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Abstract: Early prediction of winter wheat yield at the regional scale is essential for food policy
making and food security, especially in the context of population growth and climate change. Agri-
cultural big data and artificial intelligence (AI) are key technologies for smart agriculture, bringing
cost-effective solutions to the agricultural sector. Deep learning-based crop yield forecast has cur-
rently emerged as one of the key methods for guiding agricultural production. In this study, we
proposed a Bayesian optimization-based long- and short-term memory model (BO-LSTM) to con-
struct a multi-source data fusion-driven crop growth feature extraction algorithm for winter wheat
yield prediction. The yield prediction performance of BO-LSTM, support vector machine (SVM), and
least absolute shrinkage and selection operator (Lasso) was then compared with multi-source data
as input variables. The results showed that effective deep learning hyperparameter optimization is
made possible by Bayesian optimization. The BO-LSTM (RMSE = 177.84 kg/ha, R2 = 0.82) model had
the highest accuracy of yield prediction with the input combination of “GPP + Climate + LAI + VIs”.
BO-LSTM and SVM (RMSE = 185.7 kg/ha, R2 = 0.80) methods outperformed linear regression Lasso
(RMSE = 214.5 kg/ha, R2 = 0.76) for winter wheat yield estimation. There were also differences
between machine learning and deep learning, BO-LSTM outperformed SVM. indicating that the
BO-LSTM model was more effective at capturing data correlations. In order to further verify the
robustness of the BO-LSTM method, we explored the performance estimation performance of BO-
LSTM in different regions. The results demonstrated that the BO-LSTM model could obtain higher
estimation accuracy in regions with concentrated distribution of winter wheat cultivation and less
influence of human factors. The approach used in this study can be expected to forecast crop yields,
both in regions with a deficit of data and globally; it can also simply and effectively forecast winter
wheat yields in a timely way utilizing publicly available multi-source data.

Keywords: yield prediction; deep learning; BO-LSTM; remote sensing; meteorological data

1. Introduction

Wheat is one of the top three crops in the world and is an important source of calories,
protein, and many micronutrients for humans [1,2]. However, there are many constraints
in production that pose serious threats to the stable and high yield potential of wheat, for
example, increased temperature, increased precipitation variability, and frequent extreme
events [3,4]. Therefore, early prediction of crop yield before harvest is of great value for
our food security and trade.

Traditional crop yield assessment is carried out through field surveys during the crop
growing season or based on previous experience of crop growth conditions, a method
that has reliability issues related to sampling and non-sampling errors in data collection
and data processing due to small samples and limited human resources to obtain the
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required sampling frequency and sample size, and the variability of the climate from year
to year makes traditional yield forecasts inaccurate and unstable [5]. The development
of remote sensing technology has enabled large-scale crop yield prediction. Researchers
have widely used remotely sensed vegetation indices and crop yields to build statistical
regression models for yield estimation. Commonly used vegetation indices (VIs) are
normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), near-
infrared reflectance of vegetation (NIRv), and leaf area index (LAI) [6–8]. Some researchers
have also used the wide dynamic range vegetation index (WDRVI) and solar induced
chlorophyll fluorescence (SIF) to model crop yield estimates [9,10]. Researchers are now
utilizing non-linear models more frequently for yield estimation because crop yield is
intimately tied to external environmental factors; meteorological variables affect crop
growth, development, and final yield in a non-linear manner and often have complicated
relationships [11–14].

