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Abstract: This work presents an alternative for adding value to greenhouse crop residues, used for
(1) heating and (2) as a CO2 source. Both options are focused on greenhouse agricultural production,
but could be applied to other applications. The influence of factors, such as the air/fuel rate and
turbulence inside the combustion chamber, is studied. Our results show that for pine pellets, olive
pits, tomato-crop residues, and a blend of the latter mixed with almond prunings (75–25%), the
thermal losses ranged from 19.5–53.1, 20.5–58.9, 39.9–95%, and 29.4–75.5%, respectively, while the
NOX emissions were 30–247, 411–1792, and 361–2333 mg/Nm3, respectively. The above-mentioned
blend was identified as the best set-up. The thermal losses were 39.2%, and the CO, NOX, and SO2

concentrations were 11,690, 906, and 1134 mg/Nm3, respectively (the gas concentration values were
recalculated for 0% O2). Currently, no other work exists in the literature include a similar analysis
performed using a boiler with a comparable thermal output (160.46 kW). The optimal configurations
comply with the relevant local legislation. This optimization is important for future emission control
strategies relating to using crop residues as a CO2 source. The work also highlights the importance
of ensuring a proper boiler set-up for each case considered.

Keywords: biomass combustion; boiler efficiency; waste valorization; CO2 storage; heating applica-
tions; waste heat source

1. Introduction

There are several alternatives for adding value to crop-generated biomass [1–6]. One
available alternative consists of using biomass as an energy source. However, this has
not been fully developed. The European Union’s objectives for the renewable energy
consumption fraction for 2020 have almost been met, although this fraction has now been
raised from 20 to 32% for 2030 (at the moment, the fractions are 18.8 and 17.5%, for the EU
and Spain, respectively) [7]. Biomass offers an additional way to increase this fraction. Such
an option has been contemplated in several national plans, Spain’s being one of them [8].
Agricultural residues are one of the potential biomass sources out of the various candidates
currently available. Nevertheless, its consumption rate could be increased.

Horticultural fruit growing is an important economic activity in Almeria Province
(south-eastern Spain [9–11]). Of the crops grown in this zone, tomato (Solanum Lycopersicum)
is the most widespread. Such extensive horticultural fruit production in a specific zone
also leads to important amounts of vegetal residues. One portion of the residues generated
corresponds to the aerial part of these plants. This waste is discarded after the plant’s
productive life is over. Differences in distribution from season to season are an additional
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issue [12,13]. This article studies the application of this biomass source to greenhouse
heating and CO2 enrichment. The amount of energy that could be obtained annually in
this zone is 1.16 × 105 TOE (from tomato and other crops). This value was estimated based
on the amount generated [14,15], and its calorific value. Moreover, it was considered that
the biomass moisture content would be reduced to 21.3% [15]. Currently, ENCE (a private
company) is carrying out a project where they plan to utilize this biomass for electricity
generation [16]. Applying it to combustion equipment in greenhouses, with its moderate
thermal output, has yet to be developed. On the other hand, the utilization of other types of
biomass is further advanced (i.e., pine pellets), although this biomass is generated in other
zones, so utilizing it involves additional transportation costs and a higher CO2 footprint.
Regarding CO2 enrichment, this alternative is already used in similar applications where
photosynthetic organisms are grown, such as in aquaculture [17–19]. Using this biomass
for CO2 enrichment in greenhouses is also an interesting option [20].

Concerning the biomass combustion efficiency in boilers, this case can be considered
as a process of energy transference. The flue gas generated from biomass combustion
transfers thermal heat to the boiler’s water volume. The temperature gradient must be
high enough to maintain a certain energy transfer rate. Thus, there is an optimum flue-
gas temperature value. When used for CO2 enrichment, one must consider the other
compounds generated when this biomass is combusted, including SO2 and NOX, as their
presence can have a considerably negative impact on plant growth. This can manifest in
different ways depending on the plant species. The most common effect is chlorosis and
necrosis of the leaves. In other cases, it leads to an appreciable reduction in growth [20,21].
At the same time, CO levels can be used as an indicator of O2 supply. The C/O ratio is also
related to the production of organic compounds [22,23]. For these reasons, the optimization
focused on these three compounds. Nevertheless, there are other relevant emissions to
take into account, such as particles and organic compounds. These gaseous emissions are
influenced by the combustion device settings, although other factors related to the design
of these devices significantly affect performance, such as the combustion chamber size, the
position, and orientation of the air inlets, the airflow pattern, the flue-gas residence time,
the position and method of introducing the biomass into the combustion chamber and
the temperature inside it (which also relates to its thermal isolation capacity) [24]. When
the option is to perform CO2 enrichment inside the greenhouses, the vegetal waste would
require pretreatment processes to filter out these compounds [25]. This means that it would
be important to optimize any prior combustion [25,26].

Previous works have studied CO, NOX, and SO2 emissions, combustion efficiency,
and alternatives for increasing the performance of various types of biomass [27–30]. Other
works have considered tomato-crop biomass for combustion [15,31–35]; the former also
studied this application and implemented several alternatives for increasing its quality as
a solid fuel [15]. One previous work studied the biomass obtained from tomato crops, but
only that portion comprising the discarded fruit remains after juicing (tomato pomace);
moreover, in this case, the combustion performance tests were for a boiler with a lower
heating power output (12 kW) [36], which is not enough for use in greenhouses. There
are no reports based on the combustion efficiency or toxic emissions for this biomass
type (applying the pretreatments proposed in Reference [15]). Furthermore, given the
importance of factors, such as the device’s combustion chamber geometry, the air/fuel
supply combination, and the turbulence, even if studies did exist, it would be advisable to
optimize each device type for each biomass used.

Bearing in mind the above considerations, the next step is to test the combustion
performance of greenhouse tomato-crop biomass in combustion devices that have a closer
thermal output to those used in commercial greenhouses. This work hypothesized that
combustion efficiency could be optimized, and noxious gasses minimized, by applying
an appropriate combination of the previously mentioned parameters (fuel, and primary
and secondary air inlets). Different combinations of these parameters were tested, and the
combustion efficiency and emissions were measured to test this hypothesis. At the same
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time, other more conventional types of biomass (pine pellets and olive pits) were studied
to see how the influence of these parameters changes from one biomass to another.

