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Abstract: The short arm of chromosome 6V (6VS) of Haynaldia villosa has been used in wheat
breeding programs to introduce Pm21 resistance gene against powdery mildew (Pm) and some
other genes. In this this study, 6VS was flow-sorted from wheat-H. villosa ditelosomic addition line
Dt6VS and sequenced by Illumina technology. An assembly of 230.39 Mb was built with contig
N50 of 9.788 bp. In total, 3.276 high-confidence genes were annotated and supported by RNA
sequencing data. Repetitive elements represented 74.91% of the 6VS assembly. The 6VS homologous
genes were identified on homologous group 6 in six Triticeae species confirming their synteny
relationships. Out of 45 NB-ARC domain proteins identified on 6VS, 15 were upregulated and might
also be involved in the innate immunity of H. villosa to Pm. High thousand grain weight (TGW) for
6VS/6AL translocation line was not attributable to GW2-6V gene. Based on the intron size differences,
119 intron-target (IT) markers were developed to trace the 6VS chromatins introduced into wheat
background. The assembled 6VS genome sequence and the developed 6VS specific IT markers in this
work will facilitate the gene mining and utilization of agronomic important genes on 6VS.

Keywords: comparative genome analysis; chromosome sorting; genome sequencing; marker devel-
opment; flow cytometry; Haynaldia villosa

1. Introduction

Haynaldia villosa L. (2n = 14, genome VV), a wild relative of common wheat (Triticum aes-
tivum L.), carries resistance genes to several wheat diseases, including powdery mildew,
wheat yellow mosaic virus, eyespot, take-all and rusts [1]. It has also been credited for
improving tiller number [2,3], high grain protein content [4–6], and tolerances to frost and
drought [7,8]. These characters make H. villosa a highly attractive source of important
genes and alleles for wheat improvement [1]. In previous studies, several useful genes
were mapped on short arm of chromosome 6V, such as the Pm21 locus, which provides im-
munity or high resistance to all powdery mildew isolates, and NAM-V1, which contributes
to increased grain protein content (GPC) in the wheat-H. villosa 6AL/6VS translocation
lines [9,10]. The availability of genome sequence will greatly accelerate further gene mining
in H. villosa and effective alien gene introduction and utilization in wheat breeding while
minimizing the introduction of unfavorable alien chromatins.
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The progress in DNA sequencing technology, i.e., whole genome shotgun technology
makes the production of whole genome sequence assemblies feasible, especially for species
with huge and complex genomes such as wheat. The number of sequenced genomes of
wheat and relatives has increased recently [11–13]. However, if chromosomal locations of
target genes in a certain genotype are known, the most effective option is to sequence only
the chromosome or chromosome arm of interest. The approach of dissection of the genome
into its component chromosomes and sequencing only the targeted chromosomes signifi-
cantly reduce the project costs. Sequencing chromosomes from multiple lines of a species
for comparative genomic study could also be accomplished through this method [14]. It
simplifies bioinformatic analyses due to reduced volume of sequence data.

Targeted sequencing of a particular chromosome is possible after isolating a required
number of chromosomes by flow cytometric sorting [15–22]. Next-generation sequencing of
flow-sorted chromosomes has been used to develop molecular markers in Ae. geniculata and
H. villosa [23–25]. Importantly, sequencing DNA from flow-sorted chromosomes facilitated
the production of draft genome assemblies of barley [26], rye [27] and common wheat [28]
and to isolate genes in wheat and barley either by the MutChromSeq strategy [29] or the
TACCA approach [30].

