenyl (Figure 1a), are toxic whilst, in general, the toxicity is reduced when
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the four chlorines are in other positions as they no longer bind to the Ah receptor, or if they
do it is to a much lesser degree [34]. Similarly, if more chlorine atoms are present than only
those of the depicted co-planar PCB molecule, a lower tendency exists to form a complex
with the Ah receptor, and thereby reduce the induction of detrimental effects.

3. Deposition, Transport and Detoxification of Contaminants in Plants

Although contamination by these toxic compounds can occur locally at high concentra-
tions, for instance, by leakages of PCBs from technical equipment or by accidental oil-spills,
atmospheric contaminants mainly occur from a number of processes of technical usage,
dumping, burning, etc., leading to distribution by wind, sometimes over long distances,
and they are finally deposited as PMs on all the surfaces of the environment [35,36]. Trans-
portation of these contaminants in PMs is different depending on their physico-chemical
properties and on meteorological factors [15,37]. The vapour-pressure of the different
PAHs determines their behaviour in the atmosphere; in general, low-molecular-weight
PAHs (LMW-PAHs) remain in the gas phase, whilst medium- to high-molecular-weight
PAHs (HMW-PAHs) tend to bind to small particles, mainly to PM2.5. PAHs, such as flu-
oranthene or pyrene (both of 4 rings, Figure 1a), are equally distributed between both
phases, depending on ambient air temperature and on the carbonaceous composition of
the particles [38–40].

Atmospheric contaminants can be deposited directly from the air onto leaves or can be
deposited in soils, and are then adsorbed to roots [41]; they can also be mobilized from soil
to leaves by evaporation or wind, or be transported from roots to leaves (Figure 2) [42–44].
The direct relationship between PAH concentrations in soil and in plants suggests that
soil-to-root transfer dominates over atmosphere-to-plant transfer [45]. Relatively volatile
organic compounds, such as BTEX, anthracene and phenanthrene, are more likely to be
deposited on the leaf cuticle through gaseous depositions whilst less volatile compounds,
such as benzo[a]pyrene, are deposited by particulate depositions [46].
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The amount of contaminants which finally accumulates in vegetation depends not
only on the physico-chemical properties of the particular contaminant, but also on the
characteristics of leaf surfaces and root architecture, as well as on many other environment-
related parameters such as wind, rain, temperature, sorption to soils, organic content of
soils, composition of root exudates and others [47–49].

After deposition on soils and because of the high lipophilicity and low solubility in
water of PAHs, PCBs and chlorodioxins, some authors have indicated that they must be
adsorbed to the epidermis of roots which are in contact with soil particles, without entering
the inner root. However, there are many reports about the mobilization of contaminants
from roots to shoots; i.e., for polychlorinated dibenzo-p-dioxins and dibenzofurans in
Cucurbitaceae [50], total petroleum hydrocarbon in rice [51] or benzo[a]pyrene in ornamental
plants [52]. Although the extent of contaminant uptake and transport from roots to shoots is
still being debated in the literature, it is accepted that mobilization of contaminants through
the plant is a consequence of two different processes: (i) the accumulation of contaminants
in plant tissues mainly correlated to their hydrophobicity and plant lipid contents, and (ii)
the transfer between plant tissues driven mainly by transpiration and the concentration
gradient of the contaminant across plant-cell components [53]. Contaminant translocation
is generally associated to the vascular system of the xylem with the transpiration stream
acting as an important driving force, but it was recently demonstrated that PAHs are also
acropetally transported via the phloem [54].

