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Abstract: Numerous studies reported the positive effect of soil amendment with biochar on plant
development. However, little is known about biochar and its interrelation with nitrogen (N) and
phosphorous (P) additions and their impact on plant growth. We carried out greenhouse experiments
to understand the interactive effects of nitrogen and phosphorus supply, as well as biochar amend-
ment, on the symbiotic performance of soybean (Glycine max L.) with Bradyrhizobium japonicum, and
plant growth and nutrient uptake. The biochar was produced from maize by heating at 600 ◦C for
30 min and used for pot experiments at an application rate of 2%. Plants were fertilized with two
different concentrations of P (KH2PO4) and N (NH4NO3). Biochar application significantly increased
the dry weight of soybean root and shoot biomass, by 34% and 42%, under low nitrogen and low
phosphorus supply, respectively. Bradyrhizobium japonicum inoculation enhanced the dry weight
of shoot biomass significantly, by 41% and 67%, in soil without biochar and with biochar addition,
respectively. The nodule number was 19% higher in plants grown under low N combined with low
or high P, than in high N combinations, while biochar application increased nodule number in roots.
Moreover, biochar application increased N uptake of plants in all soil treatments with N or P supply,
compared with B. japonicum-inoculated and uninoculated plants. A statistical difference in P uptake
of plants between biochar and nutrient levels was observed with low N and high P supply in the soil.
Our results show that the interactions between nitrogen, phosphorus, and biochar affect soybean
growth by improving the symbiotic performance of B. japonicum and the growth and nutrition of
soybean. We observed strong positive correlations between plant shoot biomass, root biomass, and N
and P uptake. These data indicated that the combined use of biochar and low N, P application can be
an effective approach in improving soybean growth with minimum nutrient input.

Keywords: maize biochar; nutrient supply and uptake; soybean; Bradyrhizobium japonicum; root and
shoot growth

1. Introduction

Biochar is a char produced by pyrolysis of biomass from different sources (wood
chips, crop residues, dairy manure, etc.) with high carbon content [1]. It is produced
at high (above 500 ◦C) or low (<400 ◦C) pyrolysis temperature under limited or in the
complete absence of oxygen [2]. Several beneficial properties of biochar applications were
documented, such as improved soil cation exchange capacity [3], water holding capacity [4],
or soil organic matter content [5]. Moreover, biochar positively affects plant growth and
development, provides nutrients, and even increases nutrient availability [6]. The improved
N, P, K uptake by a plant grown in soil amended with biochar was explained by enhanced
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soil microbial activity involved in the decomposition of organic substances, providing
nutrients readily available for plant uptake [7–10].

It has also been reported that biochar improves the symbiotic performance of legumes
with rhizobia, thus enhancing N2 fixation and nitrogen supply to the plants [11]. Increased
nodulation in the roots of soybean [12], faba bean [13], and chickpea [9] in soils amended
with biochar was observed, indicating the positive impact of biochar on the symbiotic per-
formance of the plant with rhizobia. The positive effect of biochar on bacterial colonization
was explained by improved habitat conditions in biochar pores and the supply of air and
nutrients for bacterial growth [14–16]. Nutrient interactions in soil are complicated and
paramount for nutrient uptake and plant growth [17–19]. Mineral nutrients such as N,
P, and K, as well as several microelements, affect rhizobia–host symbiotic interactions in
legumes such as nodule formation and root activity [20–22]. Nitrogen plays a vital role in
leguminous plant physiological processes, whereas higher amounts of nitrogen inhibit the
symbiotic performance of nitrogen fixation by rhizobia [23,24]. Phosphorus (P) also plays a
vital role in root development and has been found to be crucial for legume–rhizobia sym-
biosis and nitrogen fixation. Inadequate P supply impairs nodule formation and nitrogen
fixation through direct and indirect effects on the plants [25]. Moreover, low concentra-
tions of N and P in soil result in poor plant development and productivity [26–28]. It has
also been reported that P application improves nodule formation and nitrogen fixation in
legumes [29,30]. Therefore, the balanced application of N and P to soil and the appropriate
combination will improve soil and plant productivity in a sustainable way [31]. Several
reports indicate enhanced P use efficiency by incorporation of P into compost [32], ma-
nure [33], and humic substances [34]. A synergistic effect of biochar combined with plant
beneficial microbes in improving plant growth and nutrition has also been reported [35].

