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����������
�������
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Abstract: The determination of cropland suitability is a major step for adapting to the increased
food demands caused by population growth, climate change and environmental contamination.
This study presents a novel cropland suitability assessment approach based on machine learning,
which overcomes the limitations of the conventional GIS-based multicriteria analysis by increasing
computational efficiency, accuracy and objectivity of the prediction. The suitability assessment
method was developed and evaluated for soybean cultivation within two 50 × 50 km subsets located
in the continental biogeoregion of Croatia, in the four-year period during 2017–2020. Two biophysical
vegetation properties, leaf area index (LAI) and a fraction of absorbed photosynthetically active
radiation (FAPAR), were utilized to train and test machine learning models. The data derived from a
medium-resolution satellite mission PROBA-V were prime indicators of cropland suitability, having
a high correlation to crop health, yield and biomass in previous studies. A variety of climate, soil,
topography and vegetation covariates were used to establish a relationship with the training samples,
with a total of 119 covariates being utilized per yearly suitability assessment. Random forest (RF)
produced a superior prediction accuracy compared to support vector machine (SVM), having the
mean overall accuracy of 76.6% to 68.1% for Subset A and 80.6% to 79.5% for Subset B. The 6.1%
of the highly suitable FAO suitability class for soybean cultivation was determined on the sparsely
utilized Subset A, while the intensively cultivated agricultural land produced only 1.5% of the same
suitability class in Subset B. The applicability of the proposed method for other crop types adjusted
by their respective vegetation periods, as well as the upgrade to high-resolution Sentinel-2 images,
will be a subject of future research.

Keywords: leaf area index (LAI); fraction of absorbed photosynthetically active radiation (FAPAR);
random forest (RF); support vector machine (SVM); soybean; GIS-based multicriteria analysis; covariates

1. Introduction

The sustainability of present agricultural production faces severe global challenges in
the form of rapid population growth [1], climate change [2] and increasing environmental
contamination [3]. These factors are projected to cause serious global food nutrient de-
ficiency by 2050 [4], thus urging for more efficient utilization of the current agricultural
land. Current agricultural land management plans are frequently based on obsolete envi-
ronmental conditions and monetary priorities [5], so their upgrade should be a first step
in improving agricultural production systems. With the selection of suboptimal locations
to cultivate crops, farmers often turn to using excessive mineral fertilizers and pesticides
to achieve desired yields, damaging the ecosystem in the process [6]. Determining the
cropland suitability for major crop types is the mandatory process for efficient agricultural
land management planning [7]. This procedure is a key basis of globally sustainable agri-
culture and food security, meeting the Sustainability Development Goals of the United
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Nations [8]. Soybean has a particularly increasing importance within crop rotation systems
on a global scale, with a constant increase of yield and harvested land in all world regions
from 1979 to projections in 2030 [9]. According to the most recent World Agricultural
Supply and Demand Estimates report, its use for food, oil and biofuel production is high
and is further expected to grow in the forthcoming years [10]. This indicates a high priority
for solving the problematics of cropland suitability determination limitations and more
efficient soybean cultivation systems globally.

Present state-of-the-art methods of cropland suitability determination are most com-
monly based on the geographic information system (GIS)-based multicriteria analysis,
combined with the advanced criteria weighing procedures, like the Analytic Hierarchy
Process (AHP). Numerous cropland suitability determination studies based on the GIS-
based multicriteria analysis of both various major [11,12] and obscure crop types [13] were
successfully performed. Remote sensing data from global open data satellite missions
were among the fundamental data sources in these analyses [14,15]. A high degree of
flexibility in the suitability determination process is one of the main advantages of GIS-
based multicriteria analysis being widely applied globally [16]. However, this method
has some distinctive disadvantages, which were only partially solved so far. The most
obvious one is the overreliance on the user’s subjective assessment of criteria selection and
importance, especially within the AHP process. AHP is limited to five to nine criteria or
criteria groups as per the recommendations of Saaty and Ozdemir [17], so the inclusion of
additional important covariates results in more complex processing. The entire method is
consequentially more susceptible to human-made blunders in pairwise comparison and
criteria weight determination [18]. At the same time, the inclusion of a limited number
of environmental factors results in the incomplete representation of cropland suitability.
The accuracy assessment of the conventional GIS-based multicriteria analysis results is
often non-existent, with some successfully performed approaches using ground truth yield
data [12] or satellite-derived vegetation indices [11], which include only a segment of
cropland suitability in the validation process. The possibility of an objective and easily
accessible validation procedure for cropland suitability results would ensure a straightfor-
ward comparison between the prediction models and suitability results of multiple crop
types [11]. This would also ensure the integration of various cropland suitability results
into a unique agricultural land management foundation.

Machine learning algorithms present a possible solution to the abovementioned lim-
itations of the GIS-based multicriteria analysis in cropland suitability assessment. They
provided more efficient modelling of non-linear relationships of various environmental
features and covariate data, compared to the parametric methods in recent studies [19].
Its efficiency is primarily caused due to the ability to integrate complex climate, soil and
topography factors into a prediction model, unlike conventional statistical methods [20].
At the same time, the user is not expected to establish the relationships between these data.
The user’s main task in the machine learning prediction is the determination of covariates
that are relevant to the study aim to avoid redundancy and possible bias due to the inac-
curate or irrelevant covariate selection. So far, machine learning has been widely utilized
with satellite-derived vegetation indices for the detection of crop rotation systems [21],
crop health status [22], crop type distribution [23] and yield prediction [24]. Over the past
few years, some initiatives of the machine learning application for cropland suitability
assessment have achieved promising but limited results. Taghizadeh-Mehrjardi et al. [25]
proved the superiority of machine learning methods compared to traditional cropland
suitability determination procedures. They determined cropland suitability using empiri-
cally calculated potential yield for wheat and barley, following the Food and Agriculture
Organization of the United Nations (FAO) specifications. The application of FAO stan-
dardized suitability classes is widely recognized as a stable procedure of the cropland
suitability assessment, regardless of the crop type and geographical location [26]. The
implementation of standardized cropland suitability classes enables effective integration
with existing agricultural land management plans [11]. It also has the advantage of the
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suitability comparison with other crop types to determine the best possible alternatives
for the optimal agricultural subsiding and adjustment of crop rotations. Akpoti et al. [27]
successfully determined cropland suitability for rice cultivation using niche ground truth
data, which required a considerable time for the preparation of the machine learning
prediction. However, the potential of machine learning predictions in cropland suitability
determination is still largely unutilized. With the existence of reliable and globally avail-
able training data, machine learning could represent a novel and superior approach to
conventional cropland suitability determination using GIS-based multicriteria analysis.