Purification of a particular chromosome by flow sorting may be hampered by the
inability to discriminate the chromosome from other chromosomes by karyotype analysis
if its size or relative DNA content has no obvious difference. Various strategies have
been developed to overcome this difficulty, and one of them is to sort translocation or
deletion chromosomes with altered size [16–20]. Larger deletions are not viable in diploids,
but they may be developed from wild type chromosomes after they are introduced to a
polyploid species, such as wheat, which tolerates aneuploidy. Using this approach, Tiwari
et al. sorted chromosome 5 Mg from a wheat/Ae. geniculata disomic substitution line [21].
Similarly, Xiao et al. used a wheat-alien ditelosomic addition line “NAU1201” to isolate
chromosome arm 4VS of H. villosa [22]. The creation of lines for targeted chromosomes
or chromosome arms is therefore a crucial step for this flow cytometric method. These
valuable recourses could already be available in some cases, thus tremendously facilitate
the adoption of the method.

In this work, 6VS of H. villosa was flow-sorted from a T. aestivum–H. villosa ditelosomic
addition line containing a pair of short arms of chromosome 6V. The isolated 6VS was
sequenced and reads were assembled. The obtained draft sequence was used to charac-
terize the molecular composition of 6VS including repeat DNA content, identify genes
and comparative genome analysis with T. aestivum species and other sequenced grass
species. The 6VS assembly was also used to develop 6VS-specific markers to support alien
introgression breeding of wheat and the cloning of favorable genes from 6VS.

2. Materials and Methods
2.1. Plant Materials

H. villosa (VV, 2n = 14, Accession No. 91C43) was obtained from Cambridge Botanical
Garden, UK. The other three accessions of H. villosa were kindly provided by Germplasm
Resources Information Network (GRIN) (H. villosa#1: PI251478, H. villosa#2: PI491576, H. vil-
losa#3: PI598391). The T. aestivum–H. villosa ditelosomic addition line Dt6VS [2n = 42(AABBDD)
+ 2t(6VS)] (Accession No. NAU1202), three T. aestivum–H. villosa small fragment translo-
cation lines (Accession No. NAU418, NAU419 and NAU1203), and T. aestivum–H. villosa
T6VS·6AL translocation line 92R137 (Accession No. NAU405) were developed at the Cy-
togenetics Institute, Nanjing Agricultural University (CINAU, hereafter) [31,32]. Three
additional lines of H. villosa chromosome 6V added to wheat (DA6V#1, DA6V#3, DA6V#4)
were identified by Qi et. al. and maintained at CINAU [33]. Common wheat (T. aestivum,
AABBDD) cv. Chinese Spring maintained at CINAU was used as a control in this work.
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2.2. Chromosome Sorting and DNA Sequencing

Suspensions of mitotic metaphase chromosomes were prepared from synchronized
meristem root tips of young seedlings according to Vrána et al. and Kubaláková et al. [34,35].
GAA microsatellite repeats on isolated chromosomes were fluorescently labeled by FISHIS [36]
using GAA-fluorescein isothiocyanate (FITC) conjugate (Sigma, Saint Louis, MO, USA) and
counterstained by DAPI (4′,6-diamidino-2-phenylindole) at 2 µg/mL. The samples were
analyzed by FACSAria II SORP flow cytometer and sorter (Becton Dickinson Immunocy-
tometry Systems, San José, CA, USA) at rates of 2000–3000 particles per second and sort
windows were set on bivariate flow karyotypes FITC vs. DAPI fluorescence. The identity
of sorted particles and contamination of sorted fractions by other chromosomes were deter-
mined following Kubaláková et al. [37]. Briefly, one thousand particles were sorted from
each sample into a 7 µL drop of P5 buffer on a microscope slide. After air-drying, the slides
were used for FISH with probes of pSc119.2 and Afa family repetitive DNA sequences to
verify the sorted 6VS chromosome arm and evaluated by fluorescence microscopy [38].

