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Hyperaccumulators for Potentially

Toxic Elements: A Scientometric

Analysis. Agronomy 2021, 11, 1729.

https://doi.org/10.3390/

agronomy11091729

Academic Editors: Maria Pilar Bernal

and Paula Alvarenga

Received: 13 July 2021

Accepted: 26 August 2021

Published: 29 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Natural Resources and Environment, Northwest A&F University, Yangling,
Xianyang 712100, China; dongming.zhang@nwafu.edu.cn (D.Z.); ljlll@nwafu.edu.cn (J.L.)

2 Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China (Ministry of Agriculture),
Northwest A&F University, Yangling, Xianyang 712100, China

3 Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada;
miles.dyck@ualberta.ca

4 Department of Soil Amelioration, Division for Agroecology, University of Zagreb Faculty of Agriculture,
10000 Zagreb, Croatia; lfilipovic@agr.hr (L.F.); vfilipovic@agr.hr (V.F.)

* Correspondence: hailong.he@hotmail.com

Abstract: Phytoremediation is an effective and low-cost method for the remediation of soil contami-
nated by potentially toxic elements (metals and metalloids) with hyperaccumulating plants. This
study analyzed hyperaccumulator publications using data from the Web of Science Core Collection
(WoSCC) (1992–2020). We explored the research status on this topic by creating a series of scientific
maps using VOSviewer, HistCite Pro, and CiteSpace. The results showed that the total number of
publications in this field shows an upward trend. Dr. Xiaoe Yang is the most productive researcher on
hyperaccumulators and has the broadest international collaboration network. The Chinese Academy
of Sciences (China), Zhejiang University (China), and the University of Florida (USA) are the top
three most productive institutions in the field. China, the USA, and India are the top three most
productive countries. The most widely used journals were the International Journal of Phytoremediation,
Environmental Science and Pollution Research, and Chemosphere. Co-occurrence and citation analysis
were used to identify the most influential publications in this field. In addition, possible knowledge
gaps and perspectives for future studies are also presented.

Keywords: scientometrics; science mapping; VOSviewer; HistCite Pro; heavy metals; arsenic;
cadmium; mercury; lead

1. Introduction

Potentially toxic elements (PTEs), including metals and metalloids, are important
pollutants originating from the mineralization of parent materials (geogenic origin) or hu-
man activities (anthropogenic origin), and their concentration in the environment increases
year by year [1]. Increased concentrations of PTEs in the environment pose a severe threat
to human, animal, and plant health. For example, the frequently reported “blood lead
incident” [2], “cadmium rice” [3], and “heavy metal contaminated vegetables” [4] are all
associated with PTE pollution. In addition, PTEs may pollute the air through wind ero-
sion [5,6] as well as surface and underground water bodies through surface runoff or deep
percolation [7]. Phytoremediation is an efficient and environmentally friendly remediation
strategy for PTEs pollution [8,9], which can be used for the reclamation of contaminated
soils without disturbing soil fertility and biodiversity [10,11]. Hyperaccumulators can
generally accumulate large amounts of PTEs at concentrations 10 to 100 times higher than
non-hyperaccumulating plants can tolerate [12]. In addition, Macnair [13] stated that the
shoot-to-root quotient of concentrations for PTEs in super-enriched plants is usually >1.
Besides using plants in situ, other ex-situ strategies, such as excavation of polluted soil
followed by a certain treatment, are also possible, although they are much more labor- and
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cost-demanding. Therefore, hyperaccumulators are considered a green alternative to solve
the issue of PTEs pollution and are a more practical approach for large-scale applications.