Machine learning and deep learning methods are often used to achieve accurate
predictions of various crop yields, especially deep learning, and the application of deep
learning to estimate crop yields has been a popular algorithm among researchers in recent
years. Different deep learning models have so far been used to estimate yield for various
crops, highlighting the importance of deep learning network frameworks. Mainstream
deep learning models include convolutional neural network (CNN) and recurrent neural
network (RNN) [15–18]. CNN models can better handle the spatial autocorrelation of
remote sensing images, but they cannot adequately consider the complex temporal correla-
tion [19]. And RNN is a sort of neural network that primarily models sequence-type data by
taking sequence data as input and using the correlation between sequence data to execute
recursion in the direction of sequence evolution [20]. RNN, however, suffers from gradi-
ent disappearance, gradient explosion, and inadequate long-term memory capacity with
time step iteration. Long short-term memory (LSTM) is an excellent variant of the RNN
model, which not only has the characteristics of the RNN model, but also effectively avoids
the undesirable situations such as gradient explosion and gradient disappearance, etc.
It introduces the “gate” control structure, sets the internal gate mechanism, trains the
weights of the input gate, forget gate and output gate, realizes the automatic screening
and fusion of temporal features, and has better prediction and fitting performance for
data [21,22]. HAIDER et al. [23] showed that the LSTM neural network model has much
higher yield estimation accuracy than RNN. JIANG et al. [24] estimated county-level maize
yields based on an LSTM neural network model using maize growth period as a time
series by combining crop phenology information, meteorological data, and remote sensing
data. The results showed that the LSTM neural network model was able to extract the
implied relationships contained in the data series, achieve accurate county-level crop yield
estimation, and provide robust yield estimation under extreme weather conditions. Huiren
Tian et al. [25] used LSTM to estimate wheat yield with different time steps, evaluating the
comparison with back propagation neural network (BPNN) and support vector machine.
The results of this study indicated that the LSTM model outperformed BPNN and SVM
in estimating crop yield and is robust to climate and site fluctuations. Time series data as
deep learning samples have been extensively studied at this stage [24,26]. Therefore, the
samples used for training deep learning models mainly include remote sensing data and
meteorological data based on multiple fertility periods and long time series, which provide
a basis for further improving the accuracy of yield estimation.

The network structure of deep learning is complex with many hyperparameters, and
many scholars use deep learning algorithms to estimate crop yield by using empirical
methods to determine the values of these hyperparameters. The combination of hyperpa-
rameters is very important to the prediction accuracy effect of neural network models, and
a good combination of hyperparameters can improve the training accuracy of the model
and the generalization ability of the test set. In order to speed up the training of neural
networks, save training cost, and improve network performance, the optimization of LSTM
neural network model hyperparameters using the Bayesian optimization algorithm is
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proposed. Commonly used hyperparameter optimization methods include grid search [27],
random search, and particle swarm optimization algorithms [28]. The idea of the grid
search algorithm is exhaustive search; the search time of this method increases exponen-
tially with the number of parameters. For the case of more hyperparameters, this method
faces performance problems. The results obtained by random search vary widely each time,
and there is the problem of poor accuracy. The particle swarm optimization calculation
is easy to fall into local optimum, resulting in low convergence accuracy. Compared to
other optimization algorithms, Bayesian optimization algorithms are able to find better
hyperparameters in a shorter time, compared to other optimization algorithms, and are a
very effective global optimization algorithm [29–31].

Based on the current status of the recent studies presented above and the limitations,
we take winter wheat in Hengshui City as an example. A BO-LSTM neural network model
is proposed to predict winter wheat yield using satellite meteorological data on the basis
of crop phenology. This study’s aims are the following three objectives: (i) speed up
the training of neural networks, save training costs, and improve network performance.
(ii) Determine which combinations of input variables are best for winter wheat yield
estimation based on the BO-LSTM model. (iii) Compare the predictive performance of
machine learning (SVM), deep learning (BO-LSTM), and linear regression (Lasso). Finally,
explore what kind of environment our proposed model BO-LSTM is suitable for in order to
obtain the most accurate prediction.

2. Materials and Data
2.1. Study Area

The study area is located in Hengshui, Hebei Province, China, between 115◦10′–116◦34′ E
longitude and 37◦03′–38◦23′ N latitude, covering two municipal districts, one county-level
city, and eight counties, as of 2016 (Figure 1). According to the second soil census, the city’s
tidal soil subclass covers 430,000 hectares, accounting for 62% of the total land area, which is
widely distributed in all counties and urban areas and is the main soil type for agricultural
land. The annual precipitation in Hengshui is 5.66 billion cubic metres, with an average
precipitation of 642.1 mm. It belongs to the continental monsoon climate zone, which is
warm and semi-arid, and the main types of crops it grows are wheat, corn, sorghum, etc.
By 2021, the sown area of grain in Hengshui reached 7191.33 km2, of which 3333.3 km2 is
occupied by winter wheat, accounting for about 1/2 of the sown area of grain in Hengshui.
With a total yield of 4.34 billion kg, so the yield of winter wheat has a key influence on the
economic development of Hengshui. This study was conducted on winter wheat, which
is generally sown in early October and matures in mid-to-late June of the following year
in Hengshui. The phenological period of winter wheat is mainly divided into six stages,
sowing (early October), tillering (late-November to mid-December), reviving stage (late-
February–mid-March), jointing (mid-March–mid-April), tasseling (late-April–mid-May),
and mature milking (late-May–mid-June) [32,33].