While machine learning allows higher computational efficiency and accuracy compared
to the conventional methods, there is a challenge to provide indicators that reliably specify
cropland suitability levels. Many researchers related the cropland suitability with the in-
creased crop yield and biomass [28–30]. The majority of these studies also indicated the large
potential of biophysical vegetation properties in cropland suitability assessment. Leaf area
index (LAI) and the fraction of absorbed photosynthetically active radiation (FAPAR) are re-
garded as complementary biophysical properties for crop yield estimations, frequently used
as the essential variables in crop productivity assessment [31–33]. Recent studies successfully
integrated LAI and FAPAR with a conventional GIS-based multicriteria analysis, producing
superior suitability and yield prediction accuracy of various crop types [28,34]. These bio-
physical vegetation properties also showed considerable potential when used individually
in crop suitability studies. LAI derived from remote sensing products was highly correlated
with the crop biomass, yield and overall crop status, especially in early growth stages [35].
FAPAR showed a strong correlation with the total crop biomass production [28], its predictive
modelling [36], as well as with its temporal variation during the crop vegetative period [37].
Biophysical properties derived from satellite observations produced a very high correlation
with the in-situ measurements, resulting in a coefficient of determination up to 0.96 for LAI
and up to 0.98 for FAPAR [31]. These biophysical vegetation properties have a long-term
availability at 300 m spatial resolution from the PROBA-V mission, seamlessly upgraded
to the Sentinel-3 products for global and stable use in the future [38]. By implementing a
cropland suitability indicator based on multitemporal LAI and FAPAR data in the machine
learning algorithms, there is considerable potential in forming a computationally efficient
and globally available cropland suitability assessment method.

The aim of this study was to propose a novel cropland suitability assessment and
accuracy assessment approach based on machine learning. This approach is designed
to simplify the calculation of cropland suitability on a global scale and to increase the
objectivity of prediction compared to the conventional GIS-based multicriteria analysis
approach. The method was evaluated for the soybean cropland suitability determination,
with the potentially universal applicability for other crop types.

2. Materials and Methods

The generalized major components of the proposed approach of cropland suitability
assessment are presented in Figure 1. The cropland suitability assessment was performed
using solely open-source GIS software. SAGA-GIS v7.9.0 (Hamburg, Germany) was used
for input data preprocessing, machine learning prediction and accuracy assessment, while
QGIS v3.14 (Grüt, Switzerland) was used for map creation. All input spatial data and
suitability assessments were georeferenced to the Croatian Terrestrial Reference System
(HTRS96/TM). The complete computational process of the study was performed using a
desktop personal computer, which is standard equipment for agricultural land manage-
ment users in the majority of the world.

The workflow of the proposed cropland suitability assessment method contains two
primary steps (Figure 2): (1) spatial data acquisition and preprocessing; and (2) machine
learning prediction of cropland suitability. The cropland suitability classes were determined
for soybean cultivation, while potentially supporting its universal applicability with the
adjustments related to the vegetation period of the selected crop type.
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2.1. Study Area

The study area covered two 50 × 50 km subsets located in the continental biogeore-
gion of Croatia (Figure 3). Agriculture is one of the major activities in Continental Croatia,
with agricultural areas covering 52.9% of its total area per CORINE 2018 Land Cover data.
Multiple recent studies noted the considerable variability of soybean cropland suitability in
the study area, urging for more efficient agricultural land management planning [11,39–41].
Subset A is characterized by hilly terrain and sparsely located agricultural parcels, often
in the proximity of forests. Subset B is situated in the lowland area in eastern Croatia,
being traditionally used for intensive agricultural production. Soybean is cultivated con-
servatively by specific land owners in both subsets, with the union of soybean parcels
during 2017–2020 covering only 11.9% and 19.0% of agricultural area in Subset A and B,
respectively. The general properties of these subsets are presented in Table 1. The major
deviation from mean climate data occurred in 2018, which was extremely hot and dry in the
soybean vegetation period. The other notable deviation was a relatively high precipitation
in 2019 for both study subsets. All yearly air temperature and precipitation data in study
period during 2017–2020, between April and October, are shown in Appendix A, Table A1.
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Table 1. General properties of subset areas.