Although many studies reported positive effects of biochar on plant growth and nutri-
ent acquisition, relatively few studies focus on the interrelations of biochar with N and P
fertilization and microbial inoculants [36]. Shareef et al. [37] reported a positive effect of
biochar derived from maize increased plant growth and improved soil properties. Similar
results were found for cowpea, whereas the application of maize biochar significantly en-
hanced nodule number, shoot biomass, and grain yield, as well as nitrogen and phosphorus
contents [38]. Mohamed et al. [13] observed increased nodule numbers and contents of N,
P, and K in plant tissue of faba bean grown in soil amended with soybean straw-derived
biochar, with or without amendments of N, P and K. Yusif et al. [39] found a synergistic
effect of rhizobia and biochar addition on groundnut nodulation, growth and development.

Soybean (Glycine max L. Merr.) is one of the most important legume crops in numerous
countries globally and is widely produced as a source of oil and protein [40,41]. Several
studies observed improved biomass, nutrient acquisition, and soybean yield after biochar
amendments [42,43]. However, the interactive effect of biochar and essential nutrients (N
and P) on rhizobia–legume symbiosis, plant growth, and the prevalence of such interactions
are still limited. We hypothesized that the symbiotic performance and growth of soybean
are influenced by the biochar amendment in the soil and by interactions with N and
P supply.

Understanding the symbiotic performance of rhizobia and plant growth responses to
biochar and mineral nutrient interrelations should facilitate strategies to enhance legume
production. Therefore, greenhouse experiments were carried out to understand the effect
of biochar application combined with low and high N and P concentrations on shoot and
root growth of soybean (Glycine max L.), nodule numbers, nutrient uptake (N, P), and soil
nutrient contents in a loamy, sandy soil.

2. Materials and Methods
2.1. Soil Samples

The soil used in the study was a sandy loam, collected from the horizon (0–15 cm depth)
of an experimental arable field under irrigation, operated by the Experimental Field Station
of the Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany.
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The soil had the following contents: clay and fine silt (7%), coarse and medium silt (19%),
sand (74%), C org (0.6%), total N (0.07%), P (0.03%), K (1.25%), and Mg (0.18%); the pH was
6.2; CECeff (cmol (+) kg−1) was 4.85 (Ca (3.8); K (0.38); Mg (0.52); Na (0.004)) [42].

2.2. Biochar Material

The biochar was supplied from the Leibniz-Institut for Agrartechnik Potsdam-Bornim
e.V. (ATB) [44]. The material was produced from whole maize by heating at 600 ◦C for
30 min (MBC). Biochar characteristics are given in Table 1.

Table 1. Biochar characteristics.

Characteristics Maize Biochar

DM (% FM) 92.85
Ash (% DM) 18.42
TOC (% DM) 75.47

N (% DM) 1.80
C/N ratio 41.93
pH value 9.89

Ca (g (kg DM)−1) 9.26
Fe (g (kg DM)−1) 11.40
Mg (g (kg DM)−1) 4.91
K (g (kg DM)−1) 32.26
P (g (kg DM)−1) 5.26

FM, fresh matter; DM, dry matter; TOC, total organic carbon [44].

2.3. Plant and Bacteria

The soybean seeds (Glycine max. cv. Sultana) were used for pot experiments. The
strain Bradyrhizobium japonicum (HAMBI 2314) was obtained from the Culture Collection
of the University of Helsinki (HAMBI). The strain was grown on yeast extract–mannitol
(YEM) medium at 28 ◦C for three days.

2.4. Pot Experiment

The experiment was conducted in the plant growth chamber at the Leibniz Center
for Agricultural Landscape Research (ZALF), Müncheberg, Germany. The concentrations
of 2% biochar were used as a soil amendment for the pot experiment. First, the soil was
mixed with 2% of crushed char (particle size < 3 mm). Pots were filled with 1000 g soil-
biochar mixtures. The soybean seeds were surface-sterilized using 10% v/v NaOCl for
5 min and 70% ethanol for 5 min. After that, seeds were rinsed five times with sterile
distilled water and transferred to paper tissue for germination in a dark room at 2 ◦C
for two days. To prepare the bacterial inoculant, B. japonicum HAMBI2314 was grown
in yeast extract–mannitol (YEM) medium at 2 ◦C for three days and adjusted to a final
concentration of approximately 108 CFU mL−1. The germinated soybean seeds were treated
with bacterial inoculants.