2.2. Winter Wheat Yield and Planting Distribution

The historical county-level winter wheat yield data record of Hengshui City came from
the 2005–2019 statistical yearbook sharing platform, recording yield data (unit: kg/ha).
In Hengshui City, there are two municipal districts and one county-level city; there are
11 counties, since we all consider these to be county-level levels. Spatial distribution data
of winter wheat in Hengshui at 250 m spatial resolution from 2005–2019 were provided
by Chinese Academy of Agricultural Sciences [34]. The extraction results were evaluated
in terms of area quantity and spatial location, and the average relative error of area quan-
tity compared with the statistical yearbook for 20 years was 16.1%. In terms of spatial
location, the extraction results of 2015 were verified by selecting sample points in Google
Earth high-resolution historical images, and the overall accuracy was 86.8% with a kappa
coefficient of 0.69. The results indicated that the winter wheat distribution data had a high
extraction accuracy.
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2.3. Remote Sensing Data

The NASA Terra MODIS vegetation index (VI) products (MOD13Q1, Version 6.1) provide
consistent spatial and temporal time series comparisons of global vegetation conditions that
can be used to monitor the Earth’s terrestrial photosynthetic vegetation activity in support
of phenologic, change detection, and biophysical interpretations. In this study, NDVI
and EVI data from the NASA-produced MOD13Q1 dataset with a temporal resolution of
16 days and a spatial resolution of 250 m were used. The MOD15A2H product provides a
terrestrial LAI at 500 m resolution every 8 days, and it has been available since 2000 and
allows analysis of LAI time series data over multiple growing seasons over long periods
of time.

2.4. Gross Primary Productivity

Gross primary productivity (GPP) is the amount of organic carbon fixed by photosyn-
thesis per unit time by organisms, mainly green plants. MOD17A2H offers GPP products
as 8-day, 500 m resolution composite products. This data product uses MODIS land cover
data, leaf area index, photosynthetically active radiation fraction, and meteorological data
from DAO and is fed into a light energy utilisation model. It is important for crop yield
estimation, global carbon, and carbon trade [35,36].

2.5. Meteorological Data

In this study, we collected from TerraClimate datasets a dataset of high spatial res-
olution (1/24◦, ~4 km) monthly climate and climatic water balance for global terrestrial
surfaces from 1958–2015 [37]. TerraClimate uses climate-assisted interpolation to combine
high spatial resolution climate normals from the WorldClim dataset with coarser resolu-
tion time-varying (i.e., monthly) data from other sources to generate monthly datasets of
precipitation, maximum and minimum temperatures, wind speed, vapour pressure, and
solar radiation. This dataset has been widely used by many scholars to calculate various
drought indices to assess the effects of drought on vegetation physiological activity and
yield [38–41]. The main climate variables chosen for this paper include precipitation (pr),
maximum temperature (tmmx), downgradient surface shortwave radiation (srad), and the
Palmer drought index (Pdsi).

2.6. Data Preprocessing

Based on the spatial resolution of winter wheat planting area in Hengshui City being
250 m, in order to maintain the consistent spatiotemporal resolution of all data, we re-
sampled satellite vegetation index, GPP, and meteorological data to 250 m and one-month
intervals. Satellite and meteorological data were masked using the distribution of winter
wheat cultivation from 2005 to 2019, and all variables of the county-wide monthly average
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were summarized. All data are pre-processed on the Google Earth Engine (GEE) platform,
a free geoprocessing service launched by Google, which provides a large number of geo-
processing algorithms and massive image datasets based on the Google Cloud Platform,
and the summary of data is performed on Python and Excel.