PAHs accumulate in different cells and plant tissues because of their varying solu-
bility in the water of the tissues [55]. Although it is accepted that chemicals with logKow
(logarithm of the n-octanol/water partition coefficient) between −1 and 4 are suitable for
the transpiration stream, many contaminants are poorly transferred from the root to the
shoot because of their high logKow values. In studies using different plants, it was demon-
strated that pyrene (logKow = 5.32) accumulated in cell walls more than phenanthrene
(logKow = 4.46), probably due to the higher logKow of pyrene [53,56,57]. LMW-PAHs
seemed to show a stronger linear correlation between soil and shoot concentrations than
HMW-PAHs, suggesting that the translocation of LMW-PAHs is faster from soil to shoots
than the translocation of HMW-PAHs. Accordingly, translocation of LMW-PAHs and
MMW-PAHs (pyrene, anthracene and phenanthrene) has amply been demonstrated [56],
whilst there are few reports about the translocation of HMW-PAHs [55,58]. Although
there is a correlation between the contaminant concentration in soil and in plants, some
discrepancies have been observed between plant species.

The transport of contaminants can be symplastic (through the cell cytoplasm or vac-
uoles and to interconnected cells via the plasmodesmata) or apoplastic (diffusion between
cell walls, without entering the cells) [59,60]. Wild et al. were pioneers in demonstrating
the symplastic entrance of phenanthrene in spinach [59]. They observed that phenanthrene
was mostly deposited on leaves via gas-phase transfer in maize (Zea mays L.) and spinach
(Spinacia oleracea). After one or two days, phenanthrene diffused through the cuticles
into the maize cell walls (indicative of apoplastic transport), being mainly located in the
apoplast and moving through the cell walls and intercellular spaces of the epidermis. In
spinach, they observed phenanthrene in the cellular cytoplasm (indicative of symplastic
transport) and in the vacuole, with both acting as reservoirs for phenanthrene. After
12 days, most of the phenanthrene was located in the maize xylem (mostly bound to the
walls), but it was not found in the spinach xylem. In soil, the symplastic uptake was also
demonstrated to be the major entrance pathway of phenanthrene into wheat and of pyrene
into Agropyron cristatum L. [61,62], whilst, in both cases, the apoplastic transport was also
detected but at lower levels. The active absorption of contaminants involved H+ transport
and energy conversion processes, and the passive transport, was associated with water
led/directed through protein channels; i.e., there was a stronger correlation between the
PCB concentration in soil and in carrots than in potatoes, probably because the carrots
presented oil channels that could be used for PCB transport [63].
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The distribution of contaminants within plants can determine their fate: to be metabo-
lized, stored in the aerial parts of the plants or even returned (desorbed) to the atmosphere
or soil. Once located in the plant interior, contaminants are mainly activated by cytochrome
P450 monooxygenases (CYP). The resulting compounds are later conjugated with glucose,
glucuronic acid or glutathione moieties. These conjugates are then sequestered in the cell
wall or in vacuoles [64].

Despite evidence for the accumulation and subsequent biotransformation of organic
contaminants in plants, it is believed that the contribution of plant uptake for their removal
from the environment is very low. Soil-bound contaminants, such as PAHs, are strongly
associated with soil organic matter and poorly transferred to plant roots. Furthermore,
contaminants or derived products accumulating in plant cell walls or vacuoles may return
to the environment after plant decay. However, plants may stimulate organic contaminant
degradation through several processes such as by increasing the bioavailability of the
contaminants, influencing desorption from soil particles and stimulating the biodegrading
microbiota in the rhizosphere [65–71].

