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Abstract: Robusta coffee is a major commercial crop in the Central Highland of Vietnam with
high economic and export value. However, this crop is adversely affected by various pathogens,
particularly nematodes. This study aimed to screen active anti-nematode rhizobacterial strains for
sustainable coffee production. Among more than 200 isolates, the isolate TUN03 demonstrated
efficient biocontrol with nearly 100% mortality of J2 coffee nematodes Meloidogyne spp. and 84%
inhibition of nematode egg hatching. This active strain was identified as Pseudomonas aeruginosa
TUN03 based on its 16S rRNA gene sequence and phylogenetic analysis. In greenhouse tests, the
strain TUN03 significantly reduced the coffee nematode population in the rhizome-soil with an
83.23% inhibition rate and showed plant growth-promoting effects. Notably, this is the first report of
the nematicidal effect of P. aeruginosa against coffee nematodes. This potent strain further showed
an antifungal effect against various crop-pathogenic fungi and was found to be the most effective
against Fusarium solani F04 (isolated from coffee roots) with a 70.51% inhibition rate. In addition,
high-performance liquid chromatography analysis revealed that this bacterial strain also secretes
plant growth regulators including indole acetic acid (IAA), gibberellic acid (GA3), kinetin, and zeatin
in significant amounts of 100, 2700, 37, and 9.5 µg/mL, respectively. The data from this study suggest
that P. aeruginosa TUN03 may be a potential biocontrol agent and biofertilizer for the sustainable
production of Robusta coffee and other crops.

Keywords: coffee production; biocontrol; nematodes; bio-fertilizer; rhizobacteria

1. Introduction

Coffee is one of the most popular consumed beverages worldwide due to its good
taste and numerous health benefits [1]. It is an important industrial crop in many countries,
including Brazil, Vietnam, Colombia, Indonesia, Ethiopia, etc. Among these, Vietnam is
ranked as the largest coffee producer in Asia, and the 2nd in the world for producing two
major coffee species, Robusta and Arabica. Vietnam is the largest producer of Robusta
coffee (May 2021 statistics of International Coffee Organization), accounting for 85% of the
total production [2], which is mainly cultivated in the Central Highlands.

Coffee crops are seriously affected by plant-parasitic nematodes worldwide; in Viet-
nam, root-knot nematode Meloidogyne spp. and the lesion nematode Pratylenchus spp. are
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the major harmful nematodes attacking coffee plantations [2–6]. More than 80% of coffee
trees may suffer and eventually die due to nematode-induced diseases during the process
of replanting [7]. Plants infected by nematodes show yellow leaves, stunted growth, rot
root or galling, and the tree may eventually die [8–11].

Since the 1950s, chemical nematicides have been used for effective control of nema-
todes; however, these treatments result in environmental pollution, and affect the quality of
products [12,13]. Thus, various alternative methods have been used including cultivation
in a semi-arid environment along with the use of chemicals [14], co-cultivation of plants,
using resistant planting material and removing infected plants [15], organic soil amend-
ments [16], and application of herbal extracts [17] and beneficial microorganisms [18].
Among these, the use of microbes has gained high attention due to their plant-friendly and
cost-effective aspects [19–21]. Microorganisms demonstrate anti-nematode activities by
producing enzymes (chitinase, protease), volatile compounds, and various other secondary
metabolites [11,13,22–25]. Beneficial rhizobacterial strains have been used due to their
potential multiple bioactivities against pathogens and also due to the production of plant
growth-promoting substances [13,26,27].

While several studies have investigated the effect of coffee nematodes in Vietnam [2–4,7,14],
very few have reported the use of beneficial microbes for cost-effective biocontrol of coffee
nematodes [6]. In this study, we report the isolation, selection, and identification of anti-
nematode rhizobacteria in Vietnamese Robusta coffee plant roots and the assessment
of their potential use in biocontrol and plant promotion effect on coffee seedlings. The
plant growth-promoting compounds were also analyzed via high-performance liquid
chromatography (HPLC).

2. Materials and Methods
2.1. Isolation and Identification of Rhizobacterial Strains from Robusta Coffee Roots

For isolation of rhizobacterial strains (RBs), trypticase soy agar (TSA) medium (Sigma
Aldrich) was used. TSA medium was prepared by dissolving 40 g of TSA in 1 L distilled
water and its initial pH was adjusted at 7, then the medium was sterilized in an autoclave
for 30 min at 121 ◦C.

Isolation of RBs was performed according to the method reported by Nguyen et al.
(2019) [13]. In brief, the soil samples were collected from the rhizosphere of healthy coffee
trees and ground. One gram of soil sample was mixed with 99 mL sterile water in a plastic
centrifuge tube and shaken at 200 rpm for 12 h. This was then kept still for 1 h to settle the
soil, and 0.1 mL of the suspension was spread on to TSA medium and incubated at 30 ◦C
for 1–3 d. Single colonies appearing on the plate were isolated the sub-cultured on a fresh
TSA medium several times.

All RBs were stored in 50% of glycerol at −32 ◦C. The active bacterial strain was iden-
tified by sequencing its 16S rRNA gene according to the protocol described by Tran et al.
2018 [28]. In brief, a nearly full-length segment of the 16S rRNA gene was amplified by poly-
merase chain reaction (PCR) using the universal primers 27f (5′-AGAGTTTGATCMTGGCT
CAG-3′) and 1492r (5′-TACGGYTACCTTGTTACGACTT-3′). The 16S rRNA gene was
amplified on an iCycler thermal cycler (Bio-Rad, USA) using the following program: 94 ◦C
for 5 min, then 30 cycles of denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s,
and extension at 72 ◦C for 2 min. The amplified products were then separated by agarose
gel (1.5%, w/v) electrophoresis. The target bands in the agarose gel were sliced out and
purified using a QIAquick PCR purification (Promega Co., Madison, WI, USA). Sequencing
reactions were carried out in a CEQ8000 Genetic Analysis System (Beckman Coulter Inc.,
Miami, FL, USA) using a CEQ Dye Terminator Cycle Sequencing Kit (Beckman Coulter
Inc., Miami, FL, USA).