3. Methodology
3.1. Long Short-Term Memory

The LSTM network was proposed by Hochreiter et al. [42] in 1997 based on an exten-
sion of RNN, which is mainly used to solve the problems that exist in traditional RNN, both
gradient disappearance and explosion. The most fundamental difference between RNN
and LSTM is that the hidden layer of the LSTM network is a gated unit, where information
is added and removed through a ‘gate’ structure that learns which information to keep or
forget during training. The LSTM has three types of gate structures: forgetting gates, input
gates, and output gates (Figure 2a).
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The forgetting gate will decide which information should be forgotten from the neural
network unit states, which is implemented by a sigmoid function. The gate is determined
by the previous output, Ht−1, and the new input, Xt, to determine which information was



Agronomy 2022, 12, 3194 6 of 15

removed from the previous cell state, Ct−1. The output is a number between 0 and 1, where
0 means that the information is completely discarded, and 1 means that the information is
completely retained, and is calculated as in Equation (1):

ft = σ
(

W f .[Xt, Ht−1] + b f

)
(1)

where σ is the sigmoid function, ft is the forgetting gate, Ht−1 denotes the output of the
previous node, Xt denotes the current input, Wf is the forgetting gate weight, and bf is the
forgetting gate bias.

The input gate determines which information should be stored from the neural net-
work unit states. Implementing this requires two steps: first the sigmoid layer generates
the activation value, it, for the input gate based on Ht−1 and Xt. The tanh function creates a
candidate vector state, ct

′, which is the alternative to be used for the update, calculated as
in (2) and (3):

it = σ(Wi.[Xt, Ht−1] + bi) (2)

c′t = tanh(WC.[Xt, Ht−1] + bc) (3)

where it denotes the input gate output, ct
′ denotes the current candidate node state, Wi and

Wc denote the weights of the input gate and the input candidate unit, respectively, and bi
and bc denote the bias of the input gate and the input candidate unit, respectively. The old
cell state, Ct−1, is updated to the new cell state, Ct, using the results obtained from the first
two orders, calculated as in (4):

Ct = ft.Ct−1 + it. c′t (4)

Finally there is the output gate, which determines which information in the cell state
will be taken as the output of the current state. The sigmoid layer is first run, which
determines which cell states are output; then the tanh value of the cell state is multiplied by
the output of the sigmoid (normalize the output value) threshold, which ultimately gives
the output new cell state Ht, calculated as in (5) and (6).

Ot = σ(Wo.[Xt, Ht−1] + bo) (5)

Ht = Ot.tan h(Ct) (6)

where Ot denotes the output gate output, Ht−1 denotes the output of the previous node,
Xt denotes the current input, Wo denotes the output gate weight, and bo denotes the output
gate bias.

In this study, the deep neural network model of LSTM winter wheat yield estimation
based on the phenological stages is shown in Figure 2b. The input layers of this model are
VIs, LAI, GPP, pr, tmmx, srad, and Pdsi for six growing stages of winter wheat. Two layers of
LSTM layers are set, and other hyperparameters are set according to the results of Bayesian
optimization algorithm in Section 3, with a total of six times steps. To prevent overfitting of
the training data a dropout layer is added to the network architecture. All input data need
to be normalized before being fed into the model and, finally, back-normalised for output.
The ratio of training data to test data is set to 8:2, where 80% is training data and 20% is
test data.

3.2. Bayesian Optimization of LSTM Hyperparameters

The process of building LSTM network models involves the determination of many
hyperparameters, such as network depth, learning rate, batch size, and so on. The most
intuitive way is to find the optimal parameters by manual trial and error, but the manual
trial and error method is too inefficient. It lacks a certain exploration process, and the
parameters can only be adjusted manually repeatedly for different problems and data. It
takes a lot of time, and the final combination of model hyperparameters may not be optimal,



Agronomy 2022, 12, 3194 7 of 15

which will affect the prediction of the model, including the degree of network fit and the
generalization ability to the test set [43,44]. Bayesian optimization, as a very effective global
optimization algorithm, requires only a small number of iterations to obtain a desired
solution by designing a proper probabilistic agent model and a payoff function [43,44]. The
main optimized hyperparameters and the range of values are shown in Table 1.