2. Materials and Methods
2.1. Biomass

Four different biomass types were studied in this work: Olive pits, pine pellets, tomato-
crop biomass, and a blend of the latter with almond prunings (75–25%). In a previous
work, several characteristics were determined to study their appropriateness for use in
direct combustion applications [15]. These characteristics were the water and ash content,
and the calorific value. The tomato-crop biomass comprised the aerial parts of the plants,
which were collected in such a way as to avoid contact with the greenhouse soil; then, they
were dried, and any raffia was removed. The entire aerial portion was used (including the
stems and leaves). The only part discarded was the roots. Discarding the roots significantly
decreases the ash content (as demonstrated in previous research) [15]. The plants were
laid out to dry for about two weeks in the same greenhouse in which they were grown.
The equilibrium moisture content ranged from 10.2–15.2 (for 100% tomato and for the
blend, respectively). After being dried, the biomass was chopped and pelletized. The pellet
dimensions were 2.00 cm long and 0.25 cm in diameter. Additional data from the various
biomass types studied are given from Figures 1–3.
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Figure 1. Properties of the pine pellets, olive pit, tomato biomass, and the blend of this with almond prunings.
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Figure 2. Elemental composition of the tomato-crop biomass, and the blend of this with almond prunings.
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Figure 3. Sintering, sphere, hemisphere, and melting temperatures of tomato-crop biomass, and the blend of this biomass
with almond prunings.

2.2. Boiler

The boiler employed for these tests was a Missouri 150000. Its nominal calorific power
was 160.46 kW (Figure 4). It has a grill at its base shaped like a well. The biomass is
channeled with a headless screw to the bottom of this grill and emerges from there. The
flue gasses generate flow from the biomass pile through the heat exchanger. This material is
placed on top of the fireplace. There are two air inlets in the combustion chamber (primary
and secondary) to supply oxygen for combustion. Both air supplies are propelled with
blowers. Additional details concerning boiler internal design are given in Appendix A
(Appendix A.1). The primary air supply is regulated with a frequency regulator, while the
secondary air supply is regulated with a flow gate. At the same time, the fuel rate can also
be regulated, since it is possible to adjust this screw’s rotational velocity. The O2:fuel ratio
can be regulated by the combined adjustment of these three parameters.
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2.3. Combustion Optimization Assays

Several combinations were tested. These consisted of varying the biomass feed, and
the primary and secondary air supplies. The aim was to identify the combination with
the highest combustion efficiency and flue-gas CO2 concentration (minimizing the excess
air). The configurations tested are shown on the X-axes from Figures 5–9. These have been
denoted as P#- S# (the letters “P” and “S” standing for the Primary and Secondary air
supplies while the number corresponds to the flow rate assayed in m3·s−1). Regarding the
fuel feed rate, the range selected was a bit narrower (or conservative) than the one which
could actually be selected. The fuel feed rate was regulated via the rotational velocity of
the headless screw adjustment (as discussed in Section 2.2.). The rate also varies from one
biomass type to another, since the density of each may be slightly different. The primary
and secondary air supply flow rates were estimated from experimental linear velocity
measurements performed with a thermal anemometer.
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Figure 5. Flue-gas temperature and [CO2] were recorded for each biomass type, their corresponding fuel inputs, and the
primary and secondary air rates. (Opt: The configuration identified as optimum).
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Figure 6. The thermal losses and heating efficiency recorded for each biomass type, their corresponding fuel inputs, and
the primary and secondary air rates, together with the corresponding heating efficiency (Opt: Configuration identified as
optimum; * Value surpassing 90%, theoretically).
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Figure 7. [CO] 0% O2 observed for each biomass type, their corresponding fuel inputs, and the primary and secondary air
supply rates (* These values surpassed the maximum that the analyzer was able to record. Opt: Configuration identified
as optimum).
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Figure 8. [NOX] 0% O2 observed for each biomass type, their corresponding fuel rates, and the primary and secondary air
supply rates (*Legislation limit outside the graph scale. Opt: Configuration identified as optimum).
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Figure 9. [SO2] 0% O2 observed for each biomass type, their corresponding fuel rates, and the primary and secondary air
supply rates (*Legislation limit outside the graph scale. Opt: Configuration identified as optimum).

2.4. Flue-Gas Temperature and CO2

These variables were measured with a gas analyzer (IM 1400 combustion analyzer, IM
Environmental Equipment, Heilbronn, Germany). The analyzer’s probe was placed in the
boiler’s flue-gas outlet pipe.

2.5. Thermal and Heating Efficiency Measurements

The thermal efficiency was quantified with the same analyzer mentioned in the
previous section. This measurement was performed using an estimation involving the
CO2, O2, atmospheric temperature, and flue-gas temperature. Additionally, energy and
mass balances were measured to estimate heating efficiency. These were estimated for
periods in which heating was taking place in the boiler, but with no water circulation.
This operation makes it simpler to determine the energy transferred as one only needs to
measure the water-tank temperature increment. The energy transferred can be quantified
by this measurement. This estimation is further explained in Appendix B. Similarly, this
estimation was performed for the pine pellets, tomato-crop residues, and the blend of
tomato-crop residues + almond prunings. These assays were also performed on several
set-ups out of those tested when determining the other variables under study.

2.6. CO, NOX, and SO2 Flue-Gas Measurements

These concentrations were measured with the same analyzer mentioned in Section 2.4.
The CO, NOX, and SO2 levels observed have been recalculated hypothetically, assuming
0% O2 (mol./mol.) in the flue gas. Each measurement was taken after 15 min of stable
performance. The parameters analyzed were recorded for 10 s after this stabilization. An
example of this procedure is given in Appendix A (Appendix A.2).

