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Abstract: Genomic selection has many applications within individual programs. Here, we discuss
the benefits of forming a GS-based breeding consortium (GSC) among programs within the context
of a recently formed a GSC of soft red winter wheat breeding programs. The GSC will genotype lines
from each member breeding program (MBP) and conduct cooperative phenotyping. The primary
GSC benefit is that each MBP can use GS to predict the local and broad value of all germplasm from
all MBPs including lines in the early stages of testing, thus increasing the effective size of each MBP
without significant new investment. We identified eight breeding aspects that are essential to GSC
success and analyzed how our GSC fits those criteria. We identified a core of >5700 related lines from
the MBPs that can serve in training populations. Germplasm from each MBP provided breeding value
to other MBPs and program-specific adaption was low. GS accuracy was acceptable within programs
but was low between programs when using training populations with little testing connectivity, but
increased when using data from trials with high testing connectivity between MBPs. In response we
initiated sparse-testing with a germplasm sharing scheme utilizing family relationship to connect our
phenotyping of early-stage lines.

Keywords: genomic selection; plant breeding; wheat

1. Introduction

Public breeding programs serve society by releasing improved cultivars, developing
parent lines, conducting breeding and genetic research, and training students. Public-based
breeding programs are small compared to programs for major crops conducted by private
companies where breeders working on the same crop share all data, germplasm, databases,
and marker platforms. In contrast, public programs cooperate primarily by testing a
few advanced elite lines in cooperative trials that assess local and broad adaptation of
the entries, though these benefits are applied to only a handful of the elite lines. Public
breeders generally have no knowledge or access to the wealth of diversity and genetic
potential that reside among the lines in the earlier stages of evaluation in other breeding
programs. This can significantly limit the impact of public programs.

The rapid development of genomic selection [1] in plant breeding, high-throughput
genotyping, public databases, and advanced analytical models enable us to look at in-
dividual breeding programs in new ways [2–4]. They also enable us to envision how
these technologies can extend the interactions among programs and leverage investments
beyond cooperative testing. We recently formed a GS-based breeding consortium (GSC)
involving soft winter wheat breeding programs at The Ohio State University (OH), Purdue
University (IN), the University of Kentucky (KY), and the University of Illinois Urbana-
Champaign (IL). Our GSC was inspired in part from the Sungrains project involving six soft
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wheat breeding programs in the southern US (http://www.sungrains.lsu.edu/ accessed
on 2 September 2021). Our objectives are to outline the benefits and rationale for a GSC,
criteria needed for a successful GSC, and to present analyses supporting this approach in
our nascent consortium.

2. Materials and Methods
2.1. Diversity Analysis

We genotyped 8943 lines from the four member breeding programs (MBP) using geno-
typing by sequencing (GBS). The SNP calling and filtering was conducted using the meth-
ods of Ward et al. [5]. Linkage disequilibrium pruning was performed using the PLINK
1.9 (www.cog-genomics.org/plink/1.9/, accessed on 2 August 2021) indep-pairwise com-
mand with 100 kb window size, 10 step size, and 0.90 r2 threshold as parameters. The
filtering resulted to 6399 SNPs. The SNP data was used in a principal component analysis
using TASSEL (Trait Analysis by aSSociation, Evolution and Linkage; [6]) and plotted the
first two principal components using the ggplot2 package [7] in R (R Core Team, 2020). We
did an Fst analysis [8] to estimate the differentiation of the lines from the four programs
using the hierfstat package [9] in R.

2.2. GS Analyses Using Data from Breeding Trials

We obtained genotypic and phenotypic data for yield, test weight, and FHB data on
lines from each MBP (Table 1). The data was unbalanced. Within a program we obtained
BLUES using the following model

Yijk = u + gi + tj + rk + grik + eijk (1)

where Yijk is the phenotype of the ith lines, in the jth test, in the kth year. u is the mean, gi
the effect of the ith genotype, tj the effect of the jth trial, rk the effect of the kth year, grik the
interaction of the ith genotype with the kth year, and eijk the error. Only entry means were
available from some the programs so we first obtained means over replications for the data
from the other programs prior to the analysis. Genotype and trial effects were considered
fixed effects. GS analyses were performed using (1) data from just one MBP with 10-fold
cross-validation, and (2) using data from one MBP to predict the value of lines that were
phenotyped within another MBP. The correlation of these predicted value and BLUES was
used to estimate the accuracy of GS between MBPs.

Table 1. Number of lines used as training population for genomic predictions and cross-validation
for each trait collected from the stage-gate trails of each breeding programs.