Properties
Subset

Data Source
A B

Longitude/Latitude 16◦45′ E, 45◦41′ N 18◦38′ E, 45◦20′ N /

Major land cover classes Agricultural areas (55.5%), Forests
(39.9%), Urban areas (2.9%)

Agricultural areas (75.7%), Forests
(17.8%), Urban areas (5.7%) CORINE 2018

Total country soybean area in 2020 10.1% 22.8% APPRRR
Mean annual air temperature 11.0 ◦C ± 0.2 ◦C 11.1 ◦C ± 0.1 ◦C CHELSA

Mean air temperature
(April–October) 17.5 ◦C ± 0.3 ◦C 17.9 ◦C ± 0.1 ◦C CHELSA

Total annual precipitation 859.1 mm ± 34.7 mm 685.9 mm ± 24.9 mm CHELSA
Total precipitation

(April–October) 547.6 mm ± 28.3 mm 449.2 mm ± 14.2 mm CHELSA

Mean elevation 134.8 m ± 41.0 m 91.1 m ± 9.7 m EU-DEM
Mean slope 1.5◦ 0.4◦ EU-DEM

Major soil types per FAO85
classification

Dystric Gleysol (Gd),
Stagno-Gleyic Luvisol (Lgs)

Eutric Gleysol (Ge), Mollic
Gleysol (Gm), Orthic Luvisol (Lo) ESDC

APPRRR: Paying Agency for Agriculture, Fisheries and Rural Development of Croatia, ESDC: European Soil Data Centre.
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Soybean production has increasing importance in Croatia, ranking second in a cul-
tivated agricultural area with 83 thousand ha, behind maize, with the average yield of
3.2 t ha−1 [42]. According to the same source, the overall production of soybean in Croatia
increased by 14.0% in 2020 compared to the year prior, with the prospect of further growth.
The most common soybean variety in the study area is the mid-early maturity group 0, with
an average vegetative period of 115–125 days [43]. The early maturity group 00 in subset A
and mid-late maturity group I in subset B are periodically cultivated. The usual vegetative
period of these soybean maturity groups ranges from late April to mid-September, covering
days of the year (DOY) from 120 to 245. The duration of vegetative growth stages is in the
range of 35 to 45 days after sowing. Full bloom (R2), beginning seed (R5) and full seed
(R6) are regarded as the most important soybean growth stages for stable yield [44]. These
stages commonly cover DOY ranges of 170–180, 190–200 and 200–220 in the study area,
respectively. According to the common annual anomalies of soybean growth, the study
period was determined from 1 April to 31 October. This approach included vegetation
periods of all soybean parcels in the study area, regardless of their maturity group and
agrotechnical operations performed by farmers.

2.2. Spatial Data Acquisition and Preprocessing

The machine learning prediction and accuracy assessment of cropland suitability
for soybean cultivation were performed using open remote sensing and GIS data. LAI
and FAPAR biophysical properties were used for the training of supervised classification
machine learning models, as complementary and reliable indicators of crop yield [31]. The
10-day LAI and FAPAR products from a PROBA-V satellite with 300 m spatial resolution
were downloaded from the Copernicus Global Land Service website for the period be-
tween April and October in 2017–2020. PROBA-V enables highly accurate and consistent
determination of biophysical vegetation properties, on par with similar missions and ob-
servations from the ground [38]. Training and test data for suitability assessment were
created according to the 300 m× 300 m regular grid, which corresponds to LAI and FAPAR
raster grids derived from PROBA-V. The spatial resolution of 300 m was determined as
suitable for various monitoring, and land management uses in agriculture at the macro
level, representing medium-sized and larger agricultural parcels [45]. The pixels from this
grid were filtered based on the coverage of ground truth soybean parcels within the pixels,
designated separately for each year during the 2017–2020 period.

Reference soybean parcels were obtained from the official Paying Agency for Agricul-
ture, Fisheries and Rural Development (APPRRR) of Croatia, being applied and controlled
for agricultural incentive distribution. These data were additionally visually inspected
and verified using the 0.5 m spatial resolution digital orthophoto provided by the State
Geodetic Administration of Croatia. At least 75% soybean parcel coverage was determined
as a filtering threshold to reduce the spectral mixing near the boundary of neighboring
land cover classes [46]. Training and test data were created separately for each individual
year in the 2017–2020 period, using data sensed during a soybean vegetative period of
major soybean varieties in the study area. This approach ensures the robustness of the
prediction by considering the entire vegetation period of all soybean varieties present in
the study area. This is reflected in the resistance in temporal variabilities of sowing periods
and particular soybean growth stage duration. These components are commonly affected
by the numerous abiotic factors and farmer decision making, including annual weather
trends, land cultivation systems, fertilization and irrigation systems.

Various complementary covariates were used for the establishment of the relation-
ship between the soybean cropland suitability represented by LAI and FAPAR with the
environmental conditions in the study area. The three primary environmental factors that
condition the cropland suitability are climate, soil and topography [20]. Raster covariates
representing these environmental requirements of soybean cultivation and the auxiliary
vegetation covariates are presented in Table 2. The selection of particular covariates was
performed based on the various environmental effects on the quality and quantity of
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soybean production from previous studies [11,37,43,44,47,48]. A total of 119 covariates
were used per the individual prediction of yearly cropland suitability classes for soybean
cultivation, consisting of 47 climate, 24 soil, 6 topographic and 42 vegetation covariates.

Table 2. A generalized description of covariates used in the study.

Covariate Group Covariate Measurement Unit Native Spatial
Resolution (m) Data Source

Climate

Mean monthly air temperature ◦C

1000 CHELSA [49]
Minimum monthly air temperature ◦C
Maximum monthly air temperature ◦C

Total monthly precipitation mm
Bioclimatic variables varying

Soil

Nitrogen cg kg−1

250 SoilGrids [50]

Soil organic carbon dg kg−1

pH /
Cation exchange capacity mmol(c) kg−1

Clay content g kg−1

Silt content g kg−1

Sand content g kg−1

Bulk density cg cm−3

Topographic

Digital elevation model m

25

EU-DEM [51]
Slope ◦

derived from EU-DEM
Aspect ◦

Total potential solar radiation kWh m−2

Topographic wetness index /
Wind exposition index /

Vegetation Dry matter productivity kg ha−1 day−1
300 PROBA-V [52]Fraction of vegetation cover /