2.7. Posterior Reduction in CO, NOX, and SO2 Emissions during CO2 Capture

A certain proportion of the flue gases generated is taken up for CO2 capture. A tank
filled with active carbon (GMI P 4 S, CPL Activated Carbons Iberia -CPL GalaQuim-,
Madrid, Spain) was used for the purpose. This material has a higher adsorption capacity
for CO2 than for toxic gasses, increasing with pressure and decreasing with temperature.
The working operational conditions were set to 2 × 105 Pa and a maximum temperature
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of 40 ◦C. The system used is also described in References [15,33,35]. The levels present in
the gas stream coming from the tank were measured on their way to the CO2 enrichment
process in the greenhouse (once the capture process was completed). The compounds
analyzed were CO, NOX, and SO2. An environmental gas analyzer was used for these
measurements (MultiRAE Lite; Rae Systems Spain, S. L., El Prat de Llobregat, Spain).

2.8. Statistical Analysis.

The influence of the considered factors (biomass type, fuel rate, and primary and
secondary air supplies) has been analytically estimated. This analysis consisted of a
multifactor ANOVA table. The dependent variables were those studied in this work
(flue-gas temperature, [CO2], thermal efficiency, [CO], [NOX], and [SO2]). A maximum
P-value of 0.05 was taken as a reference for a 95% confidence level. The 2nd-order iteration
was considered; this gives some idea of the possible cross-over influences between these
parameters. Those considered as plausible were: (1) Biomass type vs. primary air supply;
(2) primary vs. secondary air supply; and (3) primary air supply vs. fuel rate.

2.9. Particle Emissions

Certain qualitative measurements were performed employing the Bacharach scale
with the combustion analyzer mentioned previously in Section 2.4. (IM 1400 combustion
analyzer; IM Environmental Equipment, Heilbronn, Germany). These measurements were
performed only for the most significant configurations tested.

2.10. Heating and Enrichment Experiments over Long Periods

Heating and enrichment experiments were carried out inside the greenhouse where
the Solanum Lycopersicum plants (tomato) were grown. These experiments were performed
over four months, during the coldest season (from November to March), the time when
the crops mentioned are usually grown in this zone, since it is possible to achieve greater
productivity during this season compared to other locations. Heating was used in the
greenhouse to maintain a temperature of around 10 ◦C. The set point was increased to 12 ◦C
for two hours (6–8 a. m) to accelerate the plants’ metabolism in the initial hours of the day.
CO2 enrichment was performed to maintain a CO2 concentration above 1375 mg/Nm3; this
only happened during periods when the greenhouse ventilation windows could be kept
closed. The CO2 enrichment procedure has been recommended in previous works [21,37].
These experiments were performed in two multi-span “Parral-type” greenhouses. Both
have the same surface area (877 m2) and are located next to each other on the same site
(Las Palmerillas Experimental Station). The cover material is polyethylene. Pine pellets
were used for these experiments.

3. Results

The combinations are discussed in Section 2.3. were denoted as follows: P#- S#;
the letters “P” and “S” stand for Primary and Secondary air supplies while the number
corresponds to the flow rate assayed (in m3·s−1). The same configuration was tested for
two different inlet fuel-rate values. The CO, NOX, and SO2 levels were compared with
those established as the limits in the relevant legislation [38]. They were also recalculated
assuming 0% O2; consequently, the limits found in these figures vary compared to the
configuration considered. The excess air levels employed for each configuration are related
to this consideration. Additional considerations are analyzed in Appendix C.

3.1. Flue-Gas Temperature and [CO2]

The data corresponding to the flue-gas temperature and CO2 concentration are plotted
in Figure 5.
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3.2. Thermal and Heating Efficiency

The data corresponding to thermal and heating efficiency is plotted in Figure 6. The
>95% thermal efficiency values correspond to measurements above the analyzer limit. The
heating efficiency was estimated from the energy and mass balances previously described
in Section 2.5. Configurations over 90% have been highlighted.

Compared with previously reported data on heating efficiency, the values observed in
our experiments for the most suitable configurations using pine pellets were in a similar
range to the most favorable ones reported in the literature [30]. On the other hand, the
value observed for tomato pomace (fruit waste after juicing) was 91.5% (the bibliographic
reference previously discussed in Section 1) [36]—higher than that observed in the present
work; although that boiler had a higher thermal output.

3.3. [CO], NOX, and SO2 in the Flue Gasses

The data corresponding to the CO concentration levels is plotted in Figure 7. For
some configurations, the level surpassed the maximum that the analyzer can measure (2.5
g/Nm3); these values are also highlighted.

A lack of O2 supply in the combustion chamber results in higher CO levels. This
fact is observed in the less appropriate configurations. It has also been discussed in
previous works, and is indicative of an inappropriate set-up being used [30]. On reviewing
previous research, the values reported ranged between 0.6–0.8, 36.8, and 1.1 g/Nm3 for
pine pellets [21,36,39], olive pits [27], and tomato pomace (fruit waste after juicing) [36],
respectively. Another work reported higher levels for pine pellets, although there was
one extreme discrepancy (up to 923 g/Nm) from the range commented upon [40]. The
range was similar, but slightly lower than the one observed in this work, apart from the
discrepancy. Concerning olive pits, the minimum values observed in this work were lower
than those reported in others. For tomato pomace, the values observed in the present
work are considerably higher. Nevertheless, it should be noted that this study has been
performed using a boiler with a higher thermal output and tomato-crop biomass from
different parts of the plant.

The data for NOX concentration levels are presented in Figure 8. The analyzer max-
imum was surpassed for various configurations, including for this variable. The cor-
responding values are also highlighted in Figure 9. Previous research reported values
ranging between 27–989, 411–1792, 2333, and 1662–92,206 mg/Nm3, respectively, for pine
pellets [21,36,39,40], tomato pomace [36], and other biomass types [28,30]. The values
observed in this work were lower when pine pellets were used. Nonetheless, higher values
were obtained according to the set-up. In addition, the previous work that studied tomato
pomace combustion reported far higher values. For this, one should bear in mind the
consideration discussed in Section 3.3. In the previous work that studied olive pits, no
NOX levels were reported. In these works, the levels observed were higher than those
reported for other biomass types.

The data for SO2 emissions observed as flue gasses are plotted in Figure 9. On review-
ing other works in the literature, SO2 levels were found to range from 14–75 [27,29–31],
908 [32], and 0–3504 mg/Nm3 [21–23], respectively, for pine pellets, tomato-crop biomass,
and a variety of other biomass types. The lowest values compared to those reported in
other works were for pine pellets. The value reported for tomato pomace was also lower
than those in the present article. Nevertheless, the lowest levels observed for the blend
were similar in magnitude to those in the present article. Furthermore, the considera-
tions discussed in Section 3.3. should be noted. The work that reported CO emissions
for olive pits did not report on the SO2 levels. Compared to other biomass types, the
values observed in the present work were within the range reported, except for the less
appropriate configurations.