Trait
Source of Lines

IL IN KY OH

Yield 1210 390 2067 2834
Test Weight 1204 390 1795 1989
FHB Index 477 377 247 2804

Years of trials 2017–2020 2018–2020 2015–2020 2013–2020

2.3. Analysis of Data from Cooperative Trials

We obtained entry means from evaluation of 264 genotyped lines assessed for yield
and test weight in the 5-State cooperative trials from 2012 to 2020. The 5-State trial also
contained lines and test site from non-MBP: that data was deleted from the analysis. We
obtained BLUEs over multiple testing states for all lines using the following model.

Yijkl = u + gi + sj + l(s)ik + rl + gsij + gyil + pyjl + eijkl (2)

where Yijk is the phenotype of the ith lines, in the jth testing state, in the kth location and
the lth year. u is the mean, gi the effect of the ith genotype, sj the effect of the jth testing

http://www.sungrains.lsu.edu/
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state, l(s)jk is the effect of the kth location within the jth testing state, rl is the effect of the lth
year, gsij the interaction of the ith genotype with the jth testing state, gril is the interaction
of the ith genotype with the lth year, srjl is the interaction of the jth testing state with the
lth year, and eijkl the error. We also obtained BLUES using data from just one testing state
using the model:

Yijkl = u + gi + lj + rk + glij + gyik + eijk (3)

where Yijk is the phenotype of the ith lines, in the jth location, in the kth year. u is the
mean, gi the effect of the ith genotype, lj the effect of the jth testing location, rk is the effect
of the kth year, glij the interaction of the ith genotype with the jth testing location, gril is
the interaction of the ith genotype with the kth year, and eijk the error. We also obtained
entry means from evaluation of 453 genotyped lines evaluated for resistance to FHB in
the P+NUWWSN cooperative trials from 2012 to 2020. The P+NUWWSN trials contained
lines and test site from non-MBPs: that data was deleted from the analysis. BLUES were
obtained using Equations (2) and (3). The BLUES were obtained using Proc mixed in SAS
and the lme4 package [10] in R.

We did three GS analyses using the BLUES from the cooperative trials. In one analysis,
termed the “3->1” analysis, we used BLUES derived from the analysis of data from three
states using Equation (2) in the training population to obtain predicted values that were
then correlated to the BLUEs from the 4th program. In the “1->3” analysis, we used the
BLUEs from one state as the training population to obtain predicted values that were
then correlated to the BLUES obtained over the other three states. In what we term the
“1->1”, the BLUEs from one state are used as the training populations to obtain predicted
values that were then correlated to the BLUES from another state. All predicted value were
generated using the BGLR package [11] in R.

3. Rationale for a GS Consortium

Developing a new cultivar requires assessing many lines to identify one that is ac-
ceptable for all targeted traits. There is an axiom that “breeding is a numbers game”. The
validity of this axiom depends on if you are applying it to short or long terms breeding
goals and whether you are assessing genetic gain, gain per season, gain per dollar spent,
or the probability of attaining a new cultivar [12]. If the goal is to develop a new cultivar,
from a certain population, in a short time frame, then the axiom is quite valid. A primary
rationale of the GSC is to effectively increase the size and impact of our programs without
greatly increasing our investment.

Evaluating more lines from a population increases the probability of identifying a new
variety and presents the opportunity to increase selection intensity. When traits and the
genes controlling them are independent then the probability that a new cultivar (Pnc) will
exist in a population is

Pnc =
t

∏
i=1

pi (4)

where pi is the probability that a line in the population has an acceptable value for the ith
trait of t independent traits. The number of lines that must be evaluated (N) to have a
particular probability (Pe) that one line suited to be a new cultivar will be in that evaluation
is estimated as [12]:

N =
ln(1 − Pe)

ln(1 − Pnc)
(5)

A breeder must either increase Pnc, N, or both if they want to increase Pe. There
are many strategies to increase Pnc such as increasing the rate of genetic gain, selecting
better parents, and using molecular breeding to select individuals prior to evaluations. All
strategies should be considered. Regardless of Pnc, the larger the evaluation (N), the greater
Pe becomes, though with diminishing returns (Figure 1). Each of the four MBPs in our GSC
evaluates an average of 900 stage-1 lines per year. If we assume a Pnc of 0.001, then each
breeder has a Pe of 0.59 by evaluating their 900 lines.
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Figure 1. The probability (Pe) that at least one line in a trial of size N is acceptable as a new cultivar
given that the probability of a new cultivar (Pnc) ranges from 1/2000 to 1/500.

It is likely unwise and inefficient to greatly increase N within a single public breeding
program given the cost of phenotyping and the diminished returns (Figure. 1). Our GSC
though allows each breeder to use GS to predict the value of the 2700 stage-1 lines from
the other three MBP resulting in an effective N of 3600 and a Pe of 0.97. The Pnc can be
small when attempting to attain acceptable trait values for yield, agronomics, resistance to
multiple pests, and quality such that N may need to be in the 2000–4000 range to attain a
Pe > 0.9, an N that our GSC provides.