Table 1. LSTM hyperparameter setting and range.

Parameters Range Parameter Meaning

NumHiddenUnits (200, 600) Number of hidden units
MaxEpochs (200, 800) Maximum number of epochs

MiniBatchSize (8, 20) Size of mini batch
InitialLearnRate 0.01 Initial learning rate

Dropout (0.1, 0.7) Abstention factor
SolverName adam Solver for training network

LearnRateSchedule piecewise Learning rate strategy
Objective function RMSE

The number of hidden units corresponds to the amount of information remembered
between time steps (the hidden state). The hidden state can contain information from all
previous time steps, regardless of the sequence length. If the number of hidden units is too
large, then the layer might overfit to the training data.

Epoch indicates the number of iterations of the data set during model training. If the
number of iterations is set too large, the training time of the model is longer, resulting in
overfitting of the model, over-reliance on training data, and poor prediction of unknown
data, which makes the generalization ability of the model lower. If the number of iterations
is set too small, it will make the model fit poorly and affect the prediction accuracy of
the model.

Size of the mini-batch to use for each training iteration is indicated, specified as the
comma-separated pair consisting of ‘MiniBatchSize’ and a positive integer. A mini-batch
is a subset of the training set that is used to evaluate the gradient of the loss function and
update the weights. If the number of iterations is set too large, the training time of the
model is long, causing the model to be overfitted and overly dependent on the training
data. The prediction ability of the unknown data is poor, thus making the generalization
ability of the model lower. If the number of iterations is set too small, it will make the
model not fit well and affect the prediction accuracy of the model.

The initial learning rate, α, is a relatively important hyperparameter in the LSTM
model. When the learning rate is too large, it will cause the parameters to be optimized
to fluctuate around the minimum value, thus skipping the optimal solution. When the
learning rate is set too small, it will affect the convergence speed of the model, resulting in
a slow convergence rate. In this paper, α is set to 0.01 based on the empirical value.

Dropout means that, during the training process of the model, for the network units,
they are temporarily dropped from the network according to a certain probability. This
hyperparameter plays a crucial role in preventing model overfitting and improving the
generalization ability of the model.

The key hyperparameters searched in this paper are data batch size, number of
iterations, discard factor, and number of nodes in the hidden layer. The remaining hyperpa-
rameters are based on experience, the optimizer is selected as “adam”, LearnRateSchedule
is set to “piecewise”, and the root mean square error is selected as the target loss function.

The optimization of the LSTM network model hyperparameters using the Bayesian
method is a five-step process as follows (Figure 3, the implementation of the whole process
is implemented in matlab R2021b):

Step 1: All data of six winter wheat phenological periods are normalized to divide the
training set and validation set for parameter learning and model result validation of the
training network model.
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Step 2: The LSTM hyperparameters to be optimized and the range are set; a random
set of initialized hyperparameters as the initial hyperparameters of the LSTM model are
generated. The training set is input for the training of the LSTM neural network. The RMSE
is used as the objective function for the hyperparameter optimization of the LSTM model.

Step 3: Gaussian process is used to find the posterior probability distribution of the
objective function. The hyperparameter sample points are selected in the modified Gaussian
model according to the acquisition function. The acquisition function chosen in this paper
is ‘expected-improvement-plus’, which gives preference to the optimal hyperparameter to
achieve the update of the hyperparameter.

Step 4: The number of iterations (40) is completed and the minimum objective function
and the corresponding trained LSTM model hyperparameters are returned.

Step 5: The validation set is fed into the trained LSTM model to construct an LSTM
winter wheat yield estimation model based on Bayesian optimization algorithm.