4. Degradation of BTEX, PAHs, PCBs and Dioxins by Bacteria

Biodegradation of BTEX, PAHs and, to lesser extent, PCBs is performed by a large
number of different microorganisms, including bacteria, fungi and algae that have been
isolated from very diverse edaphic and aquatic, aerobic and anaerobic environments, and
many reviews have been published on the subject since the 1980s [72–75]. Among BTEX-
and PAH-degrading bacteria, Pseudomonas, Sphingomonas, Burkholderia, Mycobacterium,
Rhodococcus and Bacillus have been extensively studied. Stenotrophomonas and Pasteurella
species, and some anoxic PAH-degrading bacteria belonging to the Delta-proteobacteria,
have also been reported. Aerobic bacterial biodegradation of these compounds requires the
presence of O2 to initiate the enzymatic attack on the aromatic rings of PAHs [76,77]. In the
initial step, dioxygenase catalyses the oxidation of an aromatic ring to yield non-aromatic
cis-dihydrodiols. These initial dioxygenases are multi-component enzyme systems that
catalyse the dihydroxylation of PAHs ranging in size from two to five fused rings. These
dihydroxylated intermediates are then, upon enzymatic rearomatization to diols, cleaved by
monocomponent intradiol or extradiol ring-cleaving dioxygenases (through either an ortho-
cleavage pathway or a meta-cleavage pathway). Further breakdown then leads to central
intermediates such as cis,cis-muconic acids or hydroxymuconic semi-aldehydes in the case
of the degradation of monoaromatic rings, or to salicylates, catechol-like structures or
protocatechuates in the degradation of higher annelated aromatics. All these intermediates
are then further converted to tricarboxylic acid (TCA) cycle intermediates, used for anabolic
biomass formation and mineralized to CO2 (Figure 1b) [73,76]. Compounds such as
naphthalene (two aromatic rings), anthracene or phenanthrene (three aromatic rings) can
be completely mineralized by many of these bacteria; however, the mineralization of HMW-
PAHs has not completely been elucidated, and in some bacteria, only partially degraded,
dead-end products have been detected [78].

Only a single specialized bacterium, Sphingomonas wittichii strain RW1, can use the
non-chlorinated dibenzo-p-dioxin molecule as its sole carbon- and energy source [79] and
co-metabolize several of its chlorinated derivatives [80,81]. Other bacterial isolates, with
highly similar catabolic genes to that of the Sphingomonas wittichii strain RW1, are capable
of growing with diphenyl ether, dibenzofuran, carbazol or structurally similar compounds,
and they can also attack the dibenzo-p-dioxin molecule, including low- to mid-chlorinated
dibenzo-p-dioxins and dibenzofurans [82,83]. All these strains possess a special angular
dioxygenase system [84,85].

For the biodegradation of other haloorganic contaminants (e.g., polyhalogenated
benzenes or toluenes) of the ecosphere, numerous bacteria have been described, even
when a single aromatic benzene ring system carries up to four chlorine atoms. A few
bacteria can dehalogenize such molecules aerobically with molecular oxygen [86,87]. A
general scheme for the aerobic metabolism of a monochlorobenzene is shown in Figure 1c.
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Fully, or almost very highly chlorinated aromatic compounds, such as hexachlorobenzene,
octachlorodibenzo-p-dioxin, octachlorodibenzofuran or decachlorobiphenyl are highly
recalcitrant, and only a few aerobic bacterium have the potential to degrade hexachloroben-
zene [88,89]. However, such completely or almost fully halogenated aromatics can be
degraded anaerobically, under sequential dehalogenation, to the mono- or even non-
halogenated aromatic or alkene structure. In this case, these compounds are being utilized
by special anaerobic bacteria as electron acceptors in the presence of hydrogen, thereby
releasing a benign chloride ion in every single reaction step [90–92]. Figure 1c shows
such a simplified reaction sequence, where the model compound hexachlorobenzene is
dehalogenated anoxically and the resulting benzene is then aerobically mineralized.

5. Plant-Bacteria Associations for the Elimination of Atmospheric Contaminants

Whilst bacteria are armoured with a battery of degradative genes encoding catabolic
biocatalysts, plants offer a large surface area to collect air particles, and they are able to
stimulate bacterial activities in their rhizosphere [93]. Therefore, the combination of both
organisms could be a good solution for the elimination of contaminants [94]. Radwan et al.
were pioneers in demonstrating the elimination of oil contaminants by a combination
of plant and soil microorganisms under natural conditions [95]. However, this natural
remediation, in general, takes a long time and, for this reason, there is a pressing need to
engineer more efficient bio-systems for the elimination of contaminants.