Selection intensity (k) also increases as N increases, though also with diminishing
returns (Figure 2). Each MBP advances and average of 215 of their 900 lines to stage-2,
providing a k = 1.297. Selecting 215 of 3600 lines from the entire GSC produces a k of 1.980,
a 53% increase compared no GSC. If a breeder selects 20 900 lines as parents, then k = 2.233
while selecting 20 of the 3600 GSC lines produces k = 2.849, a 28% increase compared to
no GSC.
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Increasing N within public programs by investing funds to phenotype more lines is
difficult due to limited funding and is likely inefficient in terms due to the diminishing
returns in Pnc and k (Figures 1 and 2). An alternative to increased phenotyping is to assess a
large number of lines using GS as genotyping is often less expensive than phenotyping [2].
Funding genotyping can also be problematic within a public program. The four MBP in
our GSC were already genotyping all their new breeding lines prior to forming the GSC so
genotyping was not a new expense required of the MBPs. Borrenpohl et al. [13] presented
evidence that GS could replace phenotyping of stage-1 lines such that the money saved
by not conducting a stage-1 trial could be used to genotype lines. Thus, the genotyping
required for a GSC is not necessarily an extra expense and could even save money.

The GSC concept allows a breeder to leverage their current investment to effectively
increase the size of their selection population without much extra investment. This can in-
crease Pnc, k, and gain per unit of investment. A GSC converts separate breeding programs
into one large cooperative program allowing each breeder to assess the local and broad
value of all lines from all breeders in. This extensive cooperation among public programs
is now feasible due to the low cost of genotyping and the proven success of GS.

There are other benefits to a GSC. GS could be used to predict the value of all lines from
all breeders, in all phenotyping environments, and over all environments, without actually
phenotyping all lines in all environments. This is especially beneficial when applied to
lines in the early stages of evaluation of each MBP where the population size is large and
there is maximum genetic variation. A breeder can also get the predicted value of their
lines for traits they did not phenotype when another MBP phenotypes for that trait.

A GSC offers benefits for genotyping. One condition for a GSC to operate is that all
MBP must genotype their lines with the same marker system. Samples for genotyping can
be consolidated within a GSC and result in volume discount and a lower genotyping cost
per sample. The use of a common genotyping platform across all members also facilitates
analyses of the diversity within and across the MBPs. The GSC also presents unique
opportunities for training graduate students and learning from each MBP.

4. Requirements for a Successful GSC

The general operating plan for a GSC is to genotype all new breeding lines from
each MBP prior to field testing, and to distribute the lines among the MBPs for testing,
predictions, and selection. The GS models would be trained using phenotypic data from
past and current field trials associated with the product development phase of each MBP.
While it may be desirable to integrate all aspects of the MBPs, this article focuses on
integrating the product development phase involving the evaluation of new lines.

There are many factors that will affect the success of a GSC. Some factors are related
to management and administrative (see items I–M below). These are not trivial, but they
will not be discussed in this article. Items A–H are related to principals of breeding and GS.
We will discuss each within the context of our recently formed GSC.

A. Germplasm among the member programs must be related
B. Shared breeding goals among the members
C. Germplasm from each member must offers value to the other members
D. GS must be effective for target traits and populations
E. Development of optimal breeding and testing schemes to enhance predictions
F. A common, affordable marker platform
G. A common database for storing phenotypic and genotypic data
H. Ability to accurately phenotype for target traits
I. Communication among members
J. Skills in GS analyses
K. Coordinator for organizing samples, data files, and for executing analyses within

and across programs
L. Ability of members to fund genotyping
M. Ability to share germplasm
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A. The elite lines in the cultivar development portion of each MBP must be related to
one another to obtain meaningful GS predictions [14–16]. The degree of relatedness also
affects what size training population (TP) is required [5]. Bassi et al. [17] estimated that to
attain a prediction accuracy of 0.5 required a TP size of at least 50 when selection candidates
are full sibs of individuals in the TP, at least 100 for half-sibs, and at least 1000 for more
distant relationships. In simulations of maize biparental populations, Hickey et al. [18]
reported that a TP between 400 and 1000 individuals was required to achieve prediction
accuracies above 0.6 when half-sib F2 families were used as the TP to predict phenotypes
in a target F2 population. Utilizing a TP from unrelated biparental populations produced
poor prediction accuracy unless >4000 phenotypes were used).