Climate has the dominant effect on the duration of soybean vegetative and repro-
ductive growth stages, emerging efficiency after sowing and its overall requirements of
sunshine and water [53]. Climate data was represented using the CHELSA dataset [49], con-
taining the most recent global climate data at the 1 km spatial resolution during 1979–2013.
Air temperature and precipitation covariates were filtered from April to October. The 19
bioclimatic variables were derived from CHELSA historical monthly data, representing
air temperature and precipitation quarterly extremes and their value ranges for ecological
modelling [49]. Soil chemical and physical properties have a major impact on soybean
protein and oil quantity, while their variability is associated with the anomalies in soybean
yield [47]. Per European Soil Data Centre, Gleysol and Luvisol soils are dominant in
both subset areas, with moderate variability of their subtypes. These soil properties were
represented by SoilGrids data at 0–5 cm, 5–15 cm and 15–30 cm soil depths [50], which
dominantly affect soybean growth and produced yield [48]. Topography has an important
role in representing the interaction of the elevation and terrain configuration with climate
and soil effects on soybean cultivation [54]. Various theoretical topography indicators were
used to model the micro variations of climate and soil conditions, especially regarding
solar, wind and water drainage effects. The topographic wetness index was determined
using the Multiple Flow Direction procedure. Total potential solar radiation and the wind
exposition index were calculated according to the topo-climatology models by Böhner
and Antonić [55]. Vegetation covariates derived from PROBA-V products, which are not
directly related to crop yield, were added as supplementary biophysical properties to
LAI and FAPAR. Dry matter productivity (DMP) indirectly represented the efficiency of
solar radiation and air temperature on the dry biomass increase, while the fraction of
vegetation cover (FCOVER) assessed the percentage of ground coverage by vegetation,
without dependency on the crop optical properties [33]. These data produced a low to
moderate correlation with LAI and FAPAR, preventing the suitability assessment bias.

Resampling of covariate rasters was performed to match the spatial resolution of
LAI and FAPAR rasters of 300 m. The upscaling allows a straightforward and accurate
creation of lower spatial resolution data, while the downscaling represents a more limited
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and generally less accurate process [56]. Soil and topography covariates were upscaled
to 300 m spatial resolution using a bilinear interpolation method, which achieved higher
accuracy compared to similar resampling methods in a recent study by Liu and Weng [57].
Various downscaling methods of the CHELSA climate data with the 1 km native spatial
resolution were evaluated to ensure optimal downscaling accuracy. Nearest neighbour
(NN), bilinear interpolation (BI) and B-spline interpolation (BSI) were included in the
process, producing high accuracy for the downscaling of similar spatial data [58]. Accuracy
assessment of the downscaled rasters was performed according to the ground truth climate
data from 34 stations in the spatial coverage of study area subsets or their close proximity.
Mean air temperature and total monthly precipitation were obtained from the Croatian
Meteorological and Hydrological Service (DHMZ), representing the most recent official
climate data (1971–2000) in Croatia. The individual monthly data between April and
October was used for the accuracy assessment for air temperature, while the sum of
precipitation in the same period was used to reduce bias caused by its high inter-annual
variability. The coefficient of determination (R2) and root mean square error (RMSE) were
used for the downscaling accuracy assessment, which increased with higher R2 and lower
RMSE.

2.3. Machine Learning Prediction of Cropland Suitability

The cropland suitability for soybean cultivation was assessed following a two-step
classification principle: (1) determination of suitability levels in reference soybean parcels
based on K-means classification of multitemporal LAI and FAPAR; and (2) machine learning
prediction of cropland suitability for soybean cultivation in the entire agricultural land in
the study area, using covariates to establish a relationship between the suitability levels and
environmental conditions (Figure 4). The cropland suitability prediction was performed
individually for each year within the 2017–2020 period. The primary reason for that
procedure was the presence of crop rotation systems, as soybean should not be cultivated
in the same location in the two- or three-year consecutive span. This approach prevented
interference with the spectral information of other crop types. Additionally, inter-annual
weather conditions and diseases are highly variable, which significantly affect soybean
biomass and yield [54]. The proposed method avoids the bias caused by integrating these
conditions over multiple years by assessing cropland suitability individually for each year,
preventing the impact of extremely beneficial or non-beneficial events for a particular
year. The proposed method instead considers the relative suitability values in subset areas,
which are almost equally affected by the weather events or diseases in the 50× 50 km areas.
Therefore, K-means classification evaluated the relative soybean cropland suitability levels
per year, while machine learning models were used for the absolute cropland suitability
assessment, expanding the evaluation on the entire agricultural area in subset areas besides
reference soybean parcels. This approach ensured objective assessment of soybean cropland
suitability in the 88.1% and 81.0% of the agricultural area which was not utilized for the
soybean cultivation in the 2017–2020 period for Subset A and B, respectively. The suitability
assessment over the entire available area enables expansion and regionalization of soybean
cultivation in new locations, supporting the increasing need for high quality and quantity
of produced soybean.

LAI and FAPAR annual biophysical properties in the 300 × 300 m grid were classified
into five suitability values using the K-means unsupervised classification method for
their determination prior to machine learning model training. The suitability values in
the 1–5 range were ranked according to mean LAI and FAPAR, where higher LAI and
FAPAR values indicate higher cropland suitability for soybean cultivation. A relative
approach of training and test data creation using LAI and FAPAR using an unsupervised
classification ensured the possibility of multi-year suitability comparison, despite annual
weather variability and extremes.
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Training and test data were separated from the unique classified dataset using the
stratified random splitting in the 50:50 ratio. The same procedure was successfully applied
with the machine learning supervised classification methods in a recent study [59]. This
approach met the recommendations of Hengl et al. [50] and Colditz [60], who noted
the importance of a sufficient amount of training data for machine learning prediction.
Random forest (RF) and support vector machine (SVM) were applied for soybean cropland
suitability assessment, being the most often applied machine learning methods due to
their computational efficiency and straightforwardness [25]. They also achieved superior
accuracy compared to other machine learning and conventional supervised classification
algorithms in previous environmental studies [59,61]. Determining the parameters for
RF and SVM prediction was based on the iterative procedure, using the parameters that
ensured the highest prediction accuracy. Soybean cropland suitability assessment was
performed individually for each year in the 2017–2020 period. Yearly suitability classes were
assessed separately to reduce prediction bias caused by annual weather extreme events,
which represent rare occurrences in the perspective of agricultural land management. These
rasters were clipped to the agricultural areas land cover class from CORINE 2018, extracting
the possible area for soybean cultivation. The relative importance of input covariates on the
predicted soybean cropland suitability results using RF was performed by the Gini decrease
measure, being a frequently used and stable measure of importance [61]. It proportionally
quantifies the purity of model performance during node splits for a particular covariate,
meaning that the higher Gini decrease indicates higher importance of a covariate in the
prediction model.