2.2. In Vitro Assay of Anti-Nematode Activity

Preparation of Bacterial Strains: The RBs were grown in trypticase soy broth (TSB,
Sigma Aldrich). TSB was prepared by dissolving 20 g of TSB in 1 L distilled water, with
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an initial pH of 7, then the medium was sterilized in an autoclave for 30 min at 121 ◦C.
RBs were cultured on the TSB medium with shaking speed (150 rpm) at 28 ◦C for 48 h.
The culture broth was centrifuged at 8000 rpm for 10 min and then kept still to settle the
bacterial biomass. The bacterial mass was suspended in saline buffer and adjusted to the
density of 107 CFU mL−1 after spectrophotometric measurement at 600 nm. These bacterial
suspensions were used for in vitro and greenhouse tests.

Preparation of Eggs and Root-Knot Nematodes (J2): J2 Nematodes were prepared per
the assay presented by Khan et al. 2008 [29]. The coffee roots were collected and washed
by water to remove soil, and the egg masses collected from the roots using forceps were
washed with sterile water and then with 0.5% sodium hypochlorite. The eggs were finally
agitated and rinsed with sterile water on a sieve (26 µm pores). The second-stage juveniles
(J2) were obtained by incubating the eggs for 3–5 days [30]. These nematodes J2 were used
for all subsequent tests. The process is summarized in Figure 1.
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Figure 1. Preparation of eggs and root-knot nematodes (J2). The sick Robusta coffee (A) showing symptoms of nematode
infection with yellow leaves was used, and its root system was harvested (B). Sick roots having root-knots (C) were collected
to isolate nematode eggs (D), then these eggs were incubated for 3–5 days for their development (E) and hatching (F) to
obtain fresh J2 nematodes (G). The images of coffee nematode eggs and J2 nematodes were observed and recorded using an
Optical Olympus Microscope (Model CH30RF200, Olympus Co., Tokyo, Japan).

Anti-Nematicidal Assay: A hundred microliters of bacterial solution (107 CFU mL−1)
was mixed with 250 µL sterile distilled water containing 30 freshly hatched J2 nematodes.
The experiment was performed in a 96-well tissue culture plate at room temperature
(around 28 ◦C), and the dead and live nematodes were counted after 24 h of incubation.



Agronomy 2021, 11, 1887 4 of 18

The nematodes that did not move on being touched with a fine needle were defined as
dead according to the method of Cayrol et al. 1989 [31]. The dead and live nematodes were
observed and are illustrated in Figure 2A,B. All the tests were performed in triplicate.
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Figure 2. Images of the anti-nematicidal and anti-fungal assays of the rhizobacterial strains. The
mobilized J2 coffee nematodes (A) became immobilized J2 coffee nematodes (B) after 24 h of treatment
with rhizobacterial strain. The pathogenic fungus was grown on potato dextrose agar (PDA) (C),
control dish, and also on PDA treated with a rhizobacterial strain (D), experimental dish. After
five days of cultivation, the radius (cm) of fungal mycelial spread on the control dish (Rc) and the
experimental dish (R) were measured for the calculation of antifungal activity.

Assay for the inhibition of nematode egg hatching: A hundred microliters of bacte-
rial solution (107 CFU mL−1) was mixed with 250 µL sterile distilled water containing
200 nematode eggs, and then added to a 96-well tissue culture plate. The mixture was kept
at room temperature (around 28 ◦C) for 3 d before the hatched juveniles were counted
under a low-power stereoscopic microscope [13]. All the tests were performed in triplicate.

2.3. The Effect of Rhizobacterial Strains as Anti-Nematodes and the Plant-Promoting Effect for
Robusta Trees in Green Houses

Robusta coffee (TR4) seedlings were supplied by the Division of Agro-Forestry System,
Western Highlands Agriculture and Forestry Scientific Institute, Buon Ma Thuot 630,000,
Vietnam. The initial TR4 seedling sizes, including shoot length (17.41 cm), root length
(8.43 cm), shoot dry weight (8.32 g/10 trees), and root dry weight (9.21 g/10 trees), were
determined.

The effect of the selected rhizobacterial strain Pseudomonas aeruginosa TUN03 was
further evaluated in the greenhouse test. Local Robusta coffee (TR4) seedlings with five
leaves and with equal height were used for the tests. The coffee seedlings were randomly
categorized into five experimental groups and in triplicate with 30 coffee seedlings per
group, including two control groups: the negative control group (Group 1), and the
positive control group (Group 2), as well as three experimental groups: seedlings infected
with nematodes and treated with 100 mL of Pseudomonas aeruginosa TUN03 solution at
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different densities of 0.5 × 107 CFU mL−1 (Group 3), 1.0 × 107 CFU mL−1 (Group 4),
and 2.0 × 107 CFU mL−1 (Group 5). In the negative control group (Group 1), the coffee
seedlings were not treated with bacteria and not infected with nematodes, while in the
positive control group (Group 2), the seedlings were infected with nematodes without
treatment of bacteria.

