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Abstract: Soybean (Glycine max (L.) Merr.) oil is an important source of vegetable oil for support-
ing the human diet. However, the high level of polyunsaturated fatty acids in natural soybean
oil renders the oil unstable and thus susceptible to the development of unpalatable flavors and
trans fatty acids. Therefore, reducing the content of polyunsaturated fatty acids and increasing the
content of monounsaturated fatty acids is a longstanding and important target for soybean breeding.
However, soybean varieties with a high oleic acid content are rare in soybean germplasm resources,
which introduces substantial difficulties in the cultivation of high-oleic-acid soybeans. In this study,
CRISPR/Cas9-mediated gene-editing technology was used to create targeted knockout of the soybean
fatty acid desaturase encoding genes GmFAD2-1A and GmFAD2-1B that contribute to the formation of
polyunsaturated fatty acids. We obtained fad2-1a, fad2-1b, and fad2-1a/fad2-1b homozygous mutants
using two sgRNAs. We found that the oleic acid content increased from 11% to 40-50% in the fad2-1a
and fad2-1b mutants and to 85% in the fad2-1a/fad2-1b mutants. We also generated transgene-free
double mutants that conferred higher oleic acid, and the fad2-1a/fad2-1b mutant had no adverse
phenotyping compared with the wild type. Our study provided new materials for the selection and
breeding of high-oleic-acid soybean varieties.

Keywords: soybean; oleic acid; GmFAD2-1; genome editing; mutants

1. Introduction

Soybean (Glycine max (L.) Merr.) is one of the most important oil crops in the world.
Unsaturated fatty acids account for about 85% of the total fatty acids in soybean seeds.
High unsaturated fatty acid content is associated with strong antioxidant capacity and high
stability, which is beneficial for human health [1]. Oleic acid is highly stable and its content
is an important indicator for evaluating soybean oil quality, whereas polyunsaturated
fatty acids are unstable and can cause undesired flavors for consumers. Thus, soybean
oil with a high oleic acid content is far superior to traditional soybean oil in terms of
oxidation stability. Reducing the synthesis of polyunsaturated fatty acids in soybean seeds
can improve the oxidation stability of soybean oil without causing the production of trans
fatty acids [2]. However, oleic acid accounts for only 20% of the total unsaturated fatty acids
in soybean, which restricts the application of soybean oil in food and industry [3,4]. With
the increasing demand for industrial uses of soybean oil and consumer-driven concerns
about health issues related to edible oils, the development of soybean varieties with an
ideal fatty acid composition has become one of the important goals of soybean genetic
improvement [5].

Fatty acid desaturase 2-1 (FAD2-1) localizes to the endoplasmic reticulum and plays
an important role in the initial desaturation of fatty acids to produce polyunsaturated
fatty acids, particularly for converting oleic acid to linoleic acid [6–8]. As such, GmFAD2-1
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activity determines the level of monounsaturated fatty acids in soybean oil. Six Gm-
FAD2 desaturase genes have been identified in the soybean genome, namely GmFAD2-
1A (Glyma.10G278000), GmFAD2-1B (Glyma.20G111000), GmFAD2-2A (Glyma.19G147300),
GmFAD2-2B (Glyma.19G147400), GmFAD2-2C (Glyma.03G144500), and GmFAD2-2D
(Glyma.09G111900) [9,10].

Studies have shown that GmFAD2-1 is seed-specific and is strongly expressed in
developing seeds, while GmFAD2-2 is expressed during seed development and in vegetative
tissues. Both GmFAD2-1A and GmFAD2-1B are highly expressed during oleic acid synthesis
and are the main genetic determinants of oleic acid and linoleic acid contents in soybean
seeds [11]. Oleic acid content can be increased by downregulating the expression of
GmFAD2-1A and GmFAD2-1B, which resulted in 80% oleic acid content upon GmFAD2-1A
and GmFAD2-1B silencing [12–14]. Different methods have been used to develop soybean
lines with an increased oleic acid content, including RNA interference (RNAi) and gene-
editing technologies. RNAi can effectively inhibit FAD2-1 expression levels to increase
oleic acid [15–17]. Gene-editing technology is mediated by specific sequence nucleases
such as transcription activator-like effector nucleases (TALENs) and clustered regularly
interspaced short palindromic repeats (CRISPRs) to generate mutants [17–20]. Such genetic
strategies are promising routes to optimize the oleic acid content in soybean.

The objective of this work was to create high-oleic-acid soybean lines using gene-
editing technology. In this study, we obtained three homozygous mutants that included
fad2-1a, fad2-1b, and fad2-1a/fad2-1b using two sgRNAs for FAD2-1A and FAD2-1B. The
oleic acid content was approximately doubled in the single mutants and was increased
by nearly threefold in the double mutants. In addition, we also generated transgene-free
mutants that retained the elevated high oleic acid with no adverse phenotyping. Thus,
this study laid a foundation for accelerating the selection and breeding of high-oleic-acid
soybean varieties.

2. Materials and Methods
2.1. sgRNA Design and Plasmid Construction

The sgRNA was constructed in the VK005 vector. The Cas9 sequence was driven by the
CaMV 35S promoter and assembled with the respective sgRNA driven by the Arabidopsis
thaliana U6 promoter. The selectable marker bar gene was also driven by the CaMV 35S
promoter. The CRISPR/Cas9-based vectors were constructed according to our previous
study [21]. The genetic information for the soybean genes GmFAD2-1A and GmFAD2-
1B were downloaded from the Phytozome website. The sgRNA for the target site were
designed using the web-based tool CRISPR-P (http://crispr.hzau.edu.cn/CRISPR2) [22].
We designed two sgRNAs: one that targeted GmFAD2-1A alone and one that simultaneously
targeted GmFAD2-1A and GmFAD2-1B.

2.2. Soybean Transformation

The two CRISPR/Cas9 vectors were transformed into the EHA105 Agrobacterium
tumefaciens strain. The Agrobacterium tumefaciens-mediated transformation procedure of the
soybean cultivar Jack was modified from a previously published protocol [23].

2.3. DNA Extraction and Mutant Identification

Genomic DNA was extracted from the leaves of transgenic soybean plants using the
Genomic DNA Kit (Cwbiotech, Beijing, China) and was subsequently used for PCR detec-
tion of mutant alleles with gene-specific primers. The primers used for FAD2-1A were 5′-
ACACATTCAGCAAAACAACTGAAAC-3′ (forward) and 5′-ACCTGTGTTGGAGTGATGGC-
3′ (reverse). The primers used for FAD2-1B were 5′-AAGCCACTAGGCATGGTATGAT-3′

(forward) and 5′-ACCCACACGCCAGTAAGAAT-3′ (reverse). The PCR products spanning
the target sites were sequenced and analyzed via sequence peaks.

To seek transgene-free plants, we detected two regions (part of the Cas9 coding
sequence and the marker gene bar) using a PCR strategy (Tsingke Biotechnology Company)

http://crispr.hzau.edu.cn/CRISPR2
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and a bar test strip. The primers used for Cas9 were 5′-TTGGGGCTCACACCAAACTT-3′

(forward) and 5′-CGATCGCCTTCTTTTGCTCG-3′ (reverse).

2.4. Fatty Acid Analysis

The contents of five fatty acids—palmitic acid (C16:0), stearic acid (C18:0), oleic acid
(C18:1), linoleic acid (C18:2), and linolenic acid (C18: 3)—were determined in the soybean
seed extracts. The heated methyl ester extraction method was used for fatty acid extraction.
First, 20 soybean seeds were selected for each soybean line and ground into a fine powder
with a grinding machine (RetschZM100, Φ = 