Machine learning prediction accuracy was assessed using the figure of merit (F), which
was developed by Pontius and Millones [62] as an upgrade to kappa coefficients in remote
sensing studies. It is expressed per suitability value according to the formula:

F =
a

o + a + c
· 100%, (1)

where a (agreement) represents correctly predicted suitability values, o (omission) repre-
sents falsely predicted suitability values in other suitability classes and c (commission)
represents falsely predicted suitability values of the particular suitability class. The overall
performance of soybean cropland suitability assessment was determined using an overall
agreement (OA) value, calculated as the ratio of total agreements and total classified values.
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Four yearly suitability rasters were averaged and aggregated based on the FAO
methodology for land suitability assessment in five classes [63]. The ranking of soybean
cropland suitability values was performed according to the FAO suitability classes, includ-
ing highly suitable (S1), moderately suitable (S2), marginally suitable (S3), currently not
suitable (N1) and permanently not suitable (N2) classes [26]. These classes were associ-
ated with the suitability values according to the percentage of maximum suitability, per
previously referenced FAO specifications (Table 3). Permanently non suitable areas in the
N2 class contained all non-agricultural areas from CORINE 2018 which did not support
soybean cultivation without major ecosystem disturbance.

Table 3. Designation of FAO suitability classes according to suitability values obtained after machine
learning classification.

FAO Suitability Class
Percentage of Maximum

Suitability per FAO
Specifications [63]

Range of Suitability Values

S1 80–100% 4–5
S2 60–80% 3–4
S3 40–60% 2–3
N1 20–40% 1–2
N2 0–20% non-agricultural

3. Results

Mean air temperature and precipitation original CHELSA 1000 m data showed a
high correlation with the ground truth climate data from DHMZ stations (Appendix A,
Table A2). All three evaluated downscaling interpolation methods produced high accuracy
values, preserving climate values from the original data at a high degree. The B-spline
interpolation method produced the highest downscaling accuracy, achieving a higher cor-
relation with the ground truth data for precipitation compared with the original CHELSEA
climate data. Figure 5 displays the correlation between these datasets with the ground
truth DHMZ climate data. A slightly higher correlation was observed for April and May
air temperatures compared to summertime values for both subsets. Lower precipitation
values in Subset B were also more accurately represented by CHELSA data compared to
the higher precipitation in Subset A.

Seasonal trends of mean LAI and FAPAR values in soybean parcels during its veg-
etative period between April and October from 2017 to 2020 are represented in Figure 6.
Both LAI and FAPAR generally reached their peak in late July or early August, which cor-
responds to the usual periods of soybean varieties in the study area entering the R6 growth
stage. These values reached higher peaks in Subset A than in Subset B in all observed
years. A slightly later vegetative period of soybean in Subset A compared to Subset B is
also noted, which is characteristic for the early soybean maturity groups commonly present
in this area. Meanwhile, the soybean vegetative period in Subset B matched the duration
of mid-early and mid-late maturity groups, which confirms their presence in the study
area from previous studies. Minor sudden changes in LAI and FAPAR trends for the year
2017 in Subset A and year 2020 in Subset B implied the susceptibility of LAI and FAPAR to
annual extreme weather conditions during the early reproductive soybean growth stages.
These anomalies are a common occurrence caused by drought in the study area, and were
almost fully equalized in the latter soybean growth stages.
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The total count and coverage of the soybean samples used for the determination of
training and test data for soybean cropland suitability assessment are displayed in Table 4.
Both subsets produced a relatively stable sample count for each year within the 2017–2020
period. Subset B produced a higher sample count and relative coverage in the subset area
due to the significantly higher amount of enlarged soybean parcels in lowland areas than
Subset A. A relative percentage of sample coverage within the subset agricultural areas is
in accordance with the specifications by Colditz [60], who proposed at least 0.25% from the
classified area being designated as training data.

Table 4. Training and test sample count and area covered per subset agricultural land.

Subset/Year Total Sample Count Area (ha) Percentage of Subset
Agricultural Land (%)

A/2020 236 2124 1.53
A/2019 206 1854 1.34
A/2018 304 2736 1.97
A/2017 299 2691 1.94

B/2020 560 5040 2.67
B/2019 618 5562 2.94
B/2018 667 6003 3.18
B/2017 668 6012 3.18

The mean LAI and FAPAR values after suitability classification using K-means as
the preprocessing to training data creation are displayed in Appendix A, Table A3. RF
produced a superior classification accuracy for soybean cropland suitability in seven of
eight yearly suitability values compared to SVM (Table 5). It produced higher mean OA
values than SVM in both subsets, resulting in 76.6% to 68.1% for Subset A and 80.6% to
79.5% for Subset B. Cropland suitability assessment accuracy was slightly lower in Subset
A, with RF producing significantly higher accuracy in conditions of more limited training
data. Both machine learning methods produced a high prediction accuracy in Subset B.
The correlation of the higher soybean samples with higher prediction accuracy is also
observed for yearly predictions within the subsets. RF and SVM predictions for 2017 and
2018 produced a higher mean OA of 6.5% for Subset A and 5.2% for Subset B, compared to
the 2019 and 2020 predictions. A general trend of higher prediction accuracy represented
by the figure of merit was observed for three more suitable values for soybean cultivation
(5, 4, 3) in relation to the less suitable values.