Hyperaccumulating plants of PTEs have developed certain adaptation mechanisms
that enable them to tolerate high concentrations in their tissues [14–20]. These tolerance
mechanisms may include (1) organometallic complexes with donor ligands, including
organic acids [21,22], cysteine [23,24], nicotinamide [25,26], histidine [27–30], and other
thiols with low molecular weight [31]; (2) transportation capability [32], e.g., it is thought
that arsenic (As) uptake by Pteris vittata is achieved through a high-affinity phosphate
transport system [33]; (3) compartmentation potential [34,35], e.g., Asemaneh et al. [34]
proposed that cellular and subcellular compartmentation are both possible mechanisms for
nickel (Ni) tolerance employed by the serpentine Alyssum murale and Alyssum bracteatum;
and (4) the ability to store these complexes in the vacuoles of leaf storage cells [36]. Tol-
erance is a key prerequisite for the accumulation and phytoremediation of PTEs [37,38].
Plants are not considered to be hyperaccumulators or super-enriched if they cannot tolerate
high concentrations of PTEs in their tissues and complete their life cycle. However, for a
successful hyperaccumulating plant, the ability to produce high biomass is also important,
in addition to their ability to uptake high concentrations of PTEs without having a negative
impact on their physiological processes. For instance, Chen and Cutright [39] found that
ethylene diamine tetraacetic acid (EDTA) could increase the concentration of cadmium (Cd)
in the stem of sunflower, but the total biomass of plants decreased sharply. Ent et al. [40]
described that a hyperaccumulator should include extreme tolerance and have a very high
bioconcentration factor.

As the emission of PTEs into the environment by continuously expanding urban-
ization and agriculturalization is increasing worldwide, it is expected that the topic of
PTEs-hyperaccumulating plants and their potential for removing these PTEs from the
contaminated soils will keep increasing in the future. Scientometric analysis of hyperac-
cumulators for remediating contaminated soils is thus a useful tool for identifying and
summarizing the main research points relevant to expanding, publishing, and applying
up-to-date knowledge on this topic. Previous studies have reviewed the applications
and future trends in phytoremediation [8,36,41]. There are also bibliometric studies that
map the overall research status of PTEs in the environment [42–45]. However, there is no
such study focusing on the research status of the topic of hyperaccumulators that have
the potential for PTE removal from contaminated soils. The objective of this study was
therefore to reveal the development history of research focused on hyperaccumulators
from the bibliometric perspective and provide useful information for scientists working in
this research area.

2. Materials and Methods

The Science Citation Index Expanded (SCI-EXPANDED) database of the Web of Sci-
ence Core Collection (WoSCC) contains literature data since 1992. The data between
January 1992 and December 2020 were downloaded from the WoSCC on 10 February 2021
for analysis. The query sets used for the literature search were: “TS = (hyperaccumulating
plants OR hyperaccumulat* OR “accumulator plants” OR phytoremediation OR hyper-
accumulation OR Phytoextraction) AND TS = (heavy metal OR lead (Pb) OR cadmium
OR copper OR Zinc OR mercury OR arsenic OR chromium OR nickel OR antimony OR
aluminum OR contaminated OR polluted)”. Document types of articles, letters, notes,
books/book chapters, data papers, database reviews, proceedings papers, and reviews
written in English were retained. The search was then saved as a text file containing “full
record and citation data” for bibliometric analysis.

VOSviewer v1.6.15 [46], HistCite Pro (history of cite) [47], and CiteSpace v5.7.R5 [48]
were used to analyze the retrieved literature. VOSviewer uses co-citation [49] and biblio-
graphic coupling to generate a visual atlas for the analysis of journals, authors, countries,
institutions, and keywords [46]. Research hotspots in specific fields are generally explored
through keyword analysis. HistCite Pro is a more concise and convenient version of the
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out-of-service HistCite modified by Wang Qing from the Chinese Academy of Sciences.
Citation analysis in Histcite Pro can identify highly cited papers and references. CiteSpace
is a citation network analysis tool developed by Professor Chen Chaomei, and it was used
to develop the strongest citation bursts map of keywords.

3. Results and Discussion
3.1. Annual Publication Trend

A total of 13,239 publications were retrieved from the WoSCC database. Figure 1a
shows an increasing trend in the number of publications in phytoremediation during the
period from 1992 to 2020. It is expected that there will be more publications in the future.
In addition, the majority of the papers were articles (93.22%), followed by reviews (6.68%),
book chapters (0.22%), letters (0.09%), and notes (0.01%). The top ten Web of Science
categories are shown in Figure 1b. Among them, environmental sciences was the subject
area with the greatest volume of publications on hyperaccumulators, accounting for 58.15%
of the total papers, followed by plant sciences (17.57%), engineering environmental (8.94%),
soil science (7.39%), toxicology (5.57%), biotechnology applied microbiology (5.56%), agron-
omy (5.25%), water resources (5.08%), ecology (4.24%), and biochemistry and molecular
biology (3.78%).
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Figure 1. (a) Annual publications on the topic of hyperaccumulators remediation of potential
toxic element (PTE) pollution based on data from Science Citation Index Expanded (Sci-Expanded)
database of the Web of Science Core Collection (WoSCC) and document types; (b) percentages of
publications for Web of Science categories.
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3.2. Citation Network of Authors, Organizations, and Countries