One coffee seedling was cultivated per pot (prepared according to the previous re-
ports [11,32]) containing 0.6 kg of the mixture of sterilized sand, soil, and organic fertilizer
in a ratio of 1:2:1 (v/v), respectively. The distance between each group and each pot were
set at 60 cm and 50 cm, respectively. All the experiments were performed in a green-
house with 75–80% humidity, temperatures between 25–30 ◦C, and a light intensity of
50–550 µmol m2/s−1 (measured from 08 a.m. to 4 p.m.).

Three hundred J2 nematodes were added to each pot of all groups except Group 1. The
experimental groups were treated two times with 100 mL of Pseudomonas aeruginosa TUN03
solution each time on days 10 and 30 after nematode infection. Tap water was used for
irrigation. The total period of this experiment was three months. The coffee seedlings were
removed from the soil and washed. One gram of roots and 10 g soil were used for counting
the number of J2 nematodes for calculation of the antinematode activity (%). Some growth
parameters including increased shoot, root length, and dry weight (1), and the contents
of some photosynthetic pigments, including chlorophyll a, chlorophyll b, and carotenoid
contents (2) were also were examined.

(1) Increased shoot, root length, and dry weight were determined by comparing the
shoot, root length, and dry weight of the coffee tree after three months (B) to the initial
seedling size (A) according to the equation: Increased parameters = B − A.

(2) The photosynthetic pigments were examined as per the method reported by Nguyen
et al. (2011) [32]. The leaves of coffee seedlings (0.5 g) were collected and cut into small
pieces and immersed in 100 mL of 80% acetone for 72 h to extract the photosynthetic
pigments. The extraction solvent was diluted three times and measured with a
spectrophotometer at 663, 645, and 440.5 nm. The content of photosynthetic pigments
was calculated using the following equations:

Ca (mg/g fresh weight) = (0.0127 × OD663 − 0.00269 × OD645) × 100

Cb (mg/g fresh weight) = (0.0299 × OD645 − 0.00468 × OD663) × 100

Ccar (mg/g fresh weight) = (0.004695 × OD440.5 − 0.000268 (Ca + Cb)) × 100

where Ca, Cb (mg g−1 fresh leaf) are content of chlorophyll a and b; and Ccar (mg/g fresh
weight) is carotenoid content.

2.4. Anti-Fungal Assays

Anti-fungal activity of Pseudomonas aeruginosa TUN03 was assessed according to the
method per Ngo et al. 2020 [33]. A total of 12 fungal pathogen strains (supported from
the Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot,
Vietnam), including Purpureocillium lilacinum F01, Fusarium solani F02, F. solani F03, F. solani
F04, Colletotrichum gloeosporioides F05, F. incarnatum F06, Gongronella butleri F07, Pestalotiopsis
mangiferae F08, F. incarnatum F09, F. oxysporum F10, Neonectria sp. F11, and F. incarnatum
F15. A mycelial plug of growing fungal strain was placed in the center of the Petri dish
containing PDA (potato D-glucose agar) medium, and three lines of Pseudomonas aeruginosa
TUN03 were streaked at a distance of 2 cm from the center of the surface of PDA medium
in Petri dishes (Figure 1). The experiment was maintained at 28 ◦C for 5 d. The radial
growth of fungal mycelium was measured, and the anti-fungal activity was calculated
according to the equation:

Anti-fungal activity (%) = [1 − R/Rc] ∗ 100%
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The radius (cm) of fungal mycelium cultivated on the control dish (not treated with
TNU3 strain) and experimental dish (treated with TNU3 strain) are presented as Rc and R,
respectively (Figure 1C,D). All the tests were done with triplicate.

2.5. High-Performance Liquid Chromatography (HPLC) Analysis of Plant-Promoting Compounds

King B media (Sigma Aldrich) was used for cultivation of Pseudomonas aeruginosa
TUN03 and was prepared in distilled water. Twenty grams of King B media powder was
dissolved in 1 L distilled water and its initial pH was adjusted to 7, then the medium was
sterilized in an autoclave for 30 min at 121 ◦C.

The contents of plant growth-promoting compounds (PGPCs), including IAA, GA3,
kinetin, and zeatin were determined by using the high-performance liquid chromatography
(HPLC; UHPLC-UV Ultimate 3000, Thermo, Germering, Germany) technique. The residues
and bacterial biomass in culture broths of Pseudomonas aeruginosa TUN03 were removed by
centrifugation at 8000 rpm in 10 min and the harvested culture supernatants were used
to detect and determine the concentration of some PGPCs. Five microliters of culture
supernatants were injected into the HPLC system and separated via a C18 column (BDS
Hypersil C18 (250 × 4.6 × 5)). The PGPCs were detected at a wavelength of 254 nm under
the following analysis conditions: mobile phase 60 methanol in water adjusted at pH 5.8
using 10 mM ammonium acetate with a flow rate of 0.8 mL, at a column temperature of
30 ◦C for 10 min. Commercially available substances, including IAA, GA3, kinetin, and
zeatin (Merck KGaA, Darmstadt, Germany) with purities of 98%, 97%, 99%, and 95%,
respectively, were used as standards for calculating the concentration of compounds in the
culture supernatants as following equations:

For the determination of IAA (µg/mL): y = 0.0629x + 0.2191; R2 = 0.990

For the determination of GA3 (µg/mL): y = 0.0098x + 0.0051; R2 = 0.9995

For the determination of Kinetin (µg/mL): y = 0.3777x − 0.4242; R2 = 0.998

For the determination of Zeatin (µg/mL): y = 0.5633x + 0.3056; R2 = 0.9992

where x is concentration of PGPCs and y is the peak area of commercial PGPCs. In addition,
all the tests were done in triplicate.