The general framework of this study is shown in Figure 3a. Based on the indicators
required for winter wheat phenology calculation, the influence of different input variables
on winter wheat yield prediction was analysed on the BO-LSTM model. Then the perfor-
mance of different prediction models for winter wheat yield estimation was compared;
finally, the robustness of BO-LSTM was explored. All models used were run in matlab
R2021b environment.
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3.3. Model Performance Evaluation

In this study, coefficient of determination (R2), root mean square error (RMSE), and
mean absolute percentage error (MAPE) were used as indicators to assess the model
performance [45]. The equations are written as follows:

R2 =

 ∑(oi − o)(yi − y)√
∑ (oi − o)2(yi − y)2

2

(7)
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RMSE =

√
1
n

n

∑
i=1

(oi − yi)
2 (8)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − oi
yi

∣∣∣∣ (9)

where n is the number of samples, and yi and oi are the measured and predicted values of
winter wheat yield, respectively. R2 is a measure of the strength of the linear relationship
between the predicted and measured values of the model, with larger R2 indicating that the
measured and predicted values have similar trends. RMSE is used to assess the deviation
between measured and predicted values. The smaller the value, the smaller the deviation is
between the measured and predicted values of the model; the higher R2, the smaller RMSE
is and the better the model. For the MAPE range [0, +∞), the smaller the MAPE, the better
the model simulation results are. Compared to RMSE, MAPE is equivalent to normalizing
the error at each point, reducing the effect of absolute error from individual outliers.

4. Results and Analysis
4.1. Performance of LSTM Hyperparameter Combination Output Based on Bayesian Optimization

This study aims to optimise the hyperparameters of the LSTM neural network model
based on a Bayesian optimisation algorithm, evaluating both the time efficiency, “time”,
and the accuracy, RMSE, of the model after tuning the parameters. The first three optimal
parameter combinations were selected, along with the corresponding accuracy and time
consumption (Table 2). The results demonstrate that the minimum RMSE of the Bayesian
optimised LSTM model on the training set is 149.51 kg/ha, and the time efficiency of
finding the optimal hyperparameter combination is 14 min. The Bayesian optimisation
algorithm makes full use of historical information when selecting the optimal hyperparam-
eter combination, allowing the optimal hyperparameter combination to be found within a
short time and number of iterations.

Table 2. Output results of Bayesian optimized LSTM hyperparameters on the training set.

Methods NumOfUnits MaxEpochs MinBatchSize DropoutLayer Time/min RMSE

Bayesian optimization
202 314 9 0.1 14 149.51
335 501 10 0.1 14 181.57
354 510 11 0.025 14 182.80

4.2. Yield Estimation Performance for Different Combinations of Inputs

To evaluate the performance of yield estimation from different data sources, we put
different combinations of input variables in a BO-LSTM model for analysis. Figure 4 shows
the yield estimation performance of BO-LSTM for winter wheat with five different input
variables. We found that yield estimates using GPP (R2 = 0.72, RMSE = 186.13 kg/ha) alone
were more accurate than those using LAI (R2 = 0.67, RMSE = 221.32 kg/ha) alone. When
combined with meteorological data, the accuracy of GPP combined with meteorological
data was higher (R2 = 0.81, RMSE = 180.66 kg/ha) compared to the remotely sensed
vegetation index (R2 = 0.78, RMSE = 190.96 kg/ha), because GPP more directly reflects the
process of organic matter accumulation by vegetation photosynthesis. The yield estimation
accuracy of winter wheat gradually increased as the input data increased, indicating that
the estimation accuracy of fusing multiple sources of data was better than the input from
a single data source. The highest estimation accuracy was achieved by integrating all
data together (R2 = 0.83, RMSE = 177.84 kg/ha). The addition of the data improved
the model’s ability to capture spatial heterogeneity in yield, capturing more features
associated with winter wheat yield. In particular, the yield estimation accuracy of the LSTM
model improved significantly when combined with meteorological data, suggesting that
meteorological data provide unique and irreplaceable information.
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4.3. Comparison with Other Methods