A total of 457 authors met the threshold of a minimum of 10 publications per author.
They consisted of 31 clusters in different colors (Figure 2), which indicates that there
are 31 closely related groups working on hyperaccumulators for PTE pollution. Among
them, Dr. Xiaoe Yang from Zhejiang University (Zhejiang, China) had more international
collaborations than the other authors, as indicated by the greatest value of total links (TLS)
of 294, followed by Dr. Xun Wang from Sichuan Agricultural University (Sichuan, China)
(TLS = 247) and Dr. Yongming Luo from the Chinese Academy of Sciences (Beijing, China)
(TLS = 211).
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Figure 2. Co-authorship network map of authors. There are 31 clusters with a total of 1634 links and
a total link strength (TLS) of 8122.Larger nodes indicate that the researcher has more publications.
Lines connecting clusters indicate a collaboration between the researchers, which is stronger when
the line is thicker. Note that this is produced by VOSviewer and the content cannot be modified.

Some of the most productive authors with over 100 publications on this topic include
Dr. Xiaoe Yang (N = 131), Dr. Alan J.M. Baker (N = 108) from the University of Melbourne
(Melbourne, Australia), Dr. Ma Lena Q (N = 103) from Zhejiang University (Zhejiang,
China), Dr. Yongming Luo (N = 101) and Dr. Jaco Vangronsveld (N = 101) from University of
Hasselt (Diepenbeek, Belgium). It is interesting to note that Dr. Xiaoe Yang has conducted
much research on Sedum alfredii Hance (a Zn-hyperaccumulator plant species) [50–54],
including the phytoremediation of combined contamination with zinc (Zn), copper (Cu),
and other PTEs [55–58]. Dr. Alan J.M. Baker investigated the effects of a variety of
hyperaccumulators [59–61] on pollution of PTEs, including nickel (Ni) [62], manganese
(Mn) [63], and cadmium (Cd) [64], among other metals and metalloids. These studies from
Dr. Alan J.M. Baker were highly cited by studies related to hyperaccumulator research
retrieved from the Web of Science, as indicated by the greatest total local citation score
(TLCS) of 6262. They were also highly cited by other related research as indicated by the
greatest total global citation score (TGCS) of 10,248.

The top 10 organizations and countries are shown in Table 1 and Figure 3. Six of the
top 10 institutions were from China, which makes China the most productive country
on hyperaccumulator research, with N = 3554 (Table 1). China was followed by the USA
(N = 1772) and India (N = 1052). Fewer studies were found from Africa, the Middle East,
and South America (Figure 3), but the underlying reason remains unknown. It was noted
that the per-article citations (TGCS/N = 51) of the USA were much higher than the other
countries. This is also true for the University of Florida (Gainesville, FL, USA), whose
TGCS/N (54) was higher than the other top 10 productive organizations.
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Table 1. The top 10 organizations and countries in overall strength of publications related to phytoremediation. The number
of publications (N), total local citation score (TLCS), total global citation score (TGCS), total number of links (L), and total
link strength (TLS) were obtained from the VOSviewer. TGCS/N is the per-article citations.

No. Items N TLCS TGCS L TLS TGCS/N

Top 10 organizations

1 Chinese Academy of Sciences (China) 855 10,651 24,491 182 927 29
2 Zhejiang University (China) 344 5143 10,573 82 274 31
3 University of Florida (USA) 226 6391 12,142 69 266 54
4 Nanjing Agricultural University (China) 207 3122 6484 55 180 31
5 Consejo Superior de Investigaciones Científicas (Spain) 205 1982 7769 87 215 38
6 University of Chinese Academy of Sciences (China) 182 884 2510 58 278 14
7 University of Lorraine (France) 159 1039 2399 69 252 15
8 Sichuan Agricultural University (China) 147 846 1823 28 71 12
9 The University of Melbourne (Australia) 141 3226 6936 74 209 49
10 Sun Yat-sen University (China) 128 1655 3534 52 143 28