2.6. Statistical Analysis

All the experiments were of a randomized design. The experimental data on anti-
nematodes, anti-fungi, and plant growth-promoting effects were obtained and analyzed
via simple variance (ANOVA) followed by Duncan’s multiple range test (when the ex-
periment contains ≥6 items that need to be compared) and Fisher’s LSD test (when the
experiment contains ≤5 items that need to be compared) at p = 0.05. Statistical Analysis
Software (SAS-9.4) purchased from SAS Institute Taiwan Ltd. (Taipei, Taiwan) was used
for statistical analysis.

3. Results and Discussion
3.1. Isolation, Evaluation, and Identification of the Most Active Anti-Nematodes Rhizobacterium
via In Vitro Tests

More than 200 rhizobacterial strains were isolated from the rhizosphere soil samples
collected from Robusta coffee fields in the Central Highland of Vietnam. These isolated
strains were evaluated for their anti-nematode activity. The experimental results indicated
that 24 strains demonstrate a high anti-nematicidal activity, with a J2 nematode mortality
value of ≥60%; of these, some strains (TUN03, TUN67, and TUN85) displayed the most
potent effect against J2 nematodes, with mortality value in the range of 92.36–98.26%
(Table 1). For further evaluation of the anti-nematode efficacy of these 24 strains, the coffee
nematode egg hatching inhibitory assay was also performed. The data were recorded and
are presented in Table 1. These isolates showed nematode egg hatching inhibition in the
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range of 35.80–84.03%, and the strain TUN03 was also found to be the most effective strain,
with the highest egg hatching inhibition value of 84.03%. Thus, this potential bacterium
was chosen for further investigation. Based on the 16S rDNA gene sequence analysis, this
bacterial strain was identified as Pseudomonas aeruginosa, with a similarity rate of 100%. The
phylogenetic analysis of the identified strain is illustrated in Figure 3, and the 16s rRNA
gene sequence of this identified strain was submitted in DDBJ/EMBL/Genbank (accession
number: LC645701).

Table 1. Nematicidal activity of some anti-nematode rhizobacteria isolated in the Central Highland
of Vietnam.

No Sample ID
Nematicidal Activity (%)

Mortality of J2
Nematodes

Inhibition Against
Egg Hatch

1 TUN01 87.38 ± 0.72 d 66.07 ± 0.43 fg

2 TUN03 98.26 ± 0.21 a 84.03 ± 0.90 a

3 TUN07 64.92 ± 0.98 kl 77.70 ± 1.02 b

4 TUN11 71.98 ± 1.31 hi 44.95 ± 2.12 j

5 TUN22 89.06 ± 1.42 cd 36.50 ± 0.46 l

6 TUN31 69.21 ± 1.78 ij 70.04 ± 1.02 de

7 TUN45 89.68 ± 0.57 cd 69.25 ± 1.84 e

8 TUN47 66.40 ± 0.25 jk 37.44 ± 0.48 kl

9 TUN66 78.59 ± 1.25 f 65.48 ± 0.41 gh

10 TUN67 92.36 ± 1.20 bc 69.47 ± 0.72 e

11 TUN85 94.45 ± 0.69 b 72.83 ± 1.36 cd

12 TUN99 68.44 ± 2.04 jk 35.80 ± 0.92 l

13 TUN108 77.88 ± 0.44 fg 43.39 ± 0.42 j

14 TUN121 83.38 ± 1.49 e 68.23 ± 0.29 fg

15 TUN145 89.21 ± 0.54 cd 74.39 ± 1.74 c

16 TUN147 66.51 ± 0.25 jk 43.88 ± 0.68 j

17 TUN169 74.31 ± 1.24 gh 35.13 ± 1.47 l

18 TUN178 88.69 ± 1.49 cd 68.73 ± 1.25 ef

19 TUN179 65.35 ± 2.24 kl 45.73 ± 1.23 j

20 TUN184 60.01 ± 0.35 m 39.65 ± 1.15 k

21 TUN198 75.71 ± 1.31 gh 55.57 ± 0.39 i

22 TUN199 77.83 ± 1.55 fg 62.90 ± 0.88 h

23 TUN203 61.85 ± 1.88 lm 37.64 ± 0.77 kl

24 TUN205 89.20 ± 0.76 cd 71.24 ± 1.41 de

F Value 85.27 248.82
Pr > F <0.0001 <0.0001

P 0.05 0.05
CV% 2.753726 3.061748

Rhizobacterial bacterial strains were cultivated in TSB medium with shaking speed (150 rpm) at 28 ◦C for 48 h.
Bacteria were harvested by centrifuging the cultured medium at 8000 rpm for 10 min. The supernatant was
removed by centrifugation at 8000 rpm for 10 min to settle the bacterial biomass, and then each bacterial mass
was suspended in the saline buffer to adjust the density to 107 CFU mL−1 for antinematode activity assay. All
the experiments were performed in triplicate. The data were analyzed via simple variance (ANOVA), and then
Duncan’s multiple range test at p = 0.05 was performed. Values in the same column with the different letters are
significantly different.

Earlier reports prove that Pseudomonas aeruginosa has a wide range of important
applications in environment management [34–36], in industry for the production of various
secondary metabolites (Rhamnolipid, Vanillin, enzymes, and pigments) [36–41], as well
as its potential use in agriculture [42–51]. This bacterial genus has been proven to have
potential use as a plant growth promoter [42] and produces an anti-plant virus agent [43].
In particular, Pseudomonas aeruginosa and its secondary metabolites have been widely used
for controlling numerous plant-pathogen fungal strains [44–48]. However, there are several
reports on the assessment of nematicidal activity of Pseudomonas aeruginosa against several
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nematodes, including banana, tomato, and okra root-knot nematodes [49–51]. There is
also no report of the nematicidal effect of this genus against coffee nematodes. Thus, this
study shows for the first time the potential nematicidal effect of Pseudomonas aeruginosa
against coffee nematodes J2 and its egg hatching and adds to the existing knowledge of the
biological activities of Pseudomonas aeruginosa.
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Figure 3. Phylogenetic analysis of the rhizobacterium Pseudomonas aeruginosa TUN03 based on the
16s rRNA gene sequences. The phylogenetic tree was constructed using Kimura’s method and Mega
software version 6.0 after multiple alignments of the data by ClustalW. The numbers at the branches
are bootstrap confidence percentages (%).