The relative importance of individual covariates divided into the abiotic (climate, soil
and topography) and vegetation covariates are presented in Figure 7. Vegetation covariates
produced higher individual Gini decrease values compared to abiotic covariates from
the same prediction period. However, their total count of 42 compared to the 77 abiotic
covariates per prediction indicated similar overall importance of these covariate groups.
FCOVER and DMP sensed during June and July had the dominant importance out of the
top-five importance vegetation covariates per prediction. These covariates contained 77.5%
of the most impactful vegetation covariates considering both subsets. The importance
of abiotic covariates varied between the subsets. SoilGrids covariates were the most
represented in the top-five most impactful abiotic covariates in Subset A, covering one half
of the group. It is closely followed by CHELSA climate data, with 45.0% of the top-five
most important abiotic covariates. Precipitation values over the entire soybean vegetative
period were the most represented climate data. SoilGrids data were dominantly included
within the most impactful covariates in Subset B, representing a 75.0% share. Soil nitrogen
was the most frequent soil covariate, especially at the 5–15 cm soil depth. Topographic
covariates derived from EU-DEM produced 20.0% of the most impactful abiotic covariates
in Subset B.
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Yearly and aggregated cropland suitability classes for soybean cultivation per subset
are displayed in Figure 8. The average aggregated suitability values were 2.376 and 2.406
for Subsets A and B, respectively. Yearly suitability values in 2018 and 2020 produced
up to 24.4% lower values compared to the mean yearly suitability in Subset A (Table 6).
Traditionally intensively utilized agricultural areas in subset B produced a slightly higher
percentage of suitable classes for soybean cultivation (S1–S3) with 49.5% of the subset area,
compared to the 49.3% in Subset A. However, multiple locations in Subset A reached a
higher suitability peak, especially regarding the most suitable S1 class. The most suitable
aggregated suitability classes in Subset A were observed in the central part of the subset,
containing soybean parcels dominantly surrounded by forests. The most suitable areas for
soybean cultivation in Subset B were largely dispersed over the subset, while the currently
non-suitable land was dominantly concentrated by the larger settlements.
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Table 5. Accuracy assessment of cropland suitability values prediction using machine learning methods.

Subset/
Year Method

Suitability Values

OA5 (Very High) 4 (High) 3 (Moderate) 2 (Low) 1 (Very Low)

F o c F o c F o c F o c F o c

A/2020 RF 46.2 5.0 0.8 38.7 7.6 8.4 62.5 5.0 5.0 57.6 8.4 3.4 71.4 0.8 9.2 73.1
SVM 43.8 4.2 3.4 40.6 6.7 9.2 51.7 9.2 2.5 36.2 10.1 15.1 59.0 6.7 6.7 63.0

A/2019 RF 66.7 3.8 1.9 77.8 2.9 2.9 65.7 3.8 7.7 46.2 7.7 5.8 41.7 6.7 6.7 75.0
SVM 64.7 4.8 1.0 38.5 13.5 1.9 53.2 1.9 19.2 42.9 7.7 7.7 45.5 6.7 4.8 65.4

A/2018 RF 73.2 4.6 2.6 60.0 4.6 0.7 69.4 5.2 2.0 54.5 5.2 7.8 64.4 2.0 8.5 78.4
SVM 51.0 7.8 7.8 52.4 5.2 1.3 55.9 9.2 0.7 44.7 7.2 9.8 58.0 2.0 11.8 68.6

A/2017 RF 76.9 1.3 0.7 50.0 6.0 3.3 69.0 6.0 0.0 66.1 3.3 9.3 72.2 3.3 6.7 80.0
SVM 69.2 2.0 0.7 48.3 6.0 4.0 57.6 6.7 2.7 66.7 5.3 6.0 60.7 4.7 11.3 75.3

B/2020 RF 60.7 2.9 1.1 64.8 5.4 6.1 62.8 3.2 2.5 61.5 6.1 9.0 56.9 6.1 5.1 76.2
SVM 44.0 5.1 0.0 55.8 7.6 7.6 60.0 4.3 1.4 62.2 3.6 12.6 59.2 5.8 4.7 73.6

B/2019 RF 67.9 1.6 1.3 73.2 1.6 1.9 69.2 5.2 3.9 62.7 7.5 5.8 65.0 4.2 7.1 79.9
SVM 70.8 2.3 0.0 83.8 1.3 0.6 67.7 5.2 4.5 60.0 6.5 9.1 67.4 4.5 5.5 80.2

B/2018 RF 82.1 1.8 0.3 62.5 5.7 4.2 65.9 5.4 7.2 74.5 3.3 4.5 78.9 1.2 1.2 82.5
SVM 99.9 0.0 0.0 66.3 6.3 1.8 61.5 4.8 10.8 64.8 5.7 5.4 77.8 1.8 0.6 81.3

B/2017 RF 73.0 2.7 3.3 65.1 3.0 1.5 69.2 6.4 4.5 76.2 1.8 1.2 76.6 2.1 5.5 83.9
SVM 78.3 2.7 1.8 52.3 4.5 1.8 72.4 3.9 6.4 80.0 1.8 0.6 69.1 3.9 6.4 83.0

F: figure of merit (%); o: omission (%), c: commission (%); OA: overall agreement (%); highest OA values per subset/year were bolded.

Table 6. Class coverage area per aggregated soybean suitability class.