5.1. Rhizoremediation

Rhizoremediation consists of the elimination of contaminants from the soil surround-
ing the plant root and is based on the fact that plant tissues, especially roots, secrete different
metabolites that microbes can use as a nitrogen, carbon, sulphur or phosphorus source,
and on the influence that root exudates exert over the bioavailability of contaminants.
Bacteria which live near root surfaces may be attracted by these root exudates [96,97] and
use such rhizospheric compounds as nutrients, thereby resisting the toxicity of certain
secondary metabolites secreted by plants and the presence of reactive oxygen species
produced by the respiration of root cells [98,99]. Plant roots provide a large surface area
on which microorganisms can proliferate and reach high cell densities. Some roots can
transport microorganisms through the soil to depths where aerobic microorganisms are
normally unable to thrive, and provide oxygen for the initial attack of mono- and dioxyge-
nases for (aromatic) contaminant degradation. Although many microorganisms exhibited
specific biodegradation properties, their reintroduction into the soil to remove pollutants
has sometimes been unsuccessful. It is thought that nutrient limitation, competition with
indigenous microbiota or poor performance under environmental stressful conditions may
limit the success of (re)introduced microorganisms in contaminated soils [100]. However,
in the presence of contaminants, these microorganisms have a crucial advantage over
indigenous microbiota; in general contaminant-degrading microorganisms are adapted to
the toxic effects of the contaminant and they can use it as an additional carbon and energy
source. There are, therefore, two crucial aspects in rhizoremediation: (i) the pathways for
the degradation of contaminants have to be operative and free of catabolite repression
effects [101–105], and (ii) the contaminant has to be bioavailable in a form that can be taken
up by the bacterial cell [67–69,71].

The elimination of contaminants by bacteria decreases their concentration in the rhizo-
sphere and, therefore, improves plant growth [106]. In addition, some rhizospheric bacteria
can solubilize phosphate, facilitate iron uptake and/or synthetize plant hormones to pro-
mote plant growth. These two actions promote soil fertility during rhizoremediation [107].
Therefore, a mutual benefit for both organisms exists during the association of plants and
bacteria for the elimination of contaminants (Figure 3). The identification of plant micro-
biomes has confirmed that microbial populations in the rhizosphere depend on the age of
the plant, its physiological status and even the cultivar, supporting the idea that plant roots
exert a certain selection toward the microorganisms living in their rhizosphere [108–110].
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It has been demonstrated that plants can attract specific degradative bacteria toward their
rhizosphere in the context of rhizoremediation [111–113]. It is becoming clear that plant-
microbe interactions influence the effectiveness of rhizoremediation and, therefore, the
selection of the best plant-bacteria combination for a specific contaminant is crucial for its
effective elimination [114].
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Prairie grasses, which have an extensive fibrous root system, are among the best
studied plants for the remediation of hydrocarbon-polluted soils [115,116]. Although
well-known bacteria could be used in rhizoremediation, in general they are not well-
adapted to survive and compete in the rhizosphere. Bacteria isolated from contaminated
soils have also been used for bioaugmentation, although there is, in general, a lack of
information about the degradative abilities of these bacteria and about their ability to
persist in specific plant environments [117,118]. Certain types of degradative bacteria
that are commonly found in contaminated environments have been reported to be good
candidates for rhizoremediation, amongst them Arthrobacter, Rhodobacter, Rhodococcus,
Pseudomonas, Burkholderia, Bacillus, Mycobacterium or members of the Sphingomonadacea
family [106,119–121]. Certain endophytes have also been reported as good choices for
bioremediation as they are adapted to a specific plant and have fewer competitors in
their natural environment. However, in this case, the transport of contaminants into the
plant interior is crucial for effective bioremediation [122]. In the last five years, there have
been many publications dealing with different aspects of rhizoremediation, suggesting the
maturity of this research field [62,123–131]. As a result, a large number of different bacteria
which are able to remove pollutants from soil have been described; Table 1 shows some
examples of bacteria-plant combinations for the degradation of contaminants.
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Table 1. Examples of rhizoremediation of pollutants using plant-microbe pairs.