The results from the various works mentioned in the bibliography have been compared
in Appendix D.
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3.4. Posterior Reductions in CO, NOX, and SO2 Emissions during CO2 Capture

Reductions of 72.09, 99.99, and 99.99% were recorded for CO, NOX, and SO2, respec-
tively. This decrease was managed thanks to the filled tank containing an active carbon
bed (as discussed in Section 2.7). These values relate to the relationship between the gas
stream injected into the greenhouse during enrichment and the flue gases emitted from
the boiler at the optimal set-ups. Concerning the 99.99% values, the actual reduction
measured was 100.00%. Since this value is theoretically quite difficult to achieve, they have
been corrected to 99.99% (this is a separation process in which a 100% separation yield is
almost impossible).

3.5. Particle Emissions

The measurements taken for each biomass type ranged between 3–5, 3–6, 4–7, and 4–8
on the Bacharach scale for pine pellets, olive pits, tomato-crop residues, and the blend of
the latter with almond prunings, respectively.

3.6. Statistical Analysis

The various p-values estimated for the interactions between the studied factors are
plotted in Figure 10. The influence of these factors and interactions having a p-value lower
than 0.05 could be considered statically significant at a 95.0% confidence level. This 0.05
limit value has also been plotted in Figure 10. Concerning the 2nd-level interactions, the
potential interactions considered were those between the primary air supply and the fuel
type. This is because the primary air stream faces towards the grate. Hence, some influence
might exist. The density of the fuel pile emerging from the pit is probably different for each
biomass type. This might be more important when fuel accumulates in the pit because
the fuel input rate could be higher than the combustion propagation. Moreover, these two
supplies are mixed inside the combustion chamber, so there is an additional interaction.
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Figure 10. p-value estimated from the analysis of variance performed to study the influence of the four factors (and their
combined interactions) on various variables; confidence level—95%.

3.7. Heating and Enrichment Experiments over the Long Term

The productivity of these crops increased by 16% (mass/mass) by the end of the
growing season when following the methodology explained in Section 2.10. This increase is
a result of the controlled conditions imposed on the crops and the accumulated productivity.
The weekly productivity also increased by more than 10% (mass/mass over a week). This
was observed three months after implementing the temperature and [CO2] control regime.
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4. Discussion

From the data obtained in the present work, one can state that the variables and
parameters studied have interwoven relationships. This observation is reinforced by the
data obtained from the statistical analysis (Section 3.6). This analysis showed how several
interactions between two factors had a statistical significance.

Previous studies have concluded that the main contribution to the NOX and SO2
levels is the nitrogen and sulfur content (as discussed in Section 1). Therefore, one would
expect the emission levels to vary in line with the fuel supply rates. However, the ex-
perimental data obtained show that this relationship is not proportional. Some of these
toxic gasses could remain fixed in solid compounds (for example, in ashes) [41–43]. At
the same time, the other two parameters studied (the primary and secondary air rates)
can influence the equilibrium of these reactions; and their combination along with the
fuel rate also has some impact. Certain elements were present at higher levels in the
almond-pruning biomass, namely, calcium and magnesium. It has been proved that these
remain with nitrogen and sulfur. Consequently, ash minerals are generated containing
these elements, resulting in lower gas-emission levels [30,44]. Additives containing these
elements have been successfully assayed in another work, which showed a decrease in
noxious gas emissions [45].

There are other possibilities to this mixing alternative that might provide further
improvements, for example, optimizing the gas-flow patterns inside the combustion cham-
ber [46]. On the other hand, there are parameters, such as the watering rate and the salinity
content of the soil in which the plants grow, which influence the structural composition of
the biomass. This influence might be more significant in the final days leading up to plant
removal. Likewise, controlling the growing parameters during the final days or weeks
before cutting the plants down can influence the structural and elemental composition of
the biomass. In this regard, some research has reported that the elemental and structural
composition of energy crops fluctuates depending on the season and location [47,48]. Addi-
tionally, other research has shown that the soil salinity present where the crops are grown
can even influence nitrate and phosphate transport (and thus, the biomass’ chemical com-
position as well) [49]. Pretreatment measures, such as washing, have also been introduced;
these were able to decrease the ash-forming elements in other types of biomass. Researchers
have successfully tried this technique with crop residues from pepper plants [50]. That
work also reported a decrease in the chlorine (Cl) content. The same technique was tried on
tomato-crop biomass, leading to a 12% reduction in the ash content [32]. Complementary
to these alternatives, there is a report of micro-fungi being used to treat other types of
biomass (sugar cane bagasse and rice husks), which fixes a part of these elements and
results in some ash-content reduction, particularly the Cl content, which is quite interesting
in terms of solid fuels [51].

There were two possible criteria for this optimization (1) CO2 concentration or (2)
thermal combustion efficiency. The second was considered the most appropriate for
the present work. Additionally, it was important that the CO, NOX, and SO2 emission
levels did not exceed regional legislation limits [38]. Regarding the tomato-crop biomass
(100%) and the blended biomass, unacceptable combustion performance was observed
for some of the experimental configurations. This was reinforced by the corresponding
flue-gas temperature and CO2 levels recorded, variables that were also considered for
these biomasses.

The optimal fuel-rate configurations were 34.1, 34.1, 12.8, and 34.1 kg/h for the pine
pellets, olive pits, tomato-crop (100%), and blended biomass, respectively. The optimal
primary air supply was 0.026, 0.052, 0.026, and 0.026 m3/s for the same respective biomass
order as previously stated. The optimal secondary air supply was 0.051, 0.051, 0.016, and
0.087 m3/s. These optimal set-ups are also highlighted in Figures 5–9. It was observed
that a slightly lower efficiency with lower fuel rate input uses the same configuration for
the primary and secondary air supply. However, these configurations would be more
convenient as they would prevent the boiler from being activated too frequently during



Agronomy 2021, 11, 626 12 of 28

periods when the thermal requirements are lower than 100%. Furthermore, overly-frequent
ignitions/stops increase fuel consumption and noxious gas emissions [20]. For some
biomasses, the optimal set-up corresponded to the maximum fuel input, a point worth
considering.