Three seeds were sown to each pot, and after one week, the seedlings were thinned to
one plant per pot. One week later, plants were fertilized by an aqueous solution of 100 mL
with different concentrations of P (KH2PO4) and N (NH4NO3) (Table 2) [19].

Table 2. The nutrient concentration used for soybean growth experiment.

Treatment Nutrient Concentrations

high N and high P (HNHP) NH4NO3—3000 µmol/L, KH2PO4—250 µmol/L
high N and low P (HNLP) NH4NO3—3000 µmol/L, KH2PO4—50 µmol/L
low N and high P (LNHP) NH4NO3—300 µmol/L, KH2PO4—250 µmol/L
low N and low P (LNLP) NH4NO3—300 µmol/L, KH2PO4—50 µmol/L

The following treatments were set up:
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1. Uninoculated control plants grown in soil with low N and low P (LNLP) and
without biochar;

2. Uninoculated control plants grown in soil with high N and low P (HNLP) and
without biochar;

3. Uninoculated control plants grown in soil with low N and high P (LNHP) and
without biochar;

4. Uninoculated control plants grown in soil with high N and high P (HNHP) and
without biochar;

5. Plants inoculated with B. japonicum and grown in soil with LNLP and without biochar;
6. Plants inoculated with B. japonicum and grown in soil with HNLP and without biochar;
7. Plants inoculated with B. japonicum and grown in soil with LNHP and without biochar;
8. Plants inoculated with B. japonicum and grown in soil with HNHP and

without biochar;
9. Plants inoculated with B. japonicum and grown in soil with LNLP and with biochar;
10. Plants inoculated with B. japonicum and grown in soil with HNLP and with biochar;
11. Plants inoculated with B. japonicum and grown in soil with LNHP and with biochar;
12. Plants inoculated with B. japonicum and grown in soil with HNHP and with biochar.

A randomized, complete block design was used, four replications were set as four blocks,
each block included all 12 treatments. In each block, the treatments were randomly distributed.

The plants were grown for 45 days at a temperature of 24 ◦C/16 ◦C (day/night) and
in a humidity of 50–60%. At harvest, the roots were separated from the shoots, and their
biomass was oven-dried at 70 ◦C for 48 h [45]. The dry weights of root and shoot and the
number of nodules were determined from each plant.

2.5. Plant and Soil Nutrient Analyses

To determine nitrogen (N) and phosphorus (P) content, oven-dried plants were ho-
mogenized by milling, and powders of shoots and roots were combined. The N and P
concentrations in plant tissues and soil were analyzed with an inductively coupled plasma
optical emission spectrometer (ICP-OES; iCAP 6300 Duo ThermoFischer Scientific Inc.,
Waltham, MA, USA) via Mehlich-3 extraction [7]. The soil N contents were determined
by the dry combustion method using a CNS elemental analyzer (TruSpec, Leco Corp.,
St. Joseph, MI, USA) [46]. The soil P content was analyzed by ICP-OES (iCAP 6300 Duo)
via Mehlich-3 extraction [7].

2.6. Statistical Analysis

The analysis of variance and multiple comparisons between treatments were per-
formed using Duncan’s test. Linear correlation analyses were applied to characterize the
relationship between various parameters, and Pearson’s correlation coefficients were de-
termined at p < 0.05. The correlation was visualized with a heatmap, and the correlation
coefficients were displayed on each square. All statistical analyses were performed by the
open-source statistical language R v1.3.1056 (R Studio, Boston, MA, USA).