We used GBS to genotyped 8943 recent and historical germplasm accessions from the
four MBPs of our GSC. The principal components graph (Figure 3) indicates considerable
diversity and some structure among the lines of the four MBPs. There is also considerable
relatedness as 5745 (64%) of the lines are within 1.25 standard deviations from the origin
in Figure 3: this includes 35% of the lines from IL, 98% of the lines from IN, 43% of the
lines from KY, and 77% of the lines from OH. The analysis of Fst values also suggest that
the germplasm from the MBPs is fairly related especially lines from IL and OH, IN and
OH, and KY and OH. (Table 2). Producing a large TP is a benefit of the GSC. And thehe
5745 centralized accessions can serve as a large and suitable TP for predictions within and
between MBPs and optimized TPs can be derived from this set [18].
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Table 2. Fst values among the breeding lines of four soft red winter wheat programs: IL, IN, KY,
and OH.

IL IN KY OH

IL 0.15 0.19 0.09

IN 0.15 0.18 0.07

KY 0.19 0.18 0.10

OH 0.09 0.07 0.10

The general relatedness among the four MBPs is not surprising as these MBP have
participated in cooperative trials of each other’s germplasm and exchanged parents for
decades. A similar relationship could arise among programs that acquire much of their
germplasm and parents from a common source, such as the Consultive Group for Interna-
tional Agriculture Research (CGIAR) institutes. This is a common practice among National
breeding programs in the developing world.

B. Each member of the GSC should target the same primary traits in their product
profile. The four MBP in our GSC share the primary goals of improving grain yield,
test weight, and resistance to Fusarium Head Blight (FHB) cause by the fungus Fusarium
graminearum. In addition, the four MBP have similar target values for maturity and
plant height.

C. It is vital that the germplasm of each MBP of the GSC offers value to the other MBPs.
It is important to analyze the value of germplasm among the MBPs and the genotype x
environment interaction (GEI) pattern among lines and MBP environments to assess the
degree of specific adaptation of each MBP’s germplasm. We assessed the GEI pattern and
value of the germplasm from each MBP to the other MBPs in an analysis of data from
cooperative trials.

The trait averages show that lines from one MBP perform reasonably well when tested
in the other MBP’s environments (Table 3) indicating that the germplasm of each MBP
offers value to the others. This is particularly true for yield where the highest average
yielding lines in IN, KY, and OH were from a different MBP. The average GEI values also
indicate that there is not a pronounced MBP-specific adaptation of one MBP’s line to their
program’s environments.

Table 3. Average trait values and genotype by testing program interaction (GPI) of lines evaluated in a cooperative trial
conducted by breeding programs located in four states (IL, IN, KY, and OH). The results are parsed by the source of the lines
and by where the lines were tested. Yield and test weight values come from analysis of the 5-State trial while the Fusarium
Head Blight (FHB) values from analysis of the P+NUWWSN trials.

Yield Test Weight FHB Index

Source of Lines State of Testing Avg. (bu/ac) GPI Avg. (1 bs/bu) GPI Avg. (%) GPI

IL 84.1 0.55 60.2 −0.004 15.3 −0.389
IN IL 80.9 0.36 58.9 0.072 24.2 −0.124
KY IL 77.7 −0.50 60.1 −0.016 27.4 0.119
OH IL 80.3 −0.88 60.2 −0.033 31.7 0.310

IL IN 84.6 1.09 60.6 0.085 2.5 0.147
IN IN 78.8 −0.34 58.7 0.037 6.8 −0.075
KY IN 77.4 −0.18 59.4 −0.016 4.6 −0.034
OH IN 82.7 −0.12 58.9 −0.058 11.9 0.048

IL KY 70.1 −2.20 56.5 −0.142 13.9 0.322
IN KY 75.9 0.37 54.7 −0.119 20.1 0.379
KY KY 74.5 0.59 55.8 −0.014 19.4 0.001
OH KY 76.5 1.09 55.0 0.251 19.6 −0.560

IL OH 76.4 0.32 58.0 0.041 17.1 −0.063
IN OH 72.3 −0.32 55.8 −0.005 20.7 −0.146
KY OH 73.1 0.13 57.0 0.022 24.3 −0.076
OH OH 76.3 0.02 56.1 −0.135 28.5 0.213
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D. The accuracy of GS must be sufficient to warrant its use for the target traits of the
GSC. Published results of static TPs show that GS can be effective in soft red winter wheat
for our primary traits. The prediction accuracy for grain yield has ranged from 0.20 to 0.65,
from 0.37 to 0.62 for FHB resistance, and from 0.30 to 0.66 for test weight (Table 4).

Table 4. Prediction accuracy of genomic selection for key soft red winter wheat traits. These values
were obtained by cross-validation within defined training populations. The superscripts identify the
associated reference.