5. Conclusions

From the experimental data, it can be stated that combining the three factors under
study (primary and secondary air, and fuel supply) significantly impacts combustion
performance. In several cases, the tendency of one of these factors varied according to
the combination of the other two. The role of O2 on C can be highlighted considering the
interaction between these factors. This has an impact both on combustion performance and
on toxic-gas emissions, as supported by the p-values estimated from the statistical analysis
we performed.

In addition, the boiler used in this work is designed mainly for commercial biomass
combustion (pine pellets or olive pits being the most widely used). Consequently, variations
in the combustion chamber design could be tested, which might increase the combustion
performance of the tomato-crop pellets (or the blend with almond prunings). These
variations could focus on the flow patterns of the flue gasses and/or the thermal isolation
capacity of the combustion chamber.

Selecting the proper boiler set-up is essential for optimizing the combustion perfor-
mance of each biomass type. For example, a comparison between the least and most
favorable set-ups found increases of 63.3, 65.2, 58.2, and 55.2% in thermal losses; 87.3, 87.5,
77.5, and 74.5% in CO emissions; 88.0, 89.0, and 77.1% in NOX emissions; and 99.3, 95.5,
and 62.4% in SO2 emissions for pine pellets, olive pits, tomato-crop biomass, and the latter
blended with almond prunings, respectively. These data refer to values re-estimated for
15% O2. Moreover, these were not the only increments observed—various configurations
had emission levels higher than those permitted by the relevant regional legislation [38].

Optimizing combustion performance is important for reducing fuel consumption,
which is relevant when it comes to lowering the cost of fuel for heating. At the same time,
the reduction in toxic-gas emissions is important for subsequent CO2 capture. This could
be captured from the CO2 generated from biomass combustion. Filtering processes would
be necessary to lower these toxic-gas emissions. The captured CO2 would then be used
for enrichment. Combining heating and CO2 enrichment has productivity benefits for the
crops grown in the greenhouse.

It should be noted that the optimal set-up for each biomass was slightly different. The
combustion efficiency of the tomato-crop/almond pruning biomass blend was slightly
better than the others tested, but the toxic-gas emissions were higher. The optimal set-up
for both these variables was comparable to those for the 100% tomato-crop biomass. This
observation is similar to that for the combustion properties (Section 2.1. and in previous
bibliographical work [15]). The elemental composition capable of fixing NOX and SO2 has
an influence on the corresponding emissions, as explained in Sections 1 and 3.3. By mixing
in almond prunings, it is possible to increase the proportion of these elements. With this
consideration in mind, two biomasses with different combustibility qualities were mixed.
As a result of this mixing, it was possible to increase the combustion performance of the
less suitable source. Moreover, the main combustion properties of this biomass could be
improved with additional pretreatments, such as washing with water.

The development of this alternative could provide an attractive option for increasing
the profitability and reducing the environmental impact of the intensive horticultural activ-
ity carried out in the area that the study focused on. Nevertheless, it could be applicable in
other areas where similar agricultural practices take place. This option also offers a novel
alternative for revalorizing other crop residues with similar properties in applications that
require thermal energy or a CO2 supply, provided they are located near the sites where the
agricultural residues are generated.
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Appendix A. Methodology, Additional Considerations

Appendix A.1. Boiler Internal Design
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Figure A1. Schematic of the boiler’s internal design.

Appendix A.2. Methods Applied for the Flue-Gas Measurements (Thermal Efficiency, CO2, CO,
NOX, and SO2)

Each measurement was taken after 15 min of stable working conditions. The parame-
ters analyzed were recorded for 5 min following the stable operation being achieved. An
example of a CO2 measurement has been plotted in Figure A2.
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Appendix B. Heating Efficiency Estimation

Appendix B.1. Discontinuous Experiments

Heating is performed by means of a water circuit. The various pipes for this circuit
are placed alongside the plants in the greenhouse. Figure A3 is a diagram corresponding
to this circuit. Water is pumped from the boiler through the circuit. The aim is to estimate
the combustion efficiency for the various configurations and biomass types. First, it is
necessary to quantify the heat transferred to the water in the circuit. A simpler method
would be to consider a mass/energy balance for periods when combustion takes place, and
only the water volume present in the boiler’s water tank is heated (with no water pumping).
Hence, the generated heat will only increase the temperature of this water (apart from the
thermal losses). The system efficiency can be estimated from the heat transference and the
amount of fuel combusted, using Equation (A1) for this calculation; where mH2O is the
mass of water (in the boiler’s water tank); cp H2O is the water’s calorific capacity; ∆Temp is
the temperature increment given at the beginning and end of the period considered for this
balance; “mfuel” is the mass of fuel supplied during this period; and HHV is the Higher
Heating Value.

h = mH2O· cpH2O· ∆Temp/(mfuel·HHV) (A1)

As soon as the heating begins, so does the pumping of the water through the circuit.
The water temperature evolution observed after one of these activations is plotted in Figure
A4. Here, the previously explained methodology was applied before starting the water
pump. One can observe several temperature fluctuations (relative maximum and minimum
values) for several minutes post-activation. From this observation, one can state that the
system behaves like a plug-flow reactor. The time elapsed between activation and the first
maximum observed at the boiler outlet (or beginning of the circuit) is useful for estimating
the flow of the recirculated stream (Equation (A2); the boiler tank volume is known). On the
other hand, it is possible to observe some delay between the first temperature maximum at
the beginning and end of this circuit. This time lag can be used to estimate the greenhouse’s
heating circuit volume with the previously estimated flow rate. The change in the flue-gas
temperature during this experiment is also plotted in Figure A5. This variable is useful for
checking the combustion status and stability.

q = V/t (A2)

Equation (A2)—q: flow; V: boiler deposit volume; t: time elapsed until observing the
relative maximum temperature.
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Figure A3. Diagram of the water circuit used for heating.
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Figure A4. Water temperature at the beginning and end of the greenhouse circuit over a period when some biomass
combustion was performed. The heating valve has also been plotted to identify the precise time when the heating was
performed.
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Appendix B.2. Estimation of the Combustion Efficiency at Any Moment