Chromosomes were sorted at rates of 15–20/sec into 40 µL sterile deionized water
in 0.5 mL PCR tubes and two different 6VS DNA samples were prepared and sequenced.
The first was produced by multiple displacement amplification (MDA) of DNA prepared
from two batches of 100,000 copies of 6VS telosomes. The amplification was done using
Illustra GenomiPhi V2 DNA Amplification Kit (GE Healthcare, Piscataway, NJ, USA) as
described by Šimková et al. [39] and the two MDA products were pooled into one sample
to reduce amplification bias. Two micrograms of amplified DNA were used to prepare
sequencing library using TruSeq DNA PCR-Free Library Prep Kit (Illumina, San Diego,
CA, USA). The library was sequenced in one run on Illumina MiSeq System (1000 bp insert,
2 × 300 bp) yielding 14 Gb sequence data (~44× coverage of 6VS). The second type of
6VS DNA sample was not amplified and DNA from 100,000 copies of 6VS telosome was
purified and directly used to prepare sequencing library using Nextera DNA Library Prep
Kit (Illumina). The library was sequenced in one run on Illumina MiSeq System (500 bp
insert, 2 × 300 bp) yielding 10.2 Gb sequence data (~32× coverage of 6VS). The sequenced
reads data of this research were available in NCBI (PRJNA590539). Four k-mer sizes (41,
45, 49, and 63) were used to de novo assemble the raw data using the software of Hecate
(http://bgi-international.com/us/, accessed on 18 January 2019). The k-mer sizes which
generated the assembly with the best sequence coverage and N50 size were finally selected.

2.3. Identification of Repetitive Sequences

The repetitive DNA regions of 6VS assembled sequence was identified and masked
using the software of RepeatMasker (http://www.repeatmasker.org/, accessed on 25
February 2019). Two repeat libraries, TREP database and Repbase Update, were used to
search the repetitive sequences of the 6VS with the default settings.

2.4. Transcriptome Data

The 6VS/6AL translocation line was grown in a growth chamber with 20 ◦C/16 ◦C
temperatures (day/night), and 16 h/8 h of light/dark. The translocation line was inoculated
with Bgt isolates E26 and E31 at two-leaf stage, together with water treatment as control.
Samples were collected at 3 and 24 h after Bgt and water inoculation, respectively, followed
by freezing in liquid nitrogen for subsequent RNA extraction. The samples were submitted
to the BGI for sequencing using the Illumina Hiseq 4000 platform. Raw sequences were
filtered by removing those containing ploy-N, poor-quality reads, and the adapters to
obtain high-quality data for further analysis. De novo transcriptome assembly was built
using Trinity software [40]. A total of 107,797 unigenes were obtained after redundancy
removal of the result of Trinity. The clean reads were mapped to unigenes using Bowtie2,
and then calculated for gene expression levels with RSEM [41,42]. Bgt isolates E26 and E31
were obtained from Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

http://bgi-international.com/us/
http://www.repeatmasker.org/
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2.5. Identification of Coding Sequences

The gene prediction of repeat-masked 6VS sequences was performed through AU-
GUSTUS program. The transcriptome data of H. villosa, which contain 204,258 unigenes,
was used to provide evidence of the loci with coding genes. The predicted genes were
BLASTn against the transcriptome data to define the evidenced gene, with more than 95%
identity and at least 300 bp coverage on a unigene of transcriptome. For GO analysis of
predicted genes, Blast2GO and WEGO software were performed to get GO annotation and
GO functional classification, respectively.

2.6. Development of Intron Target Markers

Firstly, we extracted the annotated coding sequence (CDS) of the unigenes from the
two gene databases of Ae. tauschii chromosome 6DS and T. aestivum chromosome 6DS.
Then, all genes were compared with the genomic sequences of Chinese spring short arm
chromosomes of group 6 and H. villosa 6VS through BLASTn program. The genes which
have homologous copies and predicted at least one intron among 6DS, 6BS, 6AS and 6VS
chromosomes were selected. Thirdly, we determined and compared the intron sizes of
selected genes, and chose the target introns to design the primer pairs with predicted
amplification sizes in 6VS differed from 6DS, 6BS and 6AS simultaneously at least 10%.
Primer 3 (https://bioinfo.ut.ee/primer3-0.4.0/, accessed on 20 August 2019) was used to
design primers in the exons that flanking the target introns.