Trait GS Prediction Accuracy

Grain Yield 0.20 [19], 0.33 [20], 0.34 [20], 0.35 [13], 0.37 [20],
0.37 [5], 0.45 [21], 0.62 [22], 0.64 [23]

FHB Resistance 0.37 [21], 0.39 [24], 0,47 [25], 0.49 [13], 0.49 [13],
0.52 [26], 0.61 [27], 0.62 [25]

Test Weight 0.30 [13], 0.50 [20], 0.50 [28], 0.56 [19], 0.56 [23],
0.60 [5], 0.53 [22],0.66 [20]

Heading Date 0.43 [29], 0.44 [27], 0.49 [29], 0.54 [5], 0.56 [20],
0.58 [20], 0.71 [23], 0.72 [13], 0.75 [20], 0.75 [19]

Height 0.50 [13], 0.54 [20], 0.57 [5], 0.73 [23], 0.73 [20],
0.74 [19], 0.83 [20]

Flour Yield 0.49 [20], 0.56 [28], 0.62 [21], 0.76 [19]
Flour Softness 0.27 [28], 0.37 [20], 0.37 [28], 0.51 [21],

There are several GS predictions of particular interest within a GSC: (1) breeder A
predicting the value of their own lines in their own environments, (2) breeder A predicting
the value of lines from the other MBP in breeder A’s environments, and (3) breeder A
predicting the value of their own lines in other MBP environments The values in Table 4
are encouraging but what is more relevant is the accuracy of a GS model that uses the
accumulating phenotypic data from the annual successive stage trials of a breeding trials as
the TP, referred to as stage-gate trials. Several studies have shown that GS provides useful
prediction with TP whose phenotypes come from unbalanced designs that commonly
occur within breeding programs [5,13,25,30–35]. We assessed GS accuracy using the yield,
test weight, and FHB resistance data from the breeding trials of each MBP (Table 5). The
cross-validation estimates of GS accuracy within a program (diagonal elements in Table 5)
were similar to the GS accuracy as obtained using the static TPs (Table 4). These results
show GS can be effective within a program using stage-gate data.

The accuracy of GS though was quite low when using the stage-gate data from one
MBP to predict the phenotypes of lines in another MBP, (off diagonal elements, Table 5).
The low GS accuracy could arise from (1) low genetic relatedness among the lines in the
programs, (2) each MBP may represent a unique environment which promotes large GEI,
or (3) too few lines are tested over all environments to effectively connect the data among
programs (e.g., low connectivity). Our analysis of diversity (Figure 3) and GEI (Table 3)
suggest that the diversity and GEI in the data are unlikely to be major issues, leaving a lack
of data connectivity over between the stage-gate trials of the MBP as the likely problem.
Prior to the GSC, our early stage-gate trials (stages 1 and 2) had zero connectivity and in a
typical year about 1% of all lines in the GSC were tested by more than one MBP.

The MBP of our GSC conduct cooperative trials where all lines in a trial are tested
by all MBPs providing 100% connectivity. We data from cooperative trials to assess GS
accuracy among MBP using these connected data sets. Data from the 5-State trials was
used to assess GS accuracy for yield and test weight. Data from the P+NUWWSN FHB
trials were used to assess GS accuracy for FHB resistance. We used BLUES estimated over
trials conducted by three MBPs to predict the phenotype of the lines in trials of the fourth
MBP: this is called a 3->1 prediction. We used BLUEs from one MBP trials to predict the
phenotype of lines over the trials of the other three MBP (1->3 predictions). Finally, we
used BLUEs from one MBP’s trials to predict the phenotypes of one other MBP’s trials
(1->1 predictions).



Agronomy 2021, 11, 1555 9 of 15

Table 5. Accuracy of genomic selection within and between each of four soft winter wheat breeding
programs (IL, IN, KY, OH) for grain yield, test weight, and resistance to Fusarium Head Blight
(FHB). Shaded diagonal elements are from ten-fold cross-validation accuracy of genomic selection
within programs using data from just the lines and phenotyping trials of that program. Off-diagonal
elements are the correlation of the observed phenotypes of lines from one program obtained from
that program’s testing, with their predicted value derived from genotypic and phenotypic data from
lines from another program’s testing. The phenotypic data for the training population was obtained
from multiple years of trials conducted within each program.

Source of Lines and
Phenotypic Data Used to

Make Predictions

Predicted Populations That Contained Only
Phenotypes and Lines from This Source.