The boiler does not usually operate in the way explained in Appendix B.1. It is possible
to make a similar calculation for estimating the heat transferred to the interior greenhouse
environment under regular working conditions (when the water is pumped through this
circuit). Another experiment was performed to do this. First, the water contained in the
boiler’s water tank was heated to a set-point temperature. There is a three-way valve in
this circuit, so it is possible to recirculate the water without it being pumped through the
boiler. The circuit can be filled with hot water. After this, the delivery of the heat supply
can be avoided while allowing the hot water to recirculate through the circuit for some
time. This constitutes a pulse test. The temperature change of the stream coming off the
tank over time is plotted in Figure A6, following the methodology explained above. The
energy transference can be calculated because the system volume is known (as explained
previously in Appendix B.1.), and the temperature decrease is recorded.

Additionally, the energy transference was estimated for different water temperatures.
As expected, energy transference varies with temperature because it also depends on
the temperature gradient. The energy transference estimated with different water-circuit
temperature values is plotted in Figure A7, where “qgiven” is the energy transference from
the water circuit to the greenhouse environment and “Bg Temp” is the temperature at the
beginning of the circuit. The r2 was quite low. Nevertheless, some linear dependence can
still be identified. The first values observed after starting the experiment were discarded
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for this regression. The system behaves like a plug-flow reactor (as discussed before).
Because of this, considering these values as representative of the rest of the water circuit
is not recommended. The energy transference was −2.85 kW for the highest temperature
observed, with the entire water-circuit volume stabilized at 25 ◦C. This value was the
maximum possible following the methodology described above.

The normal working conditions are between 40–60 ◦C. These values are higher than
the maximum consideration for the estimated regression (25 ◦C). The water temperature
recorded was 56.42 ◦C, i.e., with on-demand heating and operating under regular working
conditions. The heat transference at this temperature was −21.00 kW (from the water
circuit to the greenhouse, estimated using this extrapolation). The data corresponding
to the water-circuit temperature during the experiments for this estimation is plotted
in Figure A8. Meanwhile, the thermal efficiency was 42.44% at this water temperature
(the configuration considered optimal for pine pellets). From this, a relatively important
extrapolation was made. The temperature value was quite different from the higher one
considered for the linear regression. One could repeat this experiment in an attempt to
achieve temperature values closer to the working conditions. A possible alternative would
be to heat the entire circuit volume with hot water (both the boiler tank and the greenhouse
circuit) then start pumping the water only through the greenhouse circuit (avoiding the
water pumping through the boiler tank). Higher water temperatures should be achieved
with this alternative methodology.
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Figure A6. Experiment for estimating the energy transference from the water circuit to the greenhouse environment. The
temperature change at the beginning and at the end of this circuit, and the heating valve status (100% implies that the
heating is on-demand).
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ment, and the temperature at the beginning of the water circuit.
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Figure A8. A heating experiment to estimate the combustion efficiency using continuous data (considering also the heat
transference from the greenhouse circuit to its environment).

Appendix C. Results and Discussion—Additional Considerations

Appendix C.1. Flue-Gas Temperature and [CO2]

The values observed for these parameters are presented in Figure 5. Focusing on each
biomass type, the combination of air/fuel rates and turbulence had an important impact
on this variable. The fuel rate is the clearest relationship observed, the higher this rate,
the higher the temperature. Regarding the primary air supply, the temperature increased
along with this factor. The secondary air supply was not so important; this factor’s impact
was less on some configurations.

The highest values observed were for the same configurations using pine pellets.
There were particularly low values for some configurations, as was the case using the
tomato-crop biomass, and the blend of this with almond prunings. Here, the main stages
of combustion might have been dehydration and/or devolatilization (the stages occurring
at lower temperatures). The secondary air supply had more impact on the configurations
for these two biomasses.

With regard to CO2, the values observed for these parameters are presented in Figure 5.
Here, there seems to be a relationship between the fuel supply and the CO2 concentration:
the higher the first is, the higher the second. This increase was more evident in the case
of pine pellets and olive pits. Conversely, this relationship was less clear for the other
two biomasses. Concerning the primary air supply, a relationship was only observed
for pine pellets. The higher this rate, the higher the CO2 concentration. Regarding the
secondary air supply, this was the most important impact observed for pine pellets for
every set-up tested. This tendency was only observed for the lowest primary airflow using
the blend composed of tomato-crop residues and almond prunings. In this case, the CO2
concentration decreased slightly along with the secondary air supply rate. The CO2 levels
were higher when using pine pellets for all four cases tested, except for a few set-ups tested
with olive pits.

Appendix C.2. Thermal and Heating Efficiency

The values observed for these parameters are presented in Figure 6. Concerning
thermal efficiency, a certain tendency was observed for this variable to increase along with
the fuel rate. The tendency was clearer in the case of pine pellets and olive pits. It was
also more evident for those configurations with a lower primary air supply. Conversely,
thermal losses increased with this factor when maintaining the fuel rate and secondary
air supply. This trend was more marked in the case of the tomato-crop biomass and the
blend of this with almond prunings. The secondary air supply had a varying influence
depending on the other parameters and the biomass used. The clearest influence was that
observed for pine pellets and olive pits, especially with the lower fuel feed rates. Some
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influence was observed for the tomato-crop biomass and the blend. The most evident
influence corresponded to the lowest air supply and fuel rate.

Regarding heating efficiency, those configurations with values higher than 90% were
not considered. This is because it is not plausible to surpass this value under normal
conditions. The range observed was quite broad. The values corresponding to pine pellets
were the highest. The values observed for the blend were slightly higher than those for
the 100% tomato-crop biomass (yet significantly lower than those corresponding to the
pine pellets). Conversely, the relationship between the heat transference and the thermal
gradient for each biomass type, and the configuration tested, could be interesting (the
transference from the flue gas to the water in the tank).