Plants Pollutants Microbes References

Senecus glaucus Oil Arthrobacter [95]

Alfalfa PAHs Not identified [132]

Barley 2,4-D Burkholderia cepacia [133]

Oat, lupin, rape,
pepper, radish, pine Pyrene Not identified [134]

Poplar 2,4-D Amycolata sp. CB1190 [135]

Lolium multiflorum PAHs Pseudmonas putida strain PCL1444 [136]

Zinnia anguistifolia Mefenoxam Pseudomonas fluorescens
Chrysobacterium indologenes [137]

Hordeum vulgare Phenanthrene Pseudomonas fluorescens,
Pseudomonas aureofaciens [138]

Trifolium repens Chrysene Rhizobium leguminosarum [139]

Triticum aestivum Phenanthrene Pseudomonas sp. strain GF3 [140]

Hordeum vulgare PAHs Mycobacterium sps. [141]

Sorghum bicolor Phenanthrene Sinorhizobium meliloti strain P221 [142]

Lolium multiflorum Diesel oil Rhodococcus sp. strain ITRH43 [143]

Secale cereale, medicago sativa Crude oil Azospirillum brasilense strain SR80 [144]

Lotus corniculatus Diesel oil Pantoea sp. strain BTRH79 [145]

Zea mays Phenanthrene,
pyrene

Pseudomonas sp. strain UG14Lr, Pseudomonas
putida strain MUB1 [146]

Lolium multiflorum PAHs Acinetobacter sp. [147]

Medicago sativa PAHs Rhizobium meliloti strain ACCC 17519 [148]

Zea mays Diesel oil Gordonia sp. strain
S2RP-17 [149]

Lolium perenne Diesel oil Pantoea sp. strain BTRH79 [150]

Festuca PAHs and diesel Azospirillum sp. and Pseudomonas stutzeri [151]

Populus deltoides PAHs

Kurthia sp.
Micrococcus sp.

Bacillus sp.
Dienococcus sp.

Endophytic Bacillus sp.

[152]

Salix purpurea Phenanthrene Pseudomonas putida PD1 [153]

Sorghum and onobrychis sativa Phenanthrene, pyrene Bacterial consortium [154]

Annual grasses Monoaromatics, PAHs Pseudomonas putida strains [155]

Clover Phenanthrene Novosphingobium sp. HS2a [106]

Lolium multiflorum PAHs Mycobacterium gilvum [156]

Avicennia schaueriana Oil Bacterial consortium [157]

Arabidopsis thaliana PCBs Rhodococcus [121]

Echinochloa crus-galli,
cynodon dactylon Monoaromatics Pseudomonas sp. J10 [158]

Chromolaena odorata Lead, petroleum Micrococcus luteus. [159]

Grases PAHs Mycobacterium vanbaalenii PYR-1 [160]

Morus alba Biphenyl Rhodococcus sp. MAPN-1 [161]

Poplar 1,4-Dioxane Mycobacterium dioxanotrophicus PH-06,
Pseudonocardia dioxanivorans CB1190 [162]

Fesctuca arundinecea l. PAHs Mycobacterium sp. [163]
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5.2. Phylloremediation