Trait IL IN KY OH

Yield

IL 0.45 −0.10 0.17 0.10
IN 0.01 0.44 0.07 0.04
KY 0.15 0.01 0.51 0.08
OH 0.18 −0.12 0.11 0.63

Test
Weight

IL 0.46 −0.01 0.26 0.28
IN −0.10 0.33 0.04 0.00
KY 0.15 −0.09 0.63 0.24
OH 0.23 0.06 0.25 0.45

FHB

IL 0.58 † 0.03 0.27 0.20
IN 0.13 0.40 † 0.08 0.05
KY 0.26 0.09 0.48 † 0.16
OH 0.31 0.08 0.27 0.53 †

† FHB data from IL and IN was toxin level while KY and OH used disease index.

The accuracy of GS between MBPs improved when using the highly connected data
from the cooperative trials relative to the analysis using stage-gate data. Previously the
average 1->1 accuracy for yield was 0.058 with a range of −0.1 to 0.18 (Table 5). The average
1->1 accuracy for yield in the 5-State analysis was 0.22 with a range of 0.04 to 0.43 (Table 6).
This is similar to the inter-program accuracy reported by Saranelli et al. [22] by using
data from the Sungrains cooperative wheat trial. Using BLUEs from data compiled over
three MPB’s trials greatly improved prediction accuracies shown by the values of the 3->1
and the 1->3 predictions (Table 6). These results show the (1) increasing the connectivity
between testing sites and MBP by co-testing more lines can increase the accuracy of GS
and (2) that compiling phenotypic data over multiple MBPs can increase GS accuracy, a
practice facilitated by a GSC.

Table 6. Average accuracy of different types of predictions for yield and test weight using data from
the 5-state trials and for FHB Index using data from the P+NUWWSN trials. A 3->1 prediction used
BLUES derived from data from three programs to predict the performance of the same lines in the
other program. A 1->3 prediction used BLUES derived from one program to predict the BLUES of
the same lines over the other three programs. A 1->1 prediction used BLUES from one program to
predict the BLUES of the same from the other program.

Type of Prediction Yield Test Weight FHB Index

3->1 0.31 0.40 0.51
1->3 0.30 0.46 0.50
1->1 0.22 0.28 0.43

E. There is a conundrum to be addressed. The primary benefit of a GSC is to effectively
increase the size of each MBP by facilitating access to all the breeding lines of the other
MBP. This benefit is only realized with accurate GS predictions between MBPs which can
only be attained with connectivity of the phenotyping of the MBPs. This suggests that
each MBP needs to increase their phenotyping if they continue to phenotype all of their
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own lines as well as lines from other MBP to attain connectivity. This is a major challenge
given that an individual MBP cannot greatly increase the number of lines they phenotype.
Sparse testing and the use of marker x environment interaction (MEI) in a GS model
can be used to create an effective evaluation scheme that will produce connectivity and
useful inter-program predictions without extensive replication of lines over all programs.
Training population optimization algorithms [36–38] could potentially be used to identify
the optimum set of lines to evaluate across the MBPs to achieve sufficient GS accuracy with
fixed phenotyping resources.

Sparse testing is where alleles, not lines, are replicated over environments and facili-
tates testing more lines with the same phenotyping resources [39]. The performance of lines
in environment where they were not tested can be predicted using GS models that includes
a MEI term. Endelman et al. [39] concluded that sparse testing at early stages with GS was
superior to testing all lines in all environments as it enabled sampling a broader array of
lines and environments. They also concluded that GS would be cost effect if the TP size
was large and consisted of related individuals, a scenario that exists within a well-designed
GSC. Others have noted that that GS can be effective for selection in early-stage trials [13,40]
and that GS can alter the distribution of breeding resources [33,37,39].

To increase connectivity and balance in our phenotyping, our GSC will disperse the
stage-1 and stage-2 lines from each MBP among all four MBPs. Prior to the GSC, none of
our stage-1 stage-2 were tested by another MBP, and less than 1% of all our breeding lines.
Table 7 shows how we dispersed stage stage-1 and stage-2 lines over the four programs
of the GSC for the 2020–2021 season. A total of 35% of the stage-1 and stage-2 lines are
now being tested outside of their MBP of origin, and 12% are being tested by multiple MBP
providing connectivity among the four MBP.

Table 7. Distribution of stage-1 and stage-2 lines from four programs (IL, IN, KY, OH) across testing
sites of the four programs for the 2020–2021 season.