Appendix C.3. [CO], [NOX], and [SO2] in the Flue Gases

The CO, NOX, and SO2 emission data is presented in Figures 7–9. Concerning CO
emissions, a moderate influence was observed when using pine pellets as the fuel supply.
The lowest values were obtained at the highest fuel rate. This same trend was observed
for the blend, although, in this case, the difference was more significant. Likewise, for
the other biomasses studied, the only configurations that did not surpass the maximum
were observed at the higher fuel rate. Regarding the primary air supply, a less important
influence was observed with pine pellets. Its influence was more important for the blend,
although this also depended on the other parameters. The configurations for which the
values did not surpass the analyzer maximum at the lowest primary air supply were for
the olive-pit and tomato-crop (100%) biomasses. The secondary air supply had a varying
influence depending on the other parameters. Its influence was relatively stronger in the
case of the blend.

Regarding NOX emissions, the fuel supply rate had an almost negligible influence,
and was only barely significant in the case of the blend, where a moderate increase was
observed at the highest fuel supply. The influence of the primary air supply was also
moderate, a little more important for the tomato-crop biomass (100%) and the blend. The
secondary air supply did affect the NOX levels in some cases. Nonetheless, this influence
varied depending on the other parameters. As in the case of CO, the legislative limit values
varied depending on the configuration tested because these are estimated considering
0% O2. The levels observed for pine pellets were the lowest, while the corresponding
levels observed for olive pits were slightly higher. Conversely, and depending on the
set-up, higher levels were obtained for the tomato-crop biomass (100%) and for the blend.
Furthermore, some of the lower values observed for the blend were in a similar range to
some of the highest values observed for olive pits.

Regarding SO2 emissions, the fuel supply rate barely had an influence. Slightly lower
values were observed at the highest fuel supply for the tomato-crop biomass and the blend.
In terms of the primary and secondary air supplies, their influence depended on the other
parameters. Despite this dependence being variable, the difference observed between the
highest and lower levels obtained was quite important.

Appendix C.4. Statistical Analysis

The ANOVA tables estimated for the various parameters studied (flue-gas temper-
ature, thermal efficiency, [CO], [NOX], and [SO2]) are combined in Table A1. Only those
factors that have a relevant statistical influence (p-value< 0.05) are included in this table.
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Table A1. Analysis of Variance for the variables studied (Flue-gas temperature, thermal efficiency, [CO], [NOX], and [SO2])-
Type III Sums of Squares.

Parameter Source Sum of Squares Df Mean Square F-Ratio P-Value

Flue-gas temperature

MAIN EFFECTS

A: Biomass type 4324.19 3 1441.4 17.73 0.0000

B: Fuel rate 796.175 1 796.175 9.79 0.0053

C: Primary air supply 516.884 1 516.884 6.36 0.0203

RESIDUAL 1626.22 20 81.3111

TOTAL (CORRECTED) 7910.74 31

Thermal efficiency

MAIN EFFECTS

A: Biomass type 6796.97 3 2265.66 41.48 0.0000

B: Fuel rate 1006.88 1 1006.88 18.43 0.0004

C: Primary air supply 2040.01 1 2040.01 37.35 0.0000

D: Secondary air supply 500.07 1 500.07 9.16 0.0067

INTERACTIONS

BC 487.5 1 487.5 8.92 0.0073

RESIDUAL 1092.45 20 54.6224

TOTAL (CORRECTED) 11,966.3 31

[CO2]

MAIN EFFECTS

A: Biomass type 120.535 3 40.1783 29.95 0.0000

B: Fuel rate 71.4013 1 71.4013 53.22 0.0000

C: Primary air supply 18.0 1 18.0 13.42 0.0015

D: Secondary air supply 6.48 1 6.48 4.83 0.0399

RESIDUAL 26.8325 20 1.34163

TOTAL (CORRECTED) 254.82 31

[CO]

MAIN EFFECTS

A: Biomass type 4324.19 3 1441.4 20.41 0.0000

B: Fuel rate 796.175 1 796.175 11.27 0.0037

C: Primary air supply 516.884 1 516.884 7.32 0.0150

RESIDUAL 1200.87 17 70.6393

TOTAL (CORRECTED) 7910.74 31

[NOX]

MAIN EFFECTS

A: Biomass type 5.05303 3 1.68434 12.38 0.0002

D: Secondary air supply 0.618828 1 0.618828 4.55 0.0478

INTERACTIONS

AC 2.20263 3 0.73421 5.40 0.0085

RESIDUAL 2.31231 17 0.136018

TOTAL (CORRECTED) 10.588 31

[SO2]

MAIN EFFECTS

A: Biomass type 304.908 3 101.636 24.59 0.0000

INTERACTIONS

AC 127.58 3 42.5268 10.29 0.0003

RESIDUAL 82.6784 20 4.13392

TOTAL (CORRECTED) 529.772 31

Only the values relevant to factors with statistical influence have been included (p-Value < 0.05). All F-ratios are based on the residual mean
square error.
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Appendix C.5. Optimal Configurations

The optimal configurations (combinations between the fuel rate, and primary and
secondary air supplies) found for each biomass type studied have been collected in Figure
A9. The variables observed for these configurations are collected in Figures A10 and A11.
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Figure A9. Configurations for which the best combustion performance was found for each biomass type studied.
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Figure A10. Thermal losses, flue-gas temperature, and CO2 using the optimal configuration proposed.
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Appendix D. Graphical Comparison with the Bibliography Results

The results from various works in the bibliography have been collected and plotted
together. These values are collected in Figure A12, Tables A2 and A3.

Figure A12. Toxic emission levels (CO, NOX, and SO2), as reported in previous bibliographical works studying several
biomass types and combustion device thermal outputs (see Tables A2 and A3).



Agronomy 2021, 11, 626 23 of 28

Table A2. Abbreviations used on the Y-axis of Figure A12 and the biomass type studied in the
various works reviewed.