3. Results
3.1. Effect of Biochar and Nutrient Amendments on Soybean Growth

The effect of biochar, N, and P concentrations on soybean root and shoot dry weight
were investigated. The root and shoot growth of uninoculated soybean grown under LNLP
supply without biochar amendment were lower than inoculated with B. japonicum. The
plant inoculation with B. japonicum under LNLP significantly stimulated the shoot growth
dry weight by 18% and the nodule numbers, but there were no significant differences in root
dry weight. The results indicate that the dry weight of root and shoot of soybean grown
under LNLP soil amended with biochar were significantly increased, by 34% and 42%,
respectively, compared with uninoculated plants grown in soil without biochar (Figure 1).
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Figure 1. The root and shoot growth of soybean plants after exclusive rhizobium inoculation and
rhizobium inoculation combined with biochar application under low N or low and P supply. LNLP,
low N and low P; LNHP, low N and high P; CK, control; R, Rhizobium inoculation; Rpo, Rhizobium
inoculation with biochar application.

A similar observation was made for plants grown on soil with LNHP supply. The dry
shoot weights were, respectively, 41% and 67% significantly higher for plants inoculated
with B. japonicum and grown in soil without biochar and with biochar addition than those
in uninoculated plants (Figures 1 and 2A). No statistical differences in root growth between
uninoculated plants and plants inoculated with B. japonicum were observed in soil without
biochar. The biochar application significantly increased root dry weight (56%) of soybean
grown in soil under LNHP conditions.

There were no statistical differences in plant growth parameters between uninoculated
plants and inoculated plants grown in soil without biochar or biochar addition under HNLP
and HNHP supply. Root and shoot dry weights of soybean inoculated with B. japonicum
grown in soil without biochar and with biochar were 6% and 19%, and 20% and 33% higher
than those in control plants under HNLP supply, respectively.

The response of the symbiotic performance of B. japonicum with the host plant to
nutrient supply and biochar application was assessed based on nodule numbers (Figure 2C).
It appears that the number of nodules in soybean roots inoculated with B. japonicum
increased significantly, by five- to ninefold, under low N conditions combined with either
low P or high P, compared with uninoculated soybean plants. Biochar application increased
the nodule number of soybean roots in both nutrient conditions, compared with soybean
inoculated with B. japonicum grown in soil without biochar amendment. In general, the
nodule number was higher in plants grown under low N combined either with low or high
P, as compared with high N combinations. Biochar increased nodule formation in roots
under all N and P concentrations (Figure 2C). Inoculation × N input and N input × P input
showed no interaction effects, but inoculation × P input provided a significant interaction
effect on the nodule number (Table 3, p < 0.05). However, no interaction was observed on
the shoot and root biomass.
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Figure 2. Shoot biomass (A), root biomass (B), and nodule number (C) of soybean plants after
exclusive Rhizobium inoculation and Rhizobium inoculation combined with biochar application
under high or low N and P supply. Letters within each column are significantly different at p < 0.05
based on Duncan’s test. HNHP, high N and high P; HNLP, high N and low P; LNHP, low N and high
P; LNLP, low N and low P; CK, control; R, rhizobium inoculation; Rpo, rhizobium inoculation with
biochar application.
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Table 3. Interaction effects of inoculation, N and P supplies on shoot and root biomass, nodule
number and concentrations of plant and soil nutrients. Significance denoted by * p < 0.05, ** p < 0.01,
*** p < 0.001, ns, not significant.

Interaction Effects Shoot Biomass Root Biomass Nodule Number Plant N Plant P Soil N Soil P

Inoculation × N supply ns ns ns ns ns *** ns
Inoculation × P supply ns ns * ns ns ns ns

N input × P supply ns ns ns ns * ns **
Inoculation × N supply ×

P supply ns ns ns ns * ns ns

3.2. Effects of Biochar and Nutrients on Plant Nitrogen and Phosphorous Concentrations

N and P uptake by plants were also affected by biochar application and N and P
supply. We observed that N and P content in uninoculated soybean plants grown in soil
without biochar amendment was lower under LNLP. The soybean inoculation with B.
japonicum improved N and P uptake in plant tissue, but the effect was not significant.
Biochar application significantly increased P content in plants under LNLP condition,
compared with inoculated plants with B. japonicum by 21%, whereas N uptake slightly
increased (Figure 3A).
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Statistical differences in P uptake by plants between biochar and nutrient levels were
observed with LNHP supply in the soil. P concentration in plant tissue was 25%, higher
in LNHP than in plants inoculated with B. japonicum and grown in soil without biochar,
as compared with uninoculated plants (Figure 3B). The N concentration in plants was not
affected by LNHP supply. A slight increase in N was observed under the LNHP supply,
compared with the uninoculated plants. Only biochar application significantly increased N
concentration by 19%, compared with inoculated plants.