For the elimination of atmospheric contaminants, it is noteworthy that the surface
area of leaves can be 6–14 times greater than the land the vegetation is growing upon and,
therefore, the phyllosphere, which is the aerial part of plants consisting of the stems and
leaves, is an important environment to study [164]. The phyllosphere is a hostile habitat for
microorganisms; the microbial communities established on the phyllosphere are affected by
environmental factors such as UV radiation, temperature variations, climatic factors (e.g.,
precipitation), low nutrients and pollution [165–169]. Generally, the most important factors
determining the structures of phyllosphere bacterial communities are the season, the plant
species and biogeography [166,170–175]. One of the factors by which plant species affect
phyllosphere bacterial communities is the composition and type of waxy cuticle which
covers the leaf surfaces. This waxy cuticle can be comprised of lipid components, cutin
and waxes, but also contains hydrocarbons and amino acids [176]. However, the limited
diffusion of nutrients and water, as well as the spatially heterogeneous nutrient availability,
result in leaf surfaces being largely oligotrophic with localized “oases” of nutrients [166].
Nevertheless, leaves can support bacterial populations of 104–105 bacteria mm−2 of leaf sur-
face or up to 108 bacteria g−1 leaf material together with smaller fungal populations [177].
Bacterial communities established on leaf surfaces of different plant species are typically
dominated by Proteobacteria, especially Alphaproteobacteria such as Sphingomonas and
Methylobacterium [178,179], and Gammaproteobacteria such as Pseudomonas [180,181].

The accumulation of air pollutants and airborne PMs on leaf surfaces is dependent
on the plant species, leaf size and structure, but is also affected by the types of waxes
which make up the cuticle, the hairs covering the leaf and leaf smoothness [46,47,182,183].
Both PMs and hydrocarbon contaminants accumulating on the leaf surface affect bacterial
communities. For instance, the analyses of the microbial communities on the leaves of
Platanus trees revealed that tree location (city vs. rural) explained the largest differences,
and that the amounts of PM on the leaves acted as partial drivers of the bacterial community
structure [184]. In another study, more particulate matter (PM) was found on hornbeam
tree leaves in cities, but when the authors looked at the functional diversity of hydrocarbon
degradation genes of the phyllosphere communities, they found statistically more of these
type of genes in the phyllosphere of a natural forest [185]. Therefore, the response of
bacterial communities to PM and hydrocarbon contaminant deposition may not always
be linked. Nevertheless, in a study by Franzetti et al., in which they observed seasonal
differences in PAH concentrations in Milan (with maxima in winter and minima in summer),
the gene coverage of dioxygenases for the catabolism of PAHs and aromatic compounds
found in metagenomic data of communities of the phyllosphere of magnolia was higher in
winter than in summer [186]. Similarly, the diversity of bacterial communities and of the
abundance of a gene encoding hydrocarbon degradation by the phyllospheric bacteria on
the leaves of Platanus in different parts of Milan was affected more strongly by the season
than by the sampling location (park/road) [187].

Other studies demonstrated that phyllospheric bacteria participate directly in the re-
moval of hydrocarbon-related air pollutants [84,181]. For instance, Sandhu et al. [188,189]
showed that phyllosphere communities mineralized significantly more phenol than bean
leaves which had been surface sterilized. Ali and collaborators found that bacterial com-
munities on legume leaves could consume more crude oil, phenanthrene and n-octadecane
compared to sterilized leaves [190]. Similarly, Sorkhoh et al. observed that the leaves
of broad beans and American grass removed 80% more volatile crude oil hydrocarbons
than leaves which had been surface sterilized [191]. Waight et al. found that phenan-
threne sprayed on the leaves of Ixora plants disappeared faster than on surface-sterilized
leaves [192]. Sangthong et al. demonstrated the role of epiphytic bacteria in xylene degra-
dation [193]. Similarly, phyllospheric bacteria on the unsterilized leaves of ornamental
plants enhanced phenanthrene removal [194]. Endophytes have also been used for the
elimination of gaseous ethylbenzene [195]. An extensive list of plant associated bacteria
which are able to degrade or biotransform air pollutants can be found in the review by
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Wei et al. [181]. All these findings show the involvement of phyllospheric bacteria in the
elimination of air pollutants (Table 2).

Table 2. Phylloremediation of pollutants using plant—microbe pairs.

Plants Pollutants Microbes References

Azalea indica Toluene Pseudomonas putida TVA8 [196]

Bean Phenol Pseudomonas sp. strain CF600 [188]

Ixora sp Phenanthrene

Pseudomonas oleovorans
Mycobacterium sps.