Reference Biomass Abbreviation

[36]
Wood pellets WdP; [36]

Tomato pomace TmtP; [36]

Grape maize GMz; [36]

[27]

Common reed CRd; [27]

Sorghum Sorghum Srg; [27]

Forest pellets FrP; [27]

Tomato pomace TmP; [27]

Almond shells AlS; [27]

Cardoon Crd; [27]

Almond prunings AlP; [27]

Almond shell peel AlS; [27]

Olive stones OlST; [27]

[52]
Pine bark PiB; [52]

Stem wood Stm; [52]

[40]

Almond shells Ash; [40]

Rice husks RcH; [40]

Straw Str; [40]

Wine pomace WnP; [40]

Wood pellets Wod; [40]

[28]

Willow Wll; [28]

Red canary grass RCG; [28]

Switchgrass (Fall) SwF; [28]

Switchgrass (Spring) SwS; [28]

Miscanthus (Fall) McF; [28]

Miscanthus (Spring) McS; [28]

[39]

Pine (1) Pn1; [39]

Pine (2) Pn2; [39]

Cork Crk; [39]

Olive wood OlW; [39]

Olive prunings OlP; [39]

[53] Poplar woodchips PpW; [53]

[29]

Dried distilled grain DDG; [29]

Dried distilled grain +
Municipal waste solids

(90–10%)
D91; [29]

Dried distilled grain +
Municipal waste solids

(80–20%)
D82; [29]

Dried distilled grain +
Municipal waste solids

(50–50%)
D55; [29]

Dried distilled grain +
Municipal waste solids

(30–70%)
D37; [29]
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Table A2. Cont.

Reference Biomass Abbreviation

[54]

Wood Wod; [54]

Sunflower stalks SfH; [54]

Straw Str; [54]

Buckwheat shells BcS; [54]

Cornstalk CrS; [54]

Grain screenings GrS; [54]

Sewage sludge SwS; [54]

[30]

Wood Wd; [30]

Peat Pt; [30]

Reed canary grass RC; [30]

Citrus pectin waste CPW; [30]

Sunflower husk SF; [30]

Straw pellets SP; [30]

Apple pomace waste AP; [55]

[55]

Wood Wd; [55]

Peat Pt; [55]

Reed canary grass RCG; [55]

Citrus pectin waste CPW; [55]

Sunflower husks SF; [55]

Straw pellets 1 S1; [55]

Straw pellets 2 S2; [55]

Table A3. CO, NOX, and SO2 levels, and the thermal efficiency reported in the literature for biomass combustion.

Reference Equipment
Thermal
Output
(KW)

Biomass [CO] 0% O2
(mg/Nm3)

[NOX] 0%
O2

(mg/Nm3)

[SO2] 0%
O2

(mg/Nm3)
Efficiency (%)

[36] Pellet boiler 12.0

Wood pellets 829.3 633.9 62.9

Tomato pomace 1186.4 2338.9 908.0

Grape maize 1512.4 2491.9 491.3

[27] Pellet boiler 12.0

Common reed 2358.9 84.0

Sorghum 8562.3 85.3

Forest pellets 11,398.9 90.5

Tomato pomace 6006.3 91.0

Almond shells 712.5 85.0

Cardoon 5404.0 91.6

Almond prunings 2804.9 88.3

Almond shell peel 60,755.8 78.5

Olive stones 36,798.0 89.7

[52] Small combustion
device

50.0
Pine bark 1476.9 8.6 12.3

Stem wood 6252.4 93.1 9.6



Agronomy 2021, 11, 626 25 of 28

Table A3. Cont.

Reference Equipment
Thermal
Output
(KW)

Biomass [CO] 0% O2
(mg/Nm3)

[NOX] 0%
O2

(mg/Nm3)

[SO2] 0%
O2

(mg/Nm3)
Efficiency (%)

[40] Tubular furnace (Lab.
Scale)

Almond shells 26,125.0 992.8

Rice husks 13,062.5 992.8

Straw 6531.3 2978.3

Wine pomace 31,350.0 2382.6

Wood pellets 92,205.9 3503.8

[28] Biomass boiler 29.0

Willow 8917.1 4786.4

Red canary grass 4246.4 4042.1 1218.0

Switchgrass (Fall) 7336.3 6235.1 1073.6

Switchgrass (Spring) 4641.4 6228.3 832.0

Miscanthus (Fall) 8459.4 6549.1 583.3

Miscanthus (Spring) 11,496.8 5785.4 206.1

[39] Pellet-fired boiler 22.0

Pine (1)

Pine (2) 599.2 273.2

Cork 623.2 327.9

Olive wood 886.8 819.7

Olive prunings 2396.8 655.8

[53] Fired-bed boiler 140.0 Poplar woodchips 2876.1 1694.1 94.0

[29]
Fluidized bed

combustor; 6 Kg/h

Dried distilled grain

Dried distilled grain +
Municipal waste solids

(90–10%)
592.5 2302.8 583.4

Dried distilled grain +
Municipal waste solids

(80–20%)
3228.0 64.0

Dried distilled grain +
Municipal waste solids

(50–50%)
3891.0 1901.0 221.8

Dried distilled grain +
Municipal waste solids

(30–70%)
2120.1 201.9

[54] Pellet boiler 35.0

Wood 3732.1 1063.7 159.5

Sunflower stalks 2178.8 3257.2 167.1

Straw 5925.4 526.6 3.6

Buckwheat shells 10,099.6 7886.3 707.9

Corn stalk 196.8 12.3 0.0

Grain screenings 16.5 10.6 1.9

Sewage sludge 141.0 93.8 1.8

[30] Multi-fuel boiler,
Reduced Load

40.0

Wood 263.3 27.1 62.2 93.0

Peat 36,376.6 527.8 143.3 94.1

Reed canary grass 91.7

Citrus pectin waste 658.1 250.1 89.9

Sunflower husks 89.1

Straw pellets 7195.1 546.8 681.7 89.8

Apple pomace waste 704.2 644.7 91.0
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Table A3. Cont.

Reference Equipment
Thermal
Output
(KW)

Biomass [CO] 0% O2
(mg/Nm3)

[NOX] 0%
O2

(mg/Nm3)

[SO2] 0%
O2

(mg/Nm3)
Efficiency (%)

[55] Multi-fuel boiler,
Reduced Load

40.0

Wood 1247.1 654.3

Peat 4114.2 967.3 368.7 90.0

Reed canary grass 1299.1 1002.9 89.8

Citrus pectin waste 81.0 509.9 584.4 89.7

Sunflower husks 424.2 166.8 0.0 89.0

Straw pellets 1 289.4 609.4 88.9

Straw pellets 2 903.6 367.2 274.2 88.0
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