Source of Lines

IL IN KY OH Total

Tested in only own program 1965 376 288 693 3322
Tested in other programs 427 328 151 360 1266

Percentage tested in other programs 17.9% 46.6% 34.4% 34.2% 27.6%

We are currently investigating different sparse-testing schemes with a goal of attaining
sufficient connectivity while not significantly increasing the amount of phenotyping any
one MBP must conduct. An example is shown in Table 8 assuming Breeder A normally tests
1000 lines in a stage-1 trial. Without a GSC, Breeder A will only test their own 1000 lines.
In a GSC, breeder A could test 400 of their own lines and 200 lines from each of the other
three MBPs Breeder A would send 600 of their stage-1 lines to the other MBP for testing.
We are proposing to disperse the lines across the MBPs by families so pedigrees and alleles
are replicated over MBPs. Connectivity could increase at advanced stage of testing. We
envision that in stage-2 trials that some lines will be evaluated by multiple, MBPs. Our
most advanced lines will still be evaluated by all MBPs in a cooperative trial that provides
complete connectivity. Data from the stage-1, stage-2, and cooperative trials would be
combined to make predictions.

Table 8. The number of stage-1 lines tested by breeder A from each of four programs (A, B, C, and D)
under a traditional non-sharing scheme and one possible sparse testing scheme used by a GSC.

Source of Lines for in Stage-1 Testing

Breeder A Breeder B Breeder C Breeder D Total

Non-sharing 1000 0 0 0 1000
Sparse Testing 400 200 200 200 1000
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Assessing GEI is the major rationale for uniform testing that allows estimation of both
broad (stable, main effect) and local (main effect + GEI) adaptation of lines. GEI must
be dealt with in sparse-testing [41]. There are two scenarios for using GS models that
incorporate GEI: (1) CV1 = predicting the value of lines that have not been phenotyped
in any environment and (2) CV2 = predicting the value of lines that have been tested
in some environments but not others (i.e., sparse testing) [42–44]. The CV2 scenario is
particularly applicable to our GSC where the vast majority of our lines are tested by
just one MBP in their local environments in stage-1 trials. Crossa et al. [44] indicated
that GEI could be used to estimate the value of lines in environments where they were
not tested by using information from relatives that were tested in those environments.
Burgueño et al. [42] extended this to GS models using marker data and the CV1 and CV2
testing schemes. They reported that prediction accuracy was significantly greater in the
CV2 sparse testing scenario than for the CV1 scenario. This emphasizes the importance of
testing related lines with shared marker alleles across environments. Sparse testing allows
for estimation of main effects (broad adaption) and site-specific trait values. Lopez-Cruz
et al. [45] incorporated MEI into the prediction models for wheat yield. They found that
the use of MEI increased GS accuracy by up to 30% compared to models without MEI,
and that GS accuracy was greater for CV2 than for CV1. Others have reported increased
GS accuracy by incorporating GEI (or MEI) into prediction models for wheat [5,46–48] in
sparse-testing trials and CV2. Studies in rye [49], maize, [50], rice [51], rubber [52], and
coffee [53] also show benefits to incorporating GEI (or MEI) into GS predictions.

F. Genotyping Platforms. Applied GS requires low-cost genotyping and a GSC requires
all MBP to genotype their lines with the same marker platform. High-throughput multi-
plexed SNP genotyping is a widely used genotyping method. Genotyping-by-sequencing
(GBS) is a low-cost SNP genotyping platform that has been widely used in plant breed-
ing [54–56]. With GBS target SNPs need not be identified a priori which reduces assay
development cost and ascertainment bias while enabling application across a wide range
of diverse populations. The disadvantages of GBS include (1) SNP calls with a greater
proportion of randomly missing data for some genotypes, which must be imputed [57,58],
(2) generation of markers that do not match across datasets, and (3) the bioinformatics
workload for GBS can be intensive in terms of data storage, CPU usage and labor as the
number of samples reach 10,000 s after many years and new samples are added each season
requiring new SNP calls.

An emerging alternative to GBS protocols are pooled, multiplexed targeted sequenc-
ing assays that target specific SNPs [59,60] Commercial implementations of pooled, mul-
tiplexed sequencing technology include Illumina’s AmpliSeq (Illumina, San Diego, CA,
USA), Integrated DNA Technologies’ rhAmpSeq (Integrated DNA Technologies, Coralville,
IA, USA), and Diversity Array Technology’s DArTag (Diversity Array Technology, Bruce,
Australia). These platforms require a significant up-front design cost but can produce more
repeatable SNPs, can accurately identify heterozygotes and require less bioinformatics
than GBS.

In collaboration with the USDA Eastern Regional Small Grains Genotyping Lab
at North Carolina State University (https://www.ars.usda.gov/southeast-area/raleigh-
nc/plant-science-research/docs/small-grains-genotyping-laboratory/main/, accessed
on 2 August 2021), we are in the process of designing a pooled, multiplexed sequencing
genotypic assay that will provide data on ~2500 highly polymorphic markers at a cost of
~$5–$9 per sample. The final assay will also include ~100 well-characterized markers for
critical agronomic and disease-resistance traits. This will facilitate GS and marker-assisted
selection in the same genotyping platform.