Subset
Class Coverage per Aggregated Suitability Class (%)

S1 S2 S3 N1 N2

A 6.1 21.0 22.2 5.7 45.0
B 1.5 13.4 34.6 25.1 25.3

4. Discussion

The advantages of the proposed novel cropland suitability assessment method consist
of a straightforward and computationally efficient machine learning application and the
global availability of open climate, soil, topographic and vegetation data. These are some
of the main factors which could ensure its extensive application in the future [64]. The
proposed approach provides a stable basis for cropland suitability determination as a po-
tentially superior long-term alternative to GIS-based multicriteria analysis. This approach
allows the user to overcome the two most impactful disadvantages of the conventional
GIS-based multicriteria approach, allowing the inclusion of complex input data [50] and
avoiding subjectivity in suitability assessment [18]. The additional advantage to the con-
ventional approach is the accuracy assessment of the easily accessible LAI and FAPAR
data [38]. This process provides a step forward in the objective assessment of model per-
formance and the comparison of FAO suitability classes between two individual datasets.
The proposed method was successfully performed using a commonly available desktop
personal computer, which cuts down the need for expensive hardware. However, there
are still several limitations yet to be resolved. Based on the results obtained in this study
and the extensive review of the literature, the improvements of the proposed cropland
suitability assessment approach can be performed in four general directions, namely by:

• adopting performance evaluation for multiple crop types with the aim of determin-
ing the multidimensional cropland suitability dataset for a particular study area,
presenting a complete solution for the agricultural land management;

• modification of the suitability assessment approach using high-resolution Sentinel-2
satellite images for the cropland suitability assessment at micro-locations;

• improvement of the present suitability assessment method considering the optimiza-
tion of training samples and input covariates;

• implementation of the predicted soybean cropland suitability in practice considering
present agricultural practices in the study area.

Cropland suitability classes predicted using the proposed method primarily reflect
suitability consistency throughout multiple years. While the advantage of the relative
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unsupervised classification of LAI and FAPAR values for the creation of training samples
makes it resistant to the annual extremes caused by weather events, at the same time there
is some ambiguity in the absolute suitability levels of these values. This could be addressed
with the integration of yield data as the measure of absolute suitability levels with the
proposed approach based on satellite-derived biophysical crop properties. LAI and FAPAR
showed the sensitivity to vegetation properties of various crop types in previous studies,
possibly presenting universal crop suitability indicators [65]. Gitelson [37] noted the FA-
PAR sensitivity to canopy structures and photosynthetic specificities of various crop types,
including soybean and maize. The accurate determination of biophysical crop properties
was maintained using the high spatial resolution Sentinel-2 and moderate spatial resolu-
tion Sentinel-3 products. This strongly indicates the applicability of the proposed method
through multiple scales of interest for agricultural land management for major crop types.
Moreover, the global coverage and open data availability of both Sentinel-2 and Sentinel-3
ensure widespread applicability of this method in the future [15]. Present methodology
focuses on the larger agricultural parcels (above 10 ha) due to the restrictions of spatial res-
olution of PROBA-V products. Sentinel-2 images require additional processing but would
enable expansion of the proposed methods on much smaller agricultural parcels. LAI
and FAPAR derived from the 10 m spatial resolution Sentinel-2 images were successfully
implemented in crop suitability studies [28], presenting a basis of the proposed method
upgrade for the micro-scale analysis. The possible limitation during the creation of training
and test samples using LAI and FAPAR as reference values might be the availability of
soybean or other crop types ground truth agricultural parcels on the national level. Since
these data are usually collected and distributed by national agencies, these data might
not be easily accessible in some less developed parts of the world. However, this can be
overcome by implementing crop type classification algorithms based on LAI and FAPAR
using machine learning, which enabled the extraction of a particular crop type with 80% or
higher accuracy in a recent study by Waldner et al. [65].

The yearly prediction accuracy trends from this study imply that the inclusion of
the larger sample count over the larger area would result in higher prediction accuracy.
Such an approach would also ensure the applicability of the proposed cropland suitability
assessment method for minor crop types. The optimal training sample count in the
restricted subset areas within Continental Croatia could be ensured for major crop types
like soybean, wheat, maize, sunflower and rapeseed at the present time [40]. Additionally,
the inclusion of additional covariates in the proposed cropland suitability assessment
method could benefit the prediction accuracy, especially using RF [50]. The observations
from sensitivity analysis considering the proximity to major land cover classes and soil
types indicate that these covariates would be an important addition to future studies.
Heterogeneity of suitability values of proximity zones to urban areas indicated a possible
significant impact of socio-economic covariates in cropland suitability assessment, like
population density [66]. Potential and actual evapotranspiration [8] and actual solar
irradiation [67] were successfully derived using the free remote sensing data sources. These
covariates would also likely improve the presently used theoretical values calculated
from DEM for the majority of crop types besides soybean. Hengl et al. [50] noted the
sensitivity of machine learning methods to inaccuracies in covariate data, which could
have a significant impact on model performance. This indicates a necessity of accurate
harmonization of input data during the resampling process, especially considering a more
sensitive downscaling process, which should be considered during the addition of new
covariates. The implementation of deep learning methods could present a viable option
for the improvement of cropland suitability assessment accuracy in the future. At the
present time, these methods generally lack computational efficiency of prediction due to
the presence of large and complex training and covariate data [68]. Since this approach
requires considerable and expensive hardware resources, it presently impairs the global
and low-cost character of the proposed method. With the further improvement of deep



Agronomy 2021, 11, 1620 17 of 21

learning, it is expected that it will enable an upgrade to conventional machine learning,
presenting an even more effective basis of cropland suitability assessment.