3. Results
3.1. Flow Sorting and Sequencing of Chromosome Arm 6VS of H. villosa

Flow cytometric analysis of chromosomes isolated from T. aestivum–H. villosa 6VS
ditelosomic addition line resulted in bivariate flow karyotypes FITC (log scale) vs. DAPI
(linear scale) fluorescence, on which a number of populations could be resolved (Figure 1).
The population representing 6VS telosome was identified after screening all populations
with lower DAPI fluorescence, which were expected to correspond to smaller chromosomes.
Microscopic analysis of flow-sorted particles after FISH with probes for pSc119.2 and Afa
family repeats enabled unambiguous identification of the population representing 6VS
telosomes (Figure 1). A detailed microscopic analysis showed that 6VS telosome could be
sorted at an average purity of 89.41% [14]. The sorted DNA was amplified by multiple
displacement amplification (MDA) reactions before Illumina sequencing. Sequencing of
DNA amplified from flow-sorted chromosome 6VS in Illumina MiSeq system generated
47.7 Gb high-quality paired-end reads from two libraries, with insert sizes of 500 bp and
1000 bp, respectively.

After assembly using Hecate software, a total of 230.39 Mb draft sequences was
obtained. The sequences consisted of 153,177 scaffolds. The maximum and minimum
lengths of the scaffolds were 138,620 bp and 100 bp, respectively. The contig N50 and mean
scaffold length were 9.788 bp and 1.464 bp, respectively (Table 1).

https://bioinfo.ut.ee/primer3-0.4.0/
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isothiocyanate (FITC) and counterstained by 4′,6-diamidino-2-phenylindole (DAPI). The popula-
tion representing 6VS telosome is marked by a red rectangle. The inset shows examples of flow-
sorted 6VS telosomes after fluorescence in situ hybridization (FISH) with probes for pSc119.2 (yel-
low-green) and Afa family repeats (red). 
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3.2. The Repetitive DNA Elements in the 6VS Sequence 
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ily. DNA transposons were mainly represented by TIR family, which made up 6.53% of 

Figure 1. Flow sorting of H. villosa chromosome arm 6VS. Bivariate flow karyotype obtained after
the analysis chromosomes isolated from bread wheat-Haynaldia villosa 6VS ditelosomic addition
line. Prior to analysis, GAA microsatellite repeats on chromosomes were labeled by fluorescein
isothiocyanate (FITC) and counterstained by 4′,6-diamidino-2-phenylindole (DAPI). The population
representing 6VS telosome is marked by a red rectangle. The inset shows examples of flow-sorted
6VS telosomes after fluorescence in situ hybridization (FISH) with probes for pSc119.2 (yellow-green)
and Afa family repeats (red).

Table 1. The statistics of assembly of flow-sorted short arm of H. villosa 6V chromosome.

Total bases (Gbp) 47.7
Number of assembly scaffolds 153,177

Total assembly bases (bp) 230,388,792
Max. length of assembly scaffolds (bp) 138,620
Min. length of assembly scaffolds (bp) 100

N50 (bp) 9.788
Mean length (bp) 1.464
GC-content (%) 45.68

3.2. The Repetitive DNA Elements in the 6VS Sequence

Using RepeatMasker software, a total of 181.29 Mb out of 230.39 Mb 6VS assembly
was identified as repetitive sequences, which accounted for 78.31% (Table 2). Among the
repeat elements, the most abundant were LTR retrotransposons comprising of 64.94%, out
of which 51.91% were Gypsy superfamily repeats, followed by 10.81% of Copia superfamily.
DNA transposons were mainly represented by TIR family, which made up 6.53% of all
repeats. After masking all repetitive DNA elements, the remaining nonrepetitive sequence
reads from 6VS equaled 49.1 Mb, which was used for the following gene prediction and
sequence comparisons.
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Table 2. Identification of repetitive DNA elements in short arm of H. villosa 6V chromosome.