The targeting sequencing assays provide fewer markers that GBS. Several studies in
wheat have shown that 1000–2000 markers can provide the same GS accuracy as marker
sets that are 10 times larger [13,56,61]. The low cost, repeatability, identification of het-
erozygotes, ability to combine GS and MAS in one genotyping operation, and the lightened
bioinformatics favor the use of targeting sequencing assays in a GSC.

https://www.ars.usda.gov/southeast-area/raleigh-nc/plant-science-research/docs/small-grains-genotyping-laboratory/main/
https://www.ars.usda.gov/southeast-area/raleigh-nc/plant-science-research/docs/small-grains-genotyping-laboratory/main/
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G. Building a GSC requires careful collection, curation, and standardization of pheno-
typic and genotypic data from all MBP so all data is accessible to all MBP.

Recently, multiple research groups have been working on developing centralized,
open-source relational databases for breeding. The Breeding Application Programming
Interface (BrAPI) has been developed to implement standardized tools for interacting
with breeding databases [62]. BrAPI standards have been implemented in both com-
mercially supported breeding databases such as the Integrated Breeding Platform (https:
//integratedbreeding.net, accessed on 2 August 2021) and in open source projects such
as Breedbase (https://breedbase.org, accessed on 2 August 2021) and Breeding4Results
(https://b4r.irri.org, accessed on 2 August 2021). Currently there several large Breed-
base instances supporting public breeding efforts for cassava (Manihot esculenta; https:
//cassavabase.org, accessed on 2 August 2021), bananas (Musa spp.; https://musabase.org,
accessed on 2 August 2021), yams (Dioscorea spp.; https://yambase.org, accessed on
2 August 2021), sweet potato (Ipomoea batatas; https://sweetpotatobase.org, accessed
on 2 August 2021), and Solanaceous crops (Solanaceae spp.; https://solgenomics.net,
accessed on 2 August 2021). Genotyping data management software such as the Ge-
nomics Open-source Breeding Informatics Initiative Genomics Data Manager (GOBii GDM;
https://gobiiproject.atlassian.net/wiki/spaces/GD/overview, accessed on 2 August 2021)
and GenomicsDB (https://www.genomicsdb.org/, accessed on 2 August 2021) features
efficient storage and querying of genotype data.

Any breeding database utilized by multiple breeding programs should include sup-
port for the generation and management of trial information and phenotypic data at the
plot level. It should enable the management of information on accessions, locations, and
genotypic data. In addition, any database solution should support the use of trait ontology
systems such as the crop ontology (CO) database [63] to ensure standardization of trait
measurements across MBP, as well as integration with tablet data collection programs such
as the Field Book Android app [64]. Our experience has shown that transitioning to a
common breeding data management system is not trivial, and resources and technical
support for this transition are vital.

H. Accurate phenotypes. The foundation of all successful breeding, including GS and
marker-assisted selection, is accurate phenotyping. Each member of the GSC should be
able to provide reliable phenotypic data for the key traits of the GSC. The data should be
filtered for outliers and assessed for validity by the MBP that generates the data. Each MBP
should also be phenotyping in some environments that are relevant to other MBP.

5. Conclusions

The general success of GS and the advent of low-cost genotyping should encourage
every breeder to assess how GS can be used in their program. These technologies also
present opportunities to assess how individual programs can collaborate to leverage their
resources in a consortium whose whole is greater than the parts. The MBP in our GSC
have started on the journey to create a consortium to leverage our resources and improve
or effectiveness. We have noted challenges in the areas of archiving pre-GSC data from
each MBP into a common database. We have a coordinator who has been instrumental in
getting the database populated so we can create the TPs needed for GS. We pooled our
genotyping and received a reduced cost per sample. We have conducted analyses related
to several of the key components that are required to have a successful GSC. The analyses
indicate that there is a degree of genetic relationship among our programs and that a large
central core of germplasm exists in our programs that can serve as TP across the programs.
Analyses of past cooperative trials show that the germplasm of each MBP offers value to the
others and that there is little environment-specific adaptation of one MBP’s germplasm to
their own testing sites. Perhaps most importantly, our analyses indicate a need to increase
the genetic connectivity among our phenotyping efforts, especially at the early stages of
testing. We will develop and test various germplasm sharing and sparse-testing scenarios

https://integratedbreeding.net
https://integratedbreeding.net
https://breedbase.org
https://b4r.irri.org
https://cassavabase.org
https://cassavabase.org
https://musabase.org
https://yambase.org
https://sweetpotatobase.org
https://solgenomics.net
https://gobiiproject.atlassian.net/wiki/spaces/GD/overview
https://www.genomicsdb.org/
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to develop an optimized testing scheme. We also will look to expand the GSC to include
other programs.
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