The analysis in the previous section led us to conclude that the highest accuracy in
winter wheat yield estimation can be achieved by integrating all data, so we used data with
“GPP + Climate + LAI + VIs” as the final input data for the BO-LSTM. To further evaluate
the yield estimation performance of the BO-LSTM, we used a machine learning SVM and a
linear regression Lasso to estimate the yield of winter wheat. Figure 5 presents a scatter plot
of our yield estimates and statistical annals for all county test data for Hengshui city using
the three prediction models. Based on the R2 and RMSE values, it can be intuitively seen that
the SVM (RMSE = 185.7 kg/ha, R2 = 0.80) and BO-LSTM (RMSE = 177.8 4 kg/ha, R2 = 0.82)
model methods perform significantly better than Lasso (RMSE = 214.5 kg/ha, R2 = 0.76).
The potential reason could be that SVM and BO-LSTM methods capture the complex and
nonlinear relationships between input variables and winter wheat yield better than linear
regression models. Further, it is found that the BO-LSTM model slightly outperformed the
SVM method in estimating winter wheat yield in Hengshui City. This is largely attributed
to the fact that machine learning non-temporal models focus on information extraction
for unordered data and do not optimize the structure for temporal data. The LSTM is a
recurrent neural network structure that transmits cumulative effective information during
different growth stages. It is similar to the growth process characteristics of crops: crop
growth and progressive developmental changes and biomass accumulation. The effects
of environmental factors on winter wheat yield are complex and non-linear. The LSTM
inputs the observations into the model network structure in a temporal order, and the gate
mechanism is set internally. The weights of input gates, forgetting gates, and input gates
are trained to achieve automatic screening and fusion of timing features.

Immediately afterwards, we used the BO-LSTM with better estimation accuracy and
SVM to estimate winter wheat yield for all counties in Hengshui (Figure 6). In general,
there was some spatial variation in the estimation advantage of different regions. The
estimation performance of BO-LSTM was still slightly higher than that of SVM, regardless
of the county region. Using the BO-LSTM model with better yield estimation accuracy, we
can see that the RMSE is more than 300 kg/ha in RaoYang County, Jizhou City, Taocheng
District, Anping County, and Fucheng County. The highest is in Rao Yang County with an
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RMSE of 444. 77 kg/ha and a MAPE of 6.18. The areas with RMSE between 200–300 kg/ha
are Shecheng County, Jing County, Shenzhou City, and Zaojiang County. Areas with RMSE
less than 200 kg/ha include Wuyi County and Wuqiang County, with the smallest being
located in Wuyi County (RMSE = 117.30 kg/ha, MAPE = 1.64).
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5. Discussion

In this study we highlight the advantages of BO-LSTM fusing multi-source data for
winter wheat yield estimation. The results show that the deep learning model fusing
multi-source data provides reliable winter wheat yield estimation at the regional scale. In
general, GPP, LAI, and VIs are suitable for large-scale crop yield estimation. The estimation
accuracy can be improved by combining meteorological data. The highest estimation
accuracy is achieved when all predictors are combined and entered into the estimation
model, which is very similar to previous studies [25,46,47]. Since this paper uses SVM,
LSTM, and LASSO as the yield estimation models, which are regularized, we do not need
to consider the problem of multicollinearity.

The Bayesian optimizer can determine an acceptable value very quickly, which is
especially advantageous when the time complexity of finding the value of any function
of the black box function is high, and the Bayesian optimizer does not have a limit on the
search fineness. The disadvantage is that the returned result is not necessarily the true
minimum objective function value (grid search may not find it either), and the result of each
optimization will vary. Therefore, several optimizations are needed when optimizing the
LSTM hyperparameters with Bayesian, and the best optimization result is finally selected.

For the problem of different estimation accuracies in different regions (Figure 6), we
analysed the distribution of winter wheat cultivation over 15 years and found that we only
listed four of them (Figure 7), and the distribution of wheat cultivation in Taocheng, Jizhou,
Anping, and Rao Yang regions was more scattered with less cultivated area. Among them,
Taocheng District and Jizhou District are the city centre of Hengshui City. The marginal
effects of various factors in cities within a certain region affect climate factors, and local
climate is difficult to obtain accurately compared to other regions, resulting in differences
between the meteorological data we obtained and the actual meteorological data [48]. This
explains the large discrepancy between estimated yields and official yield records in these
areas. Our method is therefore more suitable for areas where the distribution of cultivation
is concentrated, far from urban building sites, and with relatively little human interference.