Rhizobium sps.
Deinococcus sp.

[192]

Ornamental plants Phenanthrene Indigenous population [194]

Beans and peas Hydrocarbon vapors Not identified [190]

Bougainvillea buttiana Xylene
Enterobacter cloacae LSRC11,

Staphylococus sp. A1,
Pseudomonas aeruginosa

[193]

Urban trees Phenanthrene, benzo[a]pyrene Non identified [197]

More importantly, these studies also open up the possibility that the manipulation
of phyllosphere bacterial communities by bioaugmentation with air pollutant-degrading
bacteria could be used to remove contaminants from the air [198]. The finding by Scheublin et al.,
that a chlorophenol degrading Arthrobacter strain originating from soil showed good
phyllosphere colonization and that it expresses degradation genes, suggests that even
non-phyllospheric bacteria may successfully be used for phylloremediation [199].

6. Removal of Air Pollutants and the Role of Green Architecture

Growing awareness about indoor and outdoor air contamination has promoted
research in the phytoremediation of this type of pollution [198,200,201]. Furthermore,
PAHs, PCBs and VOCs are now considered as re-emerging contaminants [202,203]. How-
ever, many of the studies dealing with this subject do not specifically investigate the
plant-bacteria interactions involved, although the role of the bacteria is usually acknowl-
edged [204,205]. For many authors, plants are passive accumulators of contaminants,
and their role as biomarkers has been thoroughly investigated [206,207]. However, as
mentioned above, the inoculation of plants with the appropriate microbes improves con-
taminant removal and mineralization.

The green infrastructures of traditional cities, which include gardens, parks, open cor-
ridors and ornamental vegetation, provide services that benefit urban populations [208,209].
These services include the psychological well-being of urbanites by providing space for
sports activities, relaxation and socialization [210–212], noise attenuation and flood mit-
igation [213], and increase the value of cultural heritage [214]. They also contribute to
the control and spread of air pollution and to the microclimate regulation of the urban
environment [215–217]. However, growing urban populations have forced planners for
urban environments to find new strategies for public transport, employment and urban
amenities, as well as for the creation and maintenance of green infrastructures [218,219].
The current urbanization trend toward a more compact and dense urban form leaves less
space for green infrastructures [220–222]. Green Architecture is a relatively new concept
that involves the construction of eco-friendly buildings and infrastructures to minimize
the harmful effects of urbanization on the environment, including outdoor and indoor air
pollution. According to these practices, the elements that have traditionally been used
for aesthetic reasons are now one of the best ecological methods for sustainable edifica-
tion, with vegetation being incorporated in very innovative ways (i.e., incorporation of
vegetation surrounding or connecting skyscrapers, in vertical gardens or roof gardens and
botanical sculptures) [223]. Due to the importance of health problems caused by atmo-
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spheric contaminants and the increase in the number of citizens living in megacities, there is
a growing interest in the utilization of green elements for contaminant dissipation. Several
studies have demonstrated that the surface with green-coverage is inversely correlated
with the amount of PM contamination in the air, although the type of green coverage is
also important [205,224–226].

Some architectural elements to mitigate air pollution are being developed, such as
green wall biofilters [227], or green belts, established around industrial areas [228]. At
the laboratory scale, many studies have shown that biofilters are capable of removing
indoor VOCs (such as formaldehyde, toluene, ethylbenzene and xylene) [229,230]. Two
different biofiltration systems can be installed in green infrastructures. In passive biofil-
tration, the simple diffussion of air to green wall components is used to eliminate the
contaminants. These systems consist of the use of potted plants, biocovers, green roofs
and green walls [231–234]. One of the problems of these systems is their limited capacity
for remediating high levels of air pollution, in particular PM, but their main advantage is
their low cost [235]. In active botanical biofilters, the transfer of polluted air through active
systems improves the amount of the contaminant elimination [231].