No significant differences in N and P uptake were observed for plants grown un-
der HNLP and HNHP supply comparing inoculated and uninoculated plants. Biochar
application significantly increased N and P concentrations in plant tissues under both
HNLP and HNHP supplies, compared with uninoculated plants. The N concentration in
plants grown under HNLP and HNHP increased, by 25% and 40%, respectively, compared
with uninoculated plants (Figure 3A). The P concentration in plants grown under HNHP
increased by 19%, compared with uninoculated plants (Figure 3B).

Shoot biomass, root biomass, and N showed a strong positive correlation with P, and
the correlation coefficients were 0.61, 0.61, and 0.58 (p < 0.05), respectively (Figure 4. Nodule
numbers showed a significant positive correlation with shoot biomass; the correlation
coefficient was 0.57 (p < 0.05). However, the correlation between nodule number and N
was not significant.
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Inoculation × N input and inoculation × P showed no interaction effects but N
input × P input and inoculation × N input × P input showed significant interaction effects
on plant P concentration (Table 3, p < 0.05). No interaction was observed on plant N.

3.3. Effects of Biochar and Nutrients on Soil Nitrogen and Phosphorous Concentration

The nutrient concentrations in soil without biochar amendment were affected by N
and P supplies. The N concentrations in soil under HNLP and HNHP without inoculation
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were higher at 23% and 27%, compared with LNLP and LNHP, respectively (Figure 5A).
Plant inoculation with B. japonicum did not affect soil N concentration. Soil amended
with biochar showed a positive effect on N concentration in soil under LNLP, and LNHP
supplies, being increased by 29%, compared with uninoculated soil.
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The P concentrations of soil were not significantly affected by all nutrient supplies,
LNLP, LHHP, HNLP, and HNHP, or by soil inoculation with rhizobia (Figure 5B). However,
biochar amendment of soil slightly increased P concentration in soil inoculated with
rhizobia and supplied with LNLP and HNLP. The soil N concentration showed a significant
positive correlation with plant N and P concentrations; the correlation coefficients were
0.67 and 0.60 (p < 0.05), respectively (Figure 4).

The soil P concentration showed a strong positive correlation with plant P concentra-
tion; the correlation coefficient was 0.72 (p < 0.05).

Inoculation × N input showed a significant interaction effect on soil N concentration
(Table 3, p < 0.001). In contrast, inoculation × P, N input × P input and inoculation × N
input × P input showed no significant interaction effects on the soil N concentration. N
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input × P input indicated a significant interaction effect on soil P concentration (p < 0.01),
whereas no interaction of inoculation × N input, inoculation × P input, and inoculation × N
input × P input was observed on soil P concentration.

4. Discussion

The present study demonstrated that combined applications of N, P, and biochar
have essential effects on the symbiotic performance of soybean with B. japonicum and on
plant growth, as well as on N and P uptake of plants. The root and shoot biomass of
soybean treated with B. japonicum were higher under all N and P levels, also in combination
with biochar, compared with uninoculated soybean plants, indicating a positive effect of
rhizobial inoculation. A similar observation was reported by Sun et al. [47] for Robinia pseu-
doacacia, where biochar combined with rhizobial inoculation increased plant growth, nodule
formation, and N content. Moreover, an interrelation among N, P, and biochar was evident,
influencing the symbiotic performance of B. japonicum with soybean. Biochar application
increased nodule numbers of soybean roots under both low and high N and P supplies,
compared with soybean inoculated with B. japonicum and grown in soil without biochar.
The improvement of nodule formation in legumes by biochar application was also reported
in several other studies [42,48]. The most likely explanation for such improvements is that
biochar facilitates favorable conditions for bacterial proliferation, protects bacteria from
various abiotic stresses, and provides nutrients and air to nodule bacteria [15,16]. Moreover,
biochar stimulates signalling molecules such as flavonoids, which regulate root nodule
development [49]. Furthermore, biochar improved root-associated microbial diversity,
including Rhizobia and plant beneficial bacteria attributed to microbial production of plant
growth stimulating metabolites and N2-fixing capacity of Rhizobia [50,51].