Type Subtype Total Length (bp) % Genome

DNA transposon
TIR 11,269,751 6.53

Helitron 189,843 0.11
retrotransposon

LTR_Copia 18,656,357 10.81
LTR_Gypsy 89,588,481 51.91

LTR_Unknown 3,831,370 2.22
SINE 1,691,326 0.98

Unknown 4,694,291 2.72
tandem repeat 535,011 0.31

unknown 4,694,291 2.72

3.3. Gene Content of Chromosome Arm 6VS

By ab initio gene prediction using AUGUSTUS software, 5.973 predicted coding
genes were preliminarily identified from repeat-masked scaffold of 6VS. Referring to
the transcriptome data of H. villosa [21] as the evidence of coding loci, 3.276 genes on
2.871 scaffolds of 6VS were retained and deemed as high-confidence genes (HCG). The
gene length distribution is shown in Figure S1A. The genic sequences represented a total
length of 5,278,412 bp, which accounted for 2.3% of the 6VS assembly. Totally, 1.672 genes
were classified to one or more Gene Ontology (GO) terms (Figure S1B). The number of genes
which was annotated into biological process, molecular function and cellular component
were 1.432, 1.150 and 1.441, respectively.

In order to test the quality of the 6VS annotation, genes NLR-V [43], STPK-V [31] and
NAM-V1 [9] which have been cloned from 6VS were selected for BLASTn search. The
sequence homology of the cloned genes and the annotated sequences were 99.93%, 100.00%
and 99.93%, respectively, implying a high quality of the H. villosa 6VS annotation. As
H. villosa and H. vulgare are evolutionarily closely related, we performed micro-collinear
analysis between two randomly selected scaffolds (scaffold6533, scaffold16282) of H. villosa
and H. vulgare genome. Sixteen and six annotated genes on scaffold6533 and scaffold16282,
corresponded to 14 and six genes of H. vulgare in their collinear region, respectively
(Figure S2), further indicating the reliability of 6VS annotation. Thus, the 6VS draft sequence
obtained in this work will facilitate further extensive gene mining from 6VS.

3.4. Comparative Genome Analysis of 6VS Sequence Composition

By referring to the genomic reference of common wheat cv. Chinese Spring released
by IWGSC [43], the HCGs of 6VS were used to identify the syntenic regions of 6VS on
wheat chromosomes 6A, 6B and 6D. By referring to the released genome sequences of other
T. aestivum species, the 6VS syntenic regions were identified on chromosomes 6A and 6B
of tetraploid T. dicoccoides, 6D of Ae. tauschii, 6A of T. urartu and 6H of H. vulgare. After
filtering, 2.867 6VS HCGs had 1.499, 1.577 and 1.430 blastn hits with their homologous
genes in wheat chromosomes 6A, 6B and 6D, respectively; 1.323 and 1.374 blastn hits
with their homologous genes in T. dicoccoides chromosomes 6A and 6B, respectively; 1.301,
1.424 and 1.307 blastn hits with their homologous genes in Ae. tauschii chromosome 6D,
in T. urartu 6A and in H. vulgare 6H, respectively. Moreover, 634 out of 2.867 genes were
shared by all eight genomes. The syntenic genes on T. aestivum 6A, 6B and 6D, T. dicoccoides
6A and 6B, Ae. tauschii 6D, T. urartu 6A and H. vulgare 6H were plotted on chromosomes to
highlight their syntenic regions, according to their physical position (Figure 2). As expected,
the syntenic regions with high gene density were observed on chromosome arms 6AS, 6BS
and 6DS of T. aestivum, 6AS and 6BS of T. dicoccoides, 6DS of Ae. tauschii, 6AS of T. urartu
and 6HS of H. vulgare.
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Td, At, Tu and Hv represent T. aestivum, T. dicoccoides, Ae. tauschii, T. urartu and H. vulgare, respectively. The blue arrows
represent the position of the centromere of common wheat.