3.2. Assessment of the Potential Biocontrol of Robusta Coffee Nematodes and Plant-Promoting
Effect of Pseudomonas aeruginosa TUN03 under Greenhouse Conditions

Pseudomonas aeruginosa TUN03 was chosen for further experimental study in green-
house tests. Robusta coffee TR4 strain is the most cultivated in the Central Highland of
Vietnam; therefore, the TR4 coffee seedlings were used as a plant model to test according
to the protocol presented in the Methods Section 2.3. A summary of the nematicidal effect
of Pseudomonas aeruginosa TUN03 in the greenhouse is presented in Table 2.

After three months of infection with nematodes, the density of J2 nematodes in soils
and roots of coffee seedlings in group 2 were much higher than those of group 1. This result
indicated the seedlings were successfully infected with nematodes, and the experiment data
are qualified enough for analysis. Furthermore, all the three experimental groups treated
with Pseudomonas aeruginosa TUN03 showed a significant effect on reducing nematodes
in soils and in roots compared to the positive control group (Group 2). The treatment
bacterial density of 1.0 × 107 CFU mL−1 (Group 4) and 2.0 × 107 CFU mL−1 (Group
5) demonstrated great nematicidal effect with a high reduction of 78.8% and 83.1% of
J2 nematodes in rhizosphere soils and 42.7% and 52.1% in coffee roots, respectively. In
addition, the death rate of coffee seedlings in these treated groups and the negative control
group (Group 1) was low, in the range of 7.7–8.3%, while the death rate of coffee seedlings
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in the positive group (Group 2) and Group 3 was found to be rather high, at 37.3% and
18.3%, respectively. Thus, treatment with all densities of Pseudomonas aeruginosa TUN03 did
not harm the coffee seedlings in the assays. In addition, these experimental groups treated
with Pseudomonas aeruginosa TUN03 (Groups 4 and 5) showed positive plant promoting
effect on coffee seedlings (Table 3), including the dramatically increased shoot length
(47.7–48.1 cm), and increased shoot dry weight (32.6–34.1 g/10 trees) compared to those
in other groups. The roots of these coffee trees in Groups 4 and 5 seemed stronger and
healthier (Figure 4) than those in control groups, as evidenced by measuring the root dry
weight. As shown in Table 3, all the groups treated by Pseudomonas aeruginosa TUN03
showed a much higher root dry weight (30.2–30.4 g/10 trees) than those in the control
groups (20.6–22.5 g/10 trees).

Table 2. The effect of Pseudomonas aeruginosa TUN03 on the density of coffee nematodes in soils and coffee roots and the
death rate of coffee seedlings cultivated under greenhouse conditions.

Treatments Group
Nematodes in Rhizosphere Soils Nematodes in Coffee Roots

DR * (%)Nematodes J2 in
10 g Soil (Count) Reduction (%) Nematodes J2 in

1 g Root (Count) Reduction (%)

Group 1 (negative
control) 22.0 ± 1.53 c - 17.7 ± 2.33 c - 8.2 ± 1.42 c

Group 2 (positive
control) 156.7 ± 8.82 a - 48.4 ± 4.31 a - 37.3 ± 3.71 a

Group 3 58.3 ± 4.41 b 58.3 ± 3.15 28.7 ± 2.19 b 28.9 ± 5.42 18.3 ± 1.67 b

Group 4 29.7 ± 4.84 c 78.8 ± 3.46 23.1 ± 2.63 bc 42.7 ± 6.51 8.3 ± 1.67 c

Group 5 23.7 ± 2.96 c 83.1 ± 2.12 19.3 ± 0.333 c 52.1 ± 0.83 7.7 ± 2.03 c

F Value 148.85 - 19.48 - 30.62
Pr > F <0.0001 - 0.0003 <0.0001

P 0.05 0.05 0.05
CV% 13.94488 - 17.83826 - 24.99341
LSD 15.246 - 9.2175 - 7.5137

DR *: Death rate of coffee seedlings (%). All the experiments were performed in triplicate. The data were analyzed via simple variance
(ANOVA), then Fisher’s LSD test at p = 0.05 was performed. Values in the same column with different letters are significantly different.
LSD: Least Significant Difference.

Table 3. The effect of Pseudomonas aeruginosa TUN03 on some plant promoting parameters of the
coffee seedlings grown under greenhouse conditions.