Another possible improvement of prediction accuracy of the machine learning meth-
ods is through implementing the most recent covariate data. The likely reasons for the
lower prediction accuracy for the years 2019 and 2020 compared to the years prior were mi-
nor temporal disagreements of input covariates with the study period. Low mean cropland
suitability values during the dry and hot year of 2018, compared to the years 2017 and 2019,
further reinforces the need for accurate recent data due to sensitivity of suitability values to
climate input. The application of the SoilGrids data referenced to the year 2017 was slightly
obsolete for the prediction forthcoming years, since soil chemical properties like N and
SOC are susceptible to temporal variations [69]. The ambiguities related to the inability
to accurately track and model crop and soil management systems by farmers at the local
scale indicate the necessity of including multiple data sources for the multi-year cropland
suitability assessment. A possible solution is the integration of presently used SoilGrids
data with the updated SoilGrids version 2.0 [70], which should establish a reliable global
soil dataset for future studies. Similar observations were made about the climate data,
which are subjected to the recent impact of climate change [4]. Even with the application of
the most recent global climate data using the CHELSA dataset (1979–2013) [49], the effects
of climate change within the past decade remain largely uncovered by previous cropland
suitability assessment studies. Therefore, the comparison of multitemporal cropland suit-
ability results, periodically updated with new climate data, would likely reflect climate
change effects and allow farmers to make necessary adjustments. A possible solution for
including the most recent climate change in the prediction could be the integration of
present global climate datasets with the historic weather data within the study period [11].
This approach could enhance the proposed method by including the most recent climate
trends using the freely accessible global weather data from a variety of online weather
portals or national meteorological agencies.

5. Conclusions

The proposed cropland suitability assessment method based on machine learning
represents a potential alternative and upgrade to conventional cropland suitability de-
termination using a conventional GIS-based multicriteria analysis. Its advantages are
primarily reflected in its computational efficiency, objectivity during the prediction and
the ability to integrate complex input covariates. The proposed method is based on open
remote sensing and GIS data and software, which makes it widely available worldwide.
RF produced superior suitability assessment results to SVM in cases of moderate sample
count and a high amount of complex input covariates. Its accuracy is expected to further
grow with the inclusion of the additional covariates, including socio-economic covariates,
evapotranspiration, solar irradiation and proximity to land cover classes. The creation of
the study area larger than 50 × 50 km2 is also expected to increase suitability assessment
accuracy, due to the increased training sample count and better model fitting. The presence
of the highly suitable S1 class per FAO classification was noted in the 6.1% of Subset A and
1.5% of Subset B. This observation encourages the re-evaluation of present agricultural
land management plans, as the agricultural land in Subset A is presently not adequately
utilized for soybean cultivation, contrary to the intensively cultivated agricultural land in
Subset B.

The accurate and straightforward cropland suitability determination method is nec-
essary to ensure a widely available solution for effective agricultural land management
for the sustainability of agricultural production. The proposed method overcomes the
limitations of the conventionally used GIS-based multicriteria analysis, and could turn
the attention to machine learning in future cropland suitability determination studies.
Future studies will be directed in its adjustment to various crop types and the scaling to
micro-locations by implementing high-resolution Sentinel-2 images.
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Appendix A

Table A1. Climate properties of subset areas per year in the 2017–2020 period between April
and October.

Subset/Year
Air Temperature (April–October) Precipitation (April–October)

Mean
CHELSA Annual Difference

from Mean
Mean

CHELSA Annual Difference
from Mean

A/2020

17.5 ◦C

17.1◦C –2.1%

547.6 mm

640.1 mm +16.9%
A/2019 17.4◦C –0.3% 689.5 mm +25.9%
A/2018 18.4◦C +5.2% 479.6 mm –12.4%
A/2017 17.4◦C –0.5% 546.5 mm –0.2%

B/2020

17.9 ◦C

17.8◦C –0.3%

449.2 mm

462.3 mm +2.9%
B/2019 18.1◦C +1.3% 558.7 mm +24.4%
B/2018 19.2◦C +7.2% 422.0 mm –6.1%
B/2017 18.0◦C +0.8% 449.5 mm +0.1%

Table A2. The accuracy assessment of downscaling methods of CHELSA mean air temperature and
precipitation data compared to ground truth data from DHMZ stations.

CHELSA Dataset
Mean Air Temperature (◦C) Precipitation (mm)

R2 RMSE R2 RMSE

Native (1000 m) 0.9513 0.9643 0.7190 43.3024
NN (300 m) 0.9507 0.9659 0.7137 43.9376
BI (300 m) 0.9512 0.9631 0.7128 43.9296

BSI (300 m) 0.9513 0.9646 0.7203 43.1707

NN: nearest neighbour, BI: bilinear interpolation, BSI: B-spline interpolation.

Table A3. Mean LAI and FAPAR values per suitability class after K-means unsupervised classification.

Year Suitability Class
Subset A Subset B

Elements Mean LAI Mean FAPAR Elements Mean LAI Mean FAPAR

2020 S1 23 3.058 0.647 52 2.787 0.551
S2 42 2.488 0.535 148 2.355 0.545
S3 52 2.376 0.571 74 1.990 0.545
N1 57 2.126 0.552 171 1.988 0.534
N2 62 1.924 0.561 115 1.556 0.495

2019 S1 32 2.122 0.582 48 1.969 0.541
S2 47 2.280 0.533 69 2.366 0.493
S3 54 1.912 0.544 157 2.166 0.507
N1 39 1.967 0.506 186 1.833 0.507
N2 34 1.808 0.520 158 1.651 0.508
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Table A3. Cont.

Year Suitability Class
Subset A Subset B

Elements Mean LAI Mean FAPAR Elements Mean LAI Mean FAPAR

2018 S1 74 2.524 0.538 75 2.496 0.498
S2 37 2.291 0.521 153 2.183 0.500
S3 66 1.954 0.560 197 1.848 0.490
N1 63 2.072 0.526 174 1.552 0.475
N2 64 1.788 0.511 68 1.566 0.455

2017 S1 23 2.203 0.588 128 2.076 0.495
S2 48 2.017 0.554 78 1.721 0.507
S3 57 2.131 0.488 203 1.646 0.461
N1 84 1.571 0.495 78 1.465 0.450
N2 87 1.801 0.477 181 1.333 0.441
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