3.5. NB-ARC Domain Proteins Enrichment and their Expression Profiling after Bgt Infection

In China, the translocation line T6VS·6AL has been used as a backbone parent of
wheat breeding, and more than 20 commercial varieties carrying the chromosome have
been cultivated for powdery mildew resistance. Despite NLR1-V for Pm21 has been
cloned, a question comes out whether only one gene could persist resistance for 30 years.
Here, we identified resistance gene analogs (RGAs) from 6VS assembly and preliminarily
investigated their expression profiling after infection of Blumeria graminerum f. sp tritici
(Bgt). NB-ARC domain proteins are a typical type of RGAs. In the 6VS assembly, a total of
45 genes were predicted to encode NB-ARC domain proteins using HMMER model [44].
We analyzed transcriptome of the wheat-H. villosa T6VS/6AL translocation line after the
treatment with two Bgt isolates E26 and E31. We found that, of the 45 genes, 28 were
expressed after inoculation of both isolates within 24 h, with 15 genes up-regulated two-
fold or more when compared to the control (Figure 3). As 6VS chromatin introduced to
wheat showed the main contributor of the resistance to various Bgt isolates, we propose
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that apart from the NLR1-V and STPK-V cloned from 6VS, there might exist other disease
resistance encoding genes involved in the innate immunity of H. villosa to Bgt infection.
Functional validation of these R genes in resistance to powdery mildew will need to be
carried out in the future.
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3.6. Haplotype Analysis of GW2-6V

Four SNPs that occurred in the promotor region of TaGW2-6A were reported to be
associated with thousand-grain weight (TGW) at positions −998 bp, −739 bp, −593 bp
and −494 bp, in which SNP at −494 bp showing significant association with TGW and
located in the ‘CGCG’ motif [45]. SNP-494 has most effect on TaGW2-6A expression level
and TGW, with haplotypes of the A allele having significantly lower TaGW2-6A expression
higher TGW compared with those with the G allele. To figure out if the increased TGW of
6VS/6AL translocations was due to the substitution of 6AS with 6VS, the TaGW2-6A gene
homologue GW2-6V was identified in the 6VS assembly. However, the GW2-6V in H. villosa
belongs to G allele at SNP-494and was associated with low TGW (Figure 4), implying
GW2-6V allele was not attributable to high TGW.
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3.7. Development of 6VS Specific Intron Targeted (IT) Markers

Zhang et al. and Wang et al. developed IT markers for all chromosomes except for
6VS of H. villosa [23,24]. With the shotgun sequences of 6VS, IT markers for this short
arm could now be developed. All 2,063 annotated genes from Ae. tauschii 6DS were
aligned against the wheat genome reference and 6VS assembly sequences, and exon-exon
junction lengths on chromosomes 6AS, 6BS, 6DS of T. aestivum as well as on 6VS were
determined. A total of 222 genes had the intron length in H. villosa differing by at least 10%
as compared to those in wheat subgenomes A, B and D. Then, we designed PCR primers
in the conserved exon regions which flanking the targeted introns using Primer 3 software
(http://frodo.wi.mit.edu/primer3/, accessed on 20 August 2019).

The designed 222 IT primers on 6VS of H. villosa were tested by PCR analysis using
DNA samples of T. aestivum cv. Chinese Spring (AABBDD), H. villosa (VV) and T. aestivum–
H. villosa T6AL·6VS translocation line. If the primer pair amplifies a distinct PCR product
visualized only in H. villosa, and T. aestivum–H. villosa T6AL·6VS translocation line while
not in common wheat, it was considered 6VS-specific marker. In total, 119 6VS-specific
markers were obtained with a success rate of 53.60% (Table S1). All these markers were
tested on six lines including three other lines of H. villosa and three different addition lines
for H. villosa 6V for the detection of variation within the species. Except for seven markers
that could not detect polymorphism between common wheat c.v. Chinese Spring and part
of above lines (number 1–4), the remaining 112 markers could be used to trace 6VS alien
chromatin across the different H. villosa lines (Figure S3, Table S2).