In the process of analysis, we found that there are still some limitations. The first
is that we focus on estimating county-level crop yields, which leads to smaller training
samples due to the difficulty of obtaining data. The problem of data scarcity makes
the learning information aspect of the LSTM neural network model insufficient in the
training process. Second, the essence of deep learning is feature extraction from data to
data, and neural network modelling converts the original input variables into high-level
representations through nonlinear activation and squeeze functions. The description and
mechanistic expression of the crop growth process cannot be learned, which weakens the
traceability and interpretability of the LSTM model. The data-driven crop growth model
has great potential. The crop growth model can take the crop, environment, and cultivation
technology as a whole. The principles and methods of systems analysis can be applied to
provide theoretical generalizations and quantitative analyses of the physiological processes
of crop growth and development, photosynthetic production, organogenesis, and yield
formation and their feedback relationships to environment and technology. Following
that, the corresponding mathematical models are developed to carry out the dynamic
quantitative simulation of the crop growth process. Therefore, fusing deep learning with
crop mechanism models can improve the interpretability of deep learning models. To
address the problems, our future work focuses on expanding the study area to integrate
process-based models and deep learning techniques to develop hybrid models. The BO-
LSTM model provides a data-driven approach to crop growth time series feature extraction
by combining the crop weathering characteristics. The spatiotemporal scalability of the BO-
LSTM model is worth exploring in future research. The spatial transfer learning capability
of the BO-LSTM can be evaluated to quantify the model’s ability to estimate crop yields in
areas without many historical yield records. A deep learning approach based on BO-LSTM
to learn the spatiotemporal heterogeneity of crop growth can help to better understand the
impact of global climate change on agricultural production.



Agronomy 2022, 12, 3194 13 of 15Agronomy 2022, 12, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 7. Spatial distribution of winter wheat in Hengshui City, 2016–2019. 

6. Conclusions 
In this research, we proposed a BO-LSTM model that integrates crop phenology and 

meteorological and remote sensing data to predict county-level winter wheat yields. Yield 
estimation performance was then compared using three predictive models, including lin-
ear regression, machine learning, and deep learning. The conclusions are as follows: 
(1) Using Bayesian optimization of LSTM neural network model hyperparameters can 

achieve identification of the optimal combination of hyperparameters in a shorter 
period of time. 

(2) Multi-temporal remote sensing data based on BO-LSTM model combined with me-
teorological data can provide effective information to obtain more accurate yield pre-
diction models to estimate regional scale winter wheat yield. 

(3) Among the three prediction models, BO-LSTM achieves higher yield estimation ac-
curacy relative to Lasso and SVM. 

(4) There is some spatial variation in the estimated yield advantage in different areas, 
and our method is more suitable for places where crop cultivation is concentrated, 
far from urban building sites and with less residential land. 

Author Contributions: Y.D. and M.G. designed the methodology and obtained funding for the re-
search. Y.D. contributed to compiling and analysing the data and wrote the manuscript. F.F. and 
Y.D. conducted statistical analysis. M.G., H.Z. and Q.L. participated in the data analysis and super-
vised the writing of the manuscript. All authors have read and agreed to the published version of 
the manuscript. 

Funding: This research was funded by High resolution Earth observation System Project, grant 
number 09-Y30F01-9001-20/22 and 09-H30G02-9001-20/22, and the earmarked fund for CARS-08. 

Institutional Review Board Statement: Not applicable. 

Figure 7. Spatial distribution of winter wheat in Hengshui City, 2016–2019.

6. Conclusions

In this research, we proposed a BO-LSTM model that integrates crop phenology and
meteorological and remote sensing data to predict county-level winter wheat yields. Yield
estimation performance was then compared using three predictive models, including linear
regression, machine learning, and deep learning. The conclusions are as follows:

(1) Using Bayesian optimization of LSTM neural network model hyperparameters can
achieve identification of the optimal combination of hyperparameters in a shorter
period of time.

(2) Multi-temporal remote sensing data based on BO-LSTM model combined with me-
teorological data can provide effective information to obtain more accurate yield
prediction models to estimate regional scale winter wheat yield.

(3) Among the three prediction models, BO-LSTM achieves higher yield estimation
accuracy relative to Lasso and SVM.

(4) There is some spatial variation in the estimated yield advantage in different areas,
and our method is more suitable for places where crop cultivation is concentrated, far
from urban building sites and with less residential land.
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