Treatments
Group

Promoting Shoots Promoting Roots

Increased
Length (cm)

Increased DW
(g/10 Trees)

Increased
Length (cm)

Increased DW
(g/10 Trees)

Group 1
(negative
control)

35.0 ± 2.89 bc 19.8 ± 2.89 c 16.5 ± 1.44 a 22.5 ± 1.82 b

Group 2
(positive control) 28.7 ± 2.404 c 17.6 ± 1.48 c 16.3 ± 1.88 a 20.6 ± 2.80 b

Group 3 44.3 ± 2.85 ab 28.8 ± 3.89 b 16.8 ± 1.07 a 30.2 ± 2.23 a

Group 4 47.7 ± 2.61 a 34.1 ± 2.37 a 17.1 ± 1.82 a 30.9 ± 1.44 a

Group 5 48.1 ± 3.93 a 32.6 ± 2.59 a 17.0 ± 1.73 a 30.4 ± 1.46 a

F Value 6.95 69.75 1.11 68.56
Pr > F 0.0102 <0.0001 0.4160 <0.0001

P 0.05 0.05 0.05 0.05
CV% 13.82137 5.838377 3.493248 3.865095
LSD 10.607 2.9213 1.1019 1.958

DW: dry weight of ten coffee seedlings (g/10 trees). All the experiments were performed in triplicate. The data
were analyzed via simple variance (ANOVA), then Fisher’s LSD test at p = 0.05 was performed. Values in the
same column with different letters are significantly different. LSD: Least Significant Difference.
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Figure 4. The harvested coffee seedlings after three months of experimental cultivation in the greenhouse. The coffee
seedlings were randomly divided into two control groups in which the coffee seedlings were not treated with bacteria and
not infected with nematodes (Group 1) or infected with nematodes without treatment of bacteria (Group 2), and three
experimental groups: infected nematodes and treated with 100 mL of Pseudomonas aeruginosa TUN03 solution at different
densities of 0.5 × 107 CFU mL−1 (Group 3), 1.0 × 107 CFU mL−1 (Group 4), and 2.0 × 107 CFU mL−1 (Group 5).

The effect of Pseudomonas aeruginosa TUN03 on the content of photosynthetic pigments,
including chlorophyll a, chlorophyll b, and carotenoid, in the leaves of the coffee seedlings
cultivated under greenhouse conditions was also observed and the results are recorded
in Table 4. This bacterial strain enhanced photosynthetic pigment content in the leaves of
coffee seedlings. Among the treated groups, Group 4 showed a slightly higher content
of photosynthetic pigments than in Group 5 and much higher than those in other groups.
Based on the experimental results, the rhizobacterium Pseudomonas aeruginosa TUN03 was
found to be a potential candidate for biocontrol of coffee nematodes as well as a good plant
growth enhancer for this crop.

Table 4. The effect of Pseudomonas aeruginosa TUN03 on the levels of photosynthetic pigments in the
leaves of the coffee seedlings grown under greenhouse conditions.

Treatments Group
Content of Photosynthetic Pigments (mg/g Fresh Weight)

Chlorophyll a Chlorophyll b Carotenoid

Group 1 (negative control) 0.84 ± 0.087 c 0.51 ± 0.023 d 0.413 ± 0.022 c

Group 2 (positive control) 0.57 ± 0.073 c 0.35 ± 0.026 e 0.337 ± 0.026 d

Group 3 0.94 ± 0.088 b 0.54 ± 0.033 c 0.480 ± 0.012 c

Group 4 1.22 ± 0.093 a 0.73 ± 0.032 a 0.557 ± 0.012 a

Group 5 1.19 ± 0.116 a 0.70 ± 0.029 b 0.550 ± 0.029 ab

F Value 6.87 764.32 17.86
Pr > F 0.0106 <0.0001 0.0005

P 0.05 0.05 0.05
CV% 18.63119 1.724079 8.199466
LSD 0.3335 0.0184 0.0721

All the experiments were performed in triplicate. The data were analyzed via simple variance (ANOVA), then
Fisher’s LSD test at p = 0.05 was performed. Values in the same column with the different letters are significantly
different. LSD: Least Significant Difference.
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3.3. Potential Application of P. aeruginosa TUN03 as a Potent Biofertilizer Agent Related to
Large-Scale Production of Plant Growth Promoting Compounds (PGPCs)

For a further understanding of the potential plant-promoting effect of Pseudomonas
aeruginosa TUN03 on the coffee seedlings in the previous experiments (Section 3.2), we
used the HPLC technique to explore its ability to synthesize PGPCs. This bacterium was
cultivated in King B medium broth at 28 ◦C for two days. Analysis of the fermented
culture broth supernatant revealed the production of some major PGPCs including GA3,
IAA, zeatin, and kinetin through HPLC fingerprinting as major peaks at the retention
times of 3.172, 3.218, 3.963, and 4.662 min, respectively (Figure 5). Of these, the highest
peak was that of GA3, indicating that this compound was produced at the highest yield
among the PGPCs in the culture broth. To clarify this result, the concentrations of these
four PGPCs were determined using the equations (presented in Section 2.5) created by
using the commercial PGPCs as standard compounds. The yields of these PGPCs were
231 µg/mL (IAA), 2702 µg/mL (GA3), 36.8 µg/mL (kinetin), and 7.71 µg/mL (zeatin). In
addition, the culture broth contained a dark green pigment, which is well-known to be
Pyocyanin, produced by Pseudomonas aeruginosa [46,52]. Pyocyanin is a potential biocontrol
compound against a vast array of plant-pathogen diseases [53], and as such, it may be a
potent plant-promoting agent via its indirect mode of action [11,13,54–57]. Pyocyanin was
found to be produced at 16 µg/mL, which was determined using the method published
by Devnath et al. (2017) [58]. Because of its high anti-pathogenic activity (anti-nematode
effect) and biosynthesis of multi PGPCs at a high level, these data may prove Pseudomonas
aeruginosa TUN03 to be a potential biofertilizer for use in agriculture.

Biosynthesis of IAA by Pseudomonas aeruginosa has been widely reported [59–68];
however, only a few studies have reported the production of GA3 by Pseudomonas aerug-
inosa [67–69]. Although cytokinin compounds have also been reported to be produced
by Pseudomonas aeruginosa, there are quite a few reports on the biosynthesis of zeatin,
and kinetin by this bacterial genus [68,70–72]. Therefore, the results obtained in this
study also contribute to enriching the available data on kinetin and zeatin biosynthesis
by Pseudomonas.