All IT markers were further tested using three different translocation lines, NAU418,
NAU419 and NAU1203, all involving 6VS but having different introgressed 6V segments.
The chromosome arm could be dissected into four bins: bin1 to bin4 (Figure 5), which
contained 34, 11, 46 and 29 markers, respectively. Given that all three translocation lines
are resistant, consistent with previous results, the powdery mildew resistant gene Pm21
was mapped into bin3. The 40 markers within this physical bin are suitable for marker-
assisted breeding.
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(VV); 3: T. aestivum–H. villosa translocation line (T6VS·6AL); 4–6: Three T. aestivum–H. villosa small
fragment translocation lines (NAU418, NAU419 and NAU1203); 7: DNA Ladder.

4. Discussion
4.1. Aneuploid Germplasm Facilitates Flow-Sorting Target Chromosomes or Chromosome Arms

In order to characterize the short arm of H. villosa chromosome 6V (6VS) at DNA level,
we combined flow cytometric chromosome sorting and next-generation DNA sequencing.
When compared to whole genome sequencing, this approach provided a massive and
lossless reduction of DNA sample complexity and facilitated DNA sequence analysis. A
chromosome can be purified by flow sorting if it differs in relative DNA content from other
chromosomes in a karyotype, which is not the case of chromosome 6V in H. villosa. Thus,
we used T. aestivum–H. villosa 6VS ditelosomic addition line to sort 6VS, since the telocentric
chromosome 6VS is smaller in size compared with other intact chromosomes. With the aim
to achieve a high resolution of 6VS, we employed bivariate analysis of DNA content (DAPI
fluorescence) and the amount of GAA microsatellites labeled by FITC following the FISHIS
protocol [36]. This approach permitted sorting 6VS arm at almost 90% purity.

4.2. The Available 6VS Sequences Would Facilitate the Introduction of Interest Genes with
Minimized Linkage Drag by Chromosome Engineering

H. villosa has been an important donor of disease resistance in wheat breeding, and
Pm21 transferred from H. villosa into wheat remains the most effective powdery mildew
resistance gene [10]. Pm21 transferred from wheat–H. villosa translocation line T6AL·6VS,
has been successfully utilized in wheat breeding, and more than 20 wheat varieties carrying
the 6VS·6AL translocation chromosome have been released in China [46]. Although Pm21
has been cloned, its introduction by genetic transformation may not be acceptable by the
market [47]. Thus, the introgression of alien chromatin harboring traits of interest by
chromosome engineering remains a priority. However, due to linkage drag, this strategy
often introduces favorable traits together with deleterious loci, such as compromised yield
or quality [48]. Thus, advanced chromosome engineering is needed to minimize alien
chromatin during alien introgression breeding. The main procedures for reducing alien
chromatin in wheat is to induce chromatin break-rejoining by ionizing radiation, or induce
meiotic recombination between the alien chromatin and its homoeologous common wheat
counterpart. The available of 6VS genome sequence enables us to gain the knowledge
of beneficial and deleterious gene alleles, if these homoeologous genes were extensively
studied, such as GW2-6V, which contributed to low TGW. Therefore, people could define
the size of introgressed chromatin to preserve as many beneficial genes and remove as
many deleterious loci as possible.