Top 10 countries

1 China 3554 32,535 79,946 61 1397 22
2 USA 1772 37,501 90,176 65 1133 51
3 India 1052 11,223 33,446 48 384 32
4 France 745 10,502 25,694 62 789 34
5 Spain 694 6091 20,788 53 444 30
6 Italy 619 7379 18,489 53 336 30
7 Pakistan 562 6212 14,449 40 559 26
8 Poland 543 2958 9168 48 314 17
9 Australia 539 7826 20,881 56 617 39
10 United Kingdom 539 18,318 38,660 55 442 72

Agronomy 2021, 11, 1729 5 of 13 
 

 

stronger when the line is thicker. Note that this is produced by VOSviewer and the content cannot 

be modified. 

Table 1. The top 10 organizations and countries in overall strength of publications related to phytoremediation. The 

number of publications (N), total local citation score (TLCS), total global citation score (TGCS), total number of links (L), 

and total link strength (TLS) were obtained from the VOSviewer. TGCS/N is the per-article citations. 

No. Items N TLCS TGCS L TLS TGCS/N 
Top 10 organizations  

1 
Chinese Academy of Sciences 

(China) 
855 10651 24491 182 927 29 

2 Zhejiang University (China) 344 5143 10573 82 274 31 

3 University of Florida (USA) 226 6391 12142 69 266 54 

4 
Nanjing Agricultural 

University (China) 
207 3122 6484 55 180 31 

5 
Consejo Superior de 

Investigaciones Científicas 
(Spain) 

205 1982 7769 87 215 38 

6 
University of Chinese 

Academy of Sciences (China) 
182 884 2510 58 278 14 

7 
University of Lorraine 

(France) 
159 1039 2399 69 252 15 

8 
Sichuan Agricultural 
University (China) 

147 846 1823 28 71 12 

9 
The University of Melbourne 

(Australia) 
141 3226 6936 74 209 49 

10 
Sun Yat-sen University 

(China) 
128 1655 3534 52 143 28 

Top 10 countries  

1 China 3554 32535 79946 61 1397 22 

2 USA 1772 37501 90176 65 1133 51 

3 India 1052 11223 33446 48 384 32 

4 France 745 10502 25694 62 789 34 

5 Spain 694 6091 20788 53 444 30 

6 Italy 619 7379 18489 53 336 30 

7 Pakistan  562 6212 14449 40 559 26 

8 Poland 543 2958 9168 48 314 17 

9 Australia 539 7826 20881 56 617 39 

10 United Kingdom  539 18318 38660 55 442 72 

 

Figure 3. World map of publication distribution by country. Figure 3. World map of publication distribution by country.

3.3. Most Recognized Journals

The 13,239 studies on hyperaccumulators were published in 1126 journals, with the
top 10 most utilized journals listed in Figure 4. It is understood that most of these journals
are related to phytoremediation and environmental pollution. The International Journal of
Phytoremediation was ranked No. 1, publishing over 1000 papers on this topic, followed by
Environmental Science and Pollution Research (N = 813) and Chemosphere (N = 705).
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3.4. Highly Impacted Studies

Citation analysis with HistCite Pro showed that papers numbered 135 [60], 138 [65],
144 [66], 145 [67], and 149 [68] were highly cited, as indicated by the larger circles and more
surrounding arrows (Figure 5). These studies have greatly contributed to the promotion
of the application of phytoremediation. The papers numbered 135 [60], 411 [69], 516 [70],
and 2998 [71] explained molecular mechanisms of plant tolerance and homeostasis. The
papers 138 [65], 3063 [72], 4246 [16], and 5661 [8] highlighted the applications of phytore-
mediation and more possibilities for the future. The paper numbered 508 [73] reported an
As-hyperaccumulator plant species, Pteris vittate. The paper numbered 1128 [74] reported
for the first time a new Cd-hyperaccumulator plant (Sedum alfredii Hance). Paper 457 [75]
demonstrated that the mesophyll cells in the leaves of plants are the major storage sites for
Zn and Cd. Paper 522 [76] introduced the phytoextraction of PTEs and considered it an
economical and effective method [77–79].
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3.5. Co-Occurrence Analysis of Keywords