The comparison of the yield of PGPCs produced by different Pseudomonas aeruginosa
strains in different reports is summarized in Table 5. The level of cytokinin compounds
produced by Pseudomonas aeruginosa TUN03 (7.71–36.8 µg/mL) was comparable to those
produced by earlier reported strains (1.32–30 µg/mL); however, IAA was produced by
TUN03 at a much higher yield (231 µg/mL) than that reported earlier (4.9–74.54 µg/mL).
Notably, GA3 was biosynthesized by Pseudomonas aeruginosa TUN03 at a remarkable
concentration of 2702 µg/mL (based on HPLC determination), which is a new record of
high biosynthesis of GA3 by Pseudomonas aeruginosa.

The ability to produce IAA, especially GA3, by Pseudomonas aeruginosa TUN03 isolated
in this study was different from that of other previously reported strains, possibly due to
various factors, such as variation in fermentation conditions, different carbon/nitrogen
sources, and particularly, detection by different methods and types of equipment. HPLC
analysis (the most widely accepted for quantity and concentration determination of various
chemical compounds) was used in this study for the detection and concentration determi-
nation of these active compounds. Thus, we suggest that the bacterial strain isolated in this
study possesses a significant characteristic of IAA and GA3 biosynthesis at a high level.

3.4. Novel Potential Anti-Fungal Effect of Pseudomonas aeruginosa TUN03

To further investigate the potential use of this strain in agriculture, we explored its
antifungal activities against various plant-pathogen fungal strains that seriously damage
some crops, such as coffee, black pepper, Durio, Persea, Dimocarpus, knotweed, citrus,
and sweet potato, cultivated in the Central Highland of Vietnam. A total of 12 pathogen
fungal strains were used for the tests. The data are summarized and recorded in Table 6
and also illustrated in Figure 6.
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Figure 5. The HPLC profiles of production of plant-promoting compounds (PGPCs) biosynthesized by Pseudomonas aeru-
ginosa TUN03. This bacterial strain was cultivated in King B medium at 28 °C for two days. The fermented culture broth 
was centrifugated at 8000 rpm for 10 min to remove the residues and bacterial biomass and the supernatant was collected 
to be used for the detection of PGPCs. Five microliters of culture supernatant were injected into the HPLC system and 
separated on a C18 column, the PGPCs were detected at the wavelength of 254 nm under the following analysis conditions: 
mobile phase 60% methanol in water adjusted to pH 5.8 using 10 mM ammonium acetate with a flow rate of 0.8 mL, and 
a column temperature of 30 °C for 10 min. 

Figure 5. The HPLC profiles of production of plant-promoting compounds (PGPCs) biosynthesized by Pseudomonas
aeruginosa TUN03. This bacterial strain was cultivated in King B medium at 28 ◦C for two days. The fermented culture broth
was centrifugated at 8000 rpm for 10 min to remove the residues and bacterial biomass and the supernatant was collected
to be used for the detection of PGPCs. Five microliters of culture supernatant were injected into the HPLC system and
separated on a C18 column, the PGPCs were detected at the wavelength of 254 nm under the following analysis conditions:
mobile phase 60% methanol in water adjusted to pH 5.8 using 10 mM ammonium acetate with a flow rate of 0.8 mL, and a
column temperature of 30 ◦C for 10 min.



Agronomy 2021, 11, 1887 13 of 18

Table 5. A comparison of plant-promoting compounds (PGPCs) produced by Pseudomonas aeruginosa
strains in different studies.

Strains PGPCs Yield (µg/mL) Medium References

P. aeruginosa TUN03

IAA 231 King B

This studyGA3 2702 King B
Kinetin 36.8 King B
Zeatin 7.71 King B

P. aeruginosa Tad-21 IAA 24.54 LB + Tryp [59]
P. aeruginosa 2apa IAA 4.9 King B [60]

P. aeruginosa PUPa3 IAA 26.6 LB + Tryp [61]
P. aeruginosa OSG41 IAA 32 LB + Tryp [62]
P. aeruginosa NJ-15 IAA 20 NB + Tryp [63]

P. aeruginosa IAA 13.2 LB + Tryp [64]
P. aeruginosa BRp3 IAA 30 LB [65]
P. aeruginosa RTE4 IAA 74.54 Mannitol + Tryp [66]

P. aeruginosa MAJ PIA03 IAA 27.84 PIA [67]
P. aeruginosa ZNP1 IAA 15 PIA [67]
P. aeruginosa ZNP1 IAA 15 LB [68]

P. aeruginosa An-1-kul GA3 485.8 King B [69]
P. aeruginosa An-13-kul GA3 419.2 King B [69]

P. aeruginosa MAJ PIA03 GA3 8.21 PIA [67]
P. aeruginosa PM389 GA3 7.5 LB [68]

P. aeruginosa PS 3 Cytokinin 2.96 King B [70]
P. aeruginosa PS 2 Cytokinin 1.32 King B [70]

Pseudomonas sp-M Cytokinin 30 King B [71]
P. aeruginosa PM389 Trans-Zeatin 12 LB [68]
P. aeruginosa UPMP3 Zeatin TLC detection NB + Tryp [72]

Table 6. Assessment of in vitro antifungal activity test of Pseudomonas aeruginosa TUN03 against various plant-pathogen
fungal strains.