Green-walls are already being commercially installed in many buildings as biofil-
tration systems to alleviate indoor pollution. However, there are mixed results about
the efficiency of green infrastructures such as green roofs, green-walls and others in the
elimination of outdoor atmospheric contamination, at least, as passive biofilters [236,237].
In most of these studies, PM elimination or adsorption to plant material has been studied,
but there are not many reports about the elimination of the specific contaminants contained
in PM.

Although the importance of microorganisms in green infrastructures is becoming more
evident [186,238–241], few examples of manipulated plant-microorganism combinations
have been reported in the literature, and those that have mainly deal with microbes
that improve plant growth [242,243]. Phyllo- and rhizoremediation are good strategies
for air pollutant elimination and, therefore, improving rhizosphere and phyllosphere
bacterial communities with tailor-made bacterial consortia, which attack diverse organic
contaminants, could be considered a way of improving the capacity of plants to remove
these air pollutants within a Green Architecture strategy [237,244,245].

7. Research Needs

There are a number of issues that need to be solved in order to successfully implement
the utilization of plant-bacteria combinations as a strategy to ameliorate air pollution in
cities. First of all, although there has been a spectacular increase in the number of publica-
tions regarding the fate of contaminants in plants and the mechanisms of deposition on
leaves and soil [246], more research will be necessary to improve our knowledge about the
bioaccumulation and fate of contaminants in vegetation [247]. Depending on the location,
the bioremediation strategy will require the utilization of endophytic, phyllospheric or
rhizospheric bacteria capable of dealing with these target contaminants [248,249]. Because
of the close proximity of green structures to citizens, detailed safety analyses of degrad-
ing microorganisms and studies about the accumulation of possible toxic intermediates
from degradative pathways should be investigated [250]. The plant and its associated
microbiome have co-evolved throughout time, establishing complex interrelationships
to function almost as a single unit. The development and health of this supra-organism
(holobiont) depends on the environmental conditions and the balance between its different
components [251]. During bioremediation, the presence of pollutants and bioaugmentation
with exogenous bacteria can affect the functioning of this holobiont [113,252]. Phenan-
threne, for example, is able to induce the hypersensitive (HR) and systemic acquired
responses (SAR), characterized by the overproduction of reactive oxidative species by the
plant [253,254]. The study of these new interactions and how the degradation potential of
contaminants could be altered by the complex signalization existing in these niches is a
novel research field to be explored. Therefore, the molecular communication between the
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plant and its associated microbiota is crucial to ensure efficient contaminant elimination
under changing environmental conditions [114]. Plants and their associated microbiota are
able to produce multiple chemical signals (quorum sensing molecules, quorum quenching
enzymes, VOCs, hormones and other secondary metabolites) that affect the equilibrium of
the holobiont [165,255,256]. Unfortunately, little is known about the effects of these complex
signalling cascades on the establishment and biodegradation potential of bacteria used in
phyto-/rhizo-/phylloremediation. However, a better understanding of this environmental
complexity, with the aid of high throughput –omics tools, is nowadays feasible [257,258].

Up to now, most of the research related to plants used in Green Architecture has
focused on the tolerance of the plants toward atmospheric contaminants [259,260]. As
mentioned previously, the associations of plants with contaminant-degrading bacteria
promote plant growth by alleviating the toxicity of the contaminants and are increasing the
number of plant species that could be used in Green Buildings. However, how to find the
best plant-bacteria combinations for each location is a topic still to be resolved to achieve
the successful elimination of contaminants. Moreover, these bacteria or bacterial consortia
will need to be well adapted and robust, and this might be aided by a recently described
adaptation strategy for the plant environment [261]. Improved engineering, architectural
and agricultural practices to implement these strategies will also be required for successful
implementation of this biotechnology.

8. Conclusions

The successful utilization of plant-bacteria combinations in Green Architecture is a
promising technology that will have clear economic implications and lead to less public ex-
penditure in citizens’ healthcare, and it could also lower the costs of contamination control.
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