Keywords are generally the core of a study and can reveal the research topic in a partic-
ular field. The VOSviewer software was used to draw the keyword co-occurrence density
map of the 13,239 publications (Figure 6). Phytoremediation was undoubtedly the most
frequently used keyword, with over 1000 occurrences. It is not surprising that the terms
“phytoremediation”, “phytoextraction”, and “accumulation” stand out in Figure 6, as they
are commonly used keywords. Phytoremediation is used to describe the ability of hyper-
accumulators to remove PTEs from soil; therefore, terms such as “tolerance”, “removal”,
“antioxidant enzymes”, and “rhizosphere” are mentioned repeatedly [75,95,96]. The use of
terms for PTE, such as “zinc” [97,98], “cadmium” [74,99], and “copper” [100–103], as well as
hyperaccumulators, such as “thlaspi-caerulescens” [14,104,105], indicates that the phytoreme-
diation of particular metal (i.e., zinc (Zn), cadmium (Cd), and copper (Cu))-contaminated
soils has been extensively studied. It should be noted that the keyword co-occurrence
density map can only show the hotspots of phytoremediation research in a qualitative way,
and it cannot reflect the temporal change, which will be further resolved in the next section.
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3.6. Keywords with the Strongest Citation Bursts

Figure 7 shows the temporal change of frequently appearing keywords or research
hotspots with the strongest citation bursts analysis using CiteSpace. The red lines represent
the time periods for a keyword with a strong burst. “Nickel”, “zinc”, and “cadmium”
were the most-studied PTEs from the 1990s to 2000s. “Metal tolerance” in “plant”, such as
“brassicaceae” received widespread attention from 1994 to 2007. The hot topic from 1996 to
1999 was the “uptake” and “transport” of PTEs by “brassicaceae” plants, such as “thlaspi
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caerulescen” and “Indian mustard”. New hyperaccumulators continued to be discovered, as
indicated by “fern” and “arabidopsis halleri” in the 2000s. The concern of PTEs on “health
risk” and the applications of “biochar” to remediate soil heavy metal pollution was a hot
topic in 2018–2020.
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4. Conclusions and Perspectives

In this study, bibliometrics were used to analyze the research status of the topic of
hyperaccumulators for remediating PTE-contaminated soil from 1992 to 2020. The results
show that the number of publications in this field increased steadily and rapidly over
the past three decades. The most productive authors, organizations, and countries were
identified with co-authorship network analysis. Dr. Yang Xiaoe from Zhejiang University
(Zhejiang, China), Dr. Alan J.M. Baker from the University of Melbourne (Melbourne,
Australia), and Dr. Ma Lena Qi from Zhejiang University (Zhejiang, China) were the three
most productive researchers. The Chinese Academy of Sciences (Beijing, China), Zhejiang
University (Zhejiang, China), and the University of Florida (Gainesville, USA) were the top
three institutions in the field. China, the USA, and India were the top three contributing
countries. International Journal of Phytoremediation, Environmental Science and Pollution
Research, and Chemosphere were the most influential periodicals. The co-occurrence and
strong burst analysis of keywords identified the research hotspots and their evolution with
time and provided useful information for invoice and experts alike to better understand
the research status of hyperaccumulators.

Hyperaccumulators are of great significance for the phytoremediation of soil con-
taminated by PTEs, and numerous studies have been conducted over the past decades.
However, it was noted that there is still a lack of comprehensive databases collating the
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currently available hyperaccumulators, their characteristics (e.g., description, classifica-
tion, distribution, collection of records, and analysis of data), and applications, examples,
or demos [106]. In addition, there is a lack of methods that can visualize the transport and
accumulation of PTEs in plants; thus, the use of computed tomography is a promising tech-
nique. Although numerous studies have investigated the transport and accumulation of
PTEs in plants, they are mainly based on destructive sampling methods and cannot be used
to monitor the spatio-temporal change of these characteristics in live plants. Cost-effective
tools that are suited for in situ and continuous measurement are required.

Because of the limitations of VOSViewer itself, such as synonyms that cannot be
intelligently merged and the effect of search methods, this study does not include all the
results of PTEs and hyperaccumulators. In recent years, with the continuous optimization
of software and the continuous improvement of analysis methods, we will overcome these
deficiencies in the future to obtain more detailed and accurate research conclusions.
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