Plants are sensitive to soil nutrient concentrations, and insufficient or suboptimal N
and P suppliescause inadequate or inbalanced plant nutrition [18,52,53]. In earlier studies,
O’Hara [54] and López-Bucio et al. [55] observed reduced plant root systems in soil with low
P supply than under adequate P supply. The legumes require adequate P supply for nodule
formation and biological nitrogen fixation, since P deficiency inhibits nodule development
and plant growth [53]. Under a low nitrogen and phosphorus supply, reduced root and
shoot dry biomass were observed in soil without biochar, whereas significant differences
were found in soil amended with biochar. Induced changes in nutrient availability in soil
amended with biochar were reported by Prendergast-Miller et al. [56], thus providing
additional N and P sources for plant nutrition. Furthermore, our observation with soybean
also confirmed the results of Wali et al. [57], who reported that combined application of
biochar and P supply significantly improved crop growth, nodulation, and P acquisition,
as compared to P and N supply alone. We have observed higher N acquisition in soybean
under HNLP and HNHP, indicating that N acquisition by plants depends on forms of
available nitrogen, as well as on interrelationships of N with other nutrients, such as P.
Biochar application along with N fertilizers was found to improve plant growth and N
uptake by reducing nitrogen mineralization and nitrification and increasing N availability
to plants [58].

N uptake of soybean plants was improved by biochar application in soil regardless
of the N and P supply, compared with plants either uninoculated or inoculated with
B. japonicum. An increased N concentration in plant tissue of beans was also reported by
Rondon et al. [59]. The combined effect of biochar and nutrients such as N, P, and K on
total P and K uptake of faba bean was reported by Mohamed et al. [13]. The increases in
nitrogen acquisition may be related to improved soybean nodulation and N2 fixation after
biochar application [49,59]. The enhanced N content in plants could be due to the supply
of P with biochar, which supports nodule formation [60]. Biochar also improved the P
uptake of plants, especially under low P supply; similar observations were reported by
Shen et al. [61]. In general, biochar is rich in organic carbon and minerals, thus supplying
additional nutrients to the soil and improving plant availability, thereby improving the
nutritional status and development of plants [37,62,63]. The increase in plants’ P uptake
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could be due to the availability of P in soil, induced by biochar addition [64], and increased
microbial activity involved in soil phosphate solubilization [65].

In our study, we also observed an increase in N and P concentrations in soil amended
with biochar under LNLP and LNHP. Han et al. [63] observed an increase in N concen-
tration of soil after biochar application produced from Chinese pine, which confirms the
capability of biochar improving nitrogen availability in soil [66]. The increase in soil P
concentration after biochar application was explained by the retention of P content in
biochar and enhanced P availability to plants [67]. Biochar enhances N immobilization by
reducing N leaching and increasing N retention and bioavailability in agricultural soils.
Several reasons were proposed for this, such as an increase in cation and anion exchange
capacities and water holding capacity [68], and promoting NH3 volatilization from the
applied N [69].

5. Conclusions

Our results indicate that the growth, nodulation, as well as N and P uptake of soybean
are significantly affected by N and P supply. The interrelationships between N, P, and
biochar affect soybean growth by improving the symbiotic performance of B. japonicum
and nodule formation. Biochar addition to soil supplied with low amounts of nitrogen and
phosphorus showed a more profound effect. These interactions likely have a positive effect
on plant growth and acquisition of N and P, explaining synergistic growth responses of
soybean to combined N, P, and biochar additions. We observed strong positive correlations
between plant shoot biomass, root biomass, and N and P uptake. Overall, these results
contribute to a better understanding of the interaction between biochar and mineral nutri-
ents (N and P) and the responses of soybean symbiosis with rhizobia to different degrees
of N and P supply. These findings indicated that the combined use of biochar and low
application rates of Nand P can be a practical approach in improving soybean growth with
minimum expenditure of fertilizers.
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