No Fungal Strains Fungal Origin Anti-Fungal
Activity (%)

1 P. lilacinum F01 Dimocarpus roots +
2 F. solani F02 Durio roots 41.67 ± 0.58 d

3 F. solani F03 Pepper roots 30.66 ± 0.90 f

4 F. solani F04 Coffee roots 70.51 ± 2.56 a

5 C. gloeosporioides F05 Sweet potato roots 30.00 ± 0.88 g

6 F. incarnatum F06 Citrus roots 44.15 ± 1.92 c

7 G. butleri F07 Pepper roots 50.00 ± 1.33 b

8 P.mangiferae F08 Persea americana roots 35.19 ± 1.06 e

9 F. incarnatum F09 Hylocereus undatus roots 15.09 ± 0.36 j

10 F. oxysporum F10 Pepper roots 0.00 ± 0.00 k

11 Neonectria sp. F11 Durio fruits 20.50 ± 0.53 i

12 F. incarnatum F15 Knotweed leaves 28.57 ± 0.35 h

F Value 10,751.3
Pr > F <0.0001

P 0.05
CV% 0.938284

(+): the activity was observed but not clear for harvesting the data based on the method reported by Ngo et al. 2020 [33]. All the experiments
were performed in triplicate. The data were analyzed via simple variance (ANOVA), then Duncan’s multiple range test at p = 0.05 was
performed. Values with the different letters are significantly different. Pseudomonas aeruginosa has been reported to exhibit potent antifungal
activity against some pathogen fungus that seriously damage various crops, including rice, groundnut, tobacco, chili, mango, sugarcane,
tea, cotton, banana, and tomato [44,45,47]. In this study, we first evaluated the antifungal activity of Pseudomonas aeruginosa TUN03 against
the pathogen various plant-pathogen fungal strains which seriously damaged some crops (listed in Table 6) cultivated in the Central
Highland of Vietnam. Interestingly, this strain displayed a high inhibitory effect against F. solani F04 which was isolated from the roots of
sick coffee (yellow leaves) plants. This finding proved that Pseudomonas aeruginosa TUN03 could be a potential candidate for biocontrol
and biofertilizer of coffee and other crops. This strain needs to be examined for its potential application on Robusta coffee plants under
field conditions.
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F Value 10,751.3 
Pr > F <0.0001 

(j) 

E C 

(k) 

E C 

(l) 

E C 

Figure 6. Evaluation of anti-fungal activity of Pseudomonas aeruginosa TUN03 against various plant plant-pathogen strains,
including Purpureocillium lilacinum F01 (a), Fusarium solani F02 (b), F. solani F03 (c), F. solani F04 (d), C. gloeosporioides F05 (e),
F. incarnatum F06 (f), G. butleri F07 (g), Pestalotiopsis mangiferae F08 (h), F. incarnatum F09 (i), F. oxysporum F10 (j), Neonectria
sp. F11 (k), and F. incarnatum F15 (l). A mycelial plug of growing fungal strain was placed into the center of the Petri
dish containing PDA (potato D-glucose agar) medium and three lines of Pseudomonas aeruginosa TUN03 was streaked at a
distance of 2 cm from the center of the surface of PDA medium in Petri dishes. These plates were then maintained at 28 ◦C
for 5 d. The experimental and control dish are labeled as E and C, respectively.

Among these tested fungal strains, Pseudomonas aeruginosa TUN03 demonstrated the
most efficient inhibition against F. solani F04 isolated from coffee roots with a high inhibition
value of 70.51%, and this value was ranked as excellent (level a) based on Duncan’s multiple
range test. The strain TUN03 also showed inhibition against F. solani F02, F. incarnatum F06,
and G. butleri F07, which were isolated and identified from Durio roots, citrus roots, and
pepper roots, respectively, with potent inhibition values in the range of 41.67–50%, and
ranked at levels b–d. Pseudomonas aeruginosa TUN03 showed moderate inhibitory effect
against several fungal strains, including F. solani F03, C. gloeosporioides F05, Pestalotiopsis
mangiferae F08 (30–35%), and weak inhibition of F. incarnatum F09, and Neonectria sp. F11 at
a rate of 15.09–20.5%. Pseudomonas aeruginosa TUN03 was not effective against F. oxysporum
F10 isolated from pepper roots. As shown in Figure 2A, Pseudomonas aeruginosa TUN03
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significantly reduced the appearance of fungal colonies of Purpureocillium lilacinum F01,
indicating more than 70% inhibition of this pathogenic fungus (the calculation was based
on counting the colonies in experiment and control dishes). The spread of spores of
this fungal strain around the surface of the Petri dish and the quick appearance of the
colonies (Figure 1A) made it difficult to calculate the standard inhibition values based on
the protocol presented by Ngo et al. 2020 [32] in the methods section.

4. Conclusions

In this study, we first assessed the potential use of rhizobacteria for biocontrol of
Robusta coffee nematodes in the Central Highland of Vietnam. Pseudomonas aeruginosa
TUN03 was screened and identified as the most effective strain. This selected bacterium
significantly reduced the number of nematodes in soils and roots of coffee seedlings and
was significantly effective in plant growth promotion in greenhouse tests. Pseudomonas
aeruginosa TUN03 was found to produce multiple plant-promoting compounds and showed
anti-fungal effects against various plant pathogen fungi that seriously damage some crops.
Notably, this is the first report of the potent nematicidal effect of Pseudomonas aeruginosa
against coffee nematodes J2 and its egg hatching, and the production of multiple plant-
promoting compounds with high yield. Among these, the yield of GA3 was the highest,
at 2702 µg/mL. TUN03 also displayed potency in biocontrol of various tested pathogen
fungal strains. This work suggests, for the first time, that Pseudomonas aeruginosa TUN03
could be a potential biocontrol agent and a biofertilizer.
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