4.3. The High TGW for 6VS/6AL Translocation Line Was Not Attributable to GW2-6V

Wheat cultivars carrying the 6VS/6AL translocation have been used extensively in
wheat production, accumulating acreage, now being more than four million hectares in
China [10]. The translocation lines improved not only high powdery mildew resistance,
but also an increase of TGW [49]. In a previous study, TaGW2-6A was described as a
negative regulator of grain-width and grain-weight [45,50,51]. The higher expression
of TaGW2-6A was associated with lower TGW and vice versa. The SNP-494 in ‘CGCG’
motif of the promoter region was found to underlie the trait, of which SNP-494_G (CGCG
motif) haplotype has higher expression and lower TGW, and SNP-494_A (CACG motif)
haplotype has lower expression but higher TGW [45]. From our 6VS genomic sequence,
GW2-6V belongs to SNP-494_G haplotype. We speculate that higher TGW of the 6VS/6AL
translocations might be affected by other genes rather than GW2-6V, or that the expression
of alien gene is suppressed due to genomic shock in wheat background although the
genotype at position −494 was the same with low TGW.
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4.4. Development of Specific Molecular Markers Using Chromosome Sorting Strategy

The development of molecular markers is now much easier than before due to falling
costs of next-generation sequencing. As shown in this work, this is true also in species
without genome sequence, especially if a chromosome of interest can be purified by flow
sorting. The sequences from alien chromosomes could then be combined with available
wheat genome sequences to develop molecular markers suitable for detecting alien chro-
matin. Tiwari et al. developed 2.178 5MgS-specific SNPs for Ae. geniculata by combining
chromosome flow sorting and sequencing and highlighted the power of this approach for
mining markers specific for alien chromatin [25]. Zhang et al. developed 1,624 intron target-
ing markers for all H. villosa chromosomes, except 4VS and 6VS arms, and out of them, 841
(51.79%) markers were specific for tracing H. villosa chromatin in wheat background [23].
Wang et al. developed 359 intron targeting primers by combining chromosome sorting and
sequencing, among which 232 (64.62%) can be used to trace the 4VS chromatin in the wheat
background [24]. In this study, with the availability of the 6VS sequence, we designed
222 IT primer pairs and 119 (53.60%) were proved to be 6VS-specific. Apart from improving
the knowledge of genome structure of an important donor of genes in wheat improvement
and development of markers to support its use in alien introgression breeding of wheat,
the results of this work confirm that chromosome sorting combined with next-generation
sequencing is an efficient strategy for IT marker development.

5. Conclusions

Here, we report a draft DNA sequence of H. villosa chromosome arm 6VS and anno-
tation of high-confidence of 3.276 genes. The coding genes showed a fine synteny with
Triticeae group 6 chromosomes. A total of 119 IT markers specific to 6VS were developed
and used to identify 6VS chromatin in three alien introgression lines. The results and
resources developed from this study will support further analysis of the genomic structure
of 6VS and cloning of potential functional RGA genes and accelerate its utilization in
breeding for bread wheat’s improvement.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11091695/s1. Figure S1: Sequence length distribution of 3275 coding genes (A)
and their Gene Ontology classification (B). Figure S2: Microsynteny between two scaffolds scaf-
fold6533 (A) and scaffold16282 (B) and their respective collinear counterparts in barley. Figure S3:
The amplification results of representative markers in four Haynaldia villosa lines and three H. villosa
6VS additional lines. Table S1: Markers specific for short arm of H. villosa 6V chromosome. Table S2:
The amplification results of all IT markers in multiple Haynaldia villosa lines.
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35. Vrána, J.; Kubaláková, M.; Šimková, H.; Číhaliková, J.; Lysák, M.A.; Doležel, J. Flow sorting of mitotic chromosomes in common
wheat (Triticum aestivum L.). Genetics 2000, 156, 2033–2041. [CrossRef]

36. Giorgi, D.; Farina, A.; Grosso, V.; Gennaro, A.; Ceoloni, C.; Lucretti, S. FISHIS: Fluorescence In Situ Hybridization in Suspension
and Chromosome Flow Sorting Made Easy. PLoS ONE 2013, 8, e57994. [CrossRef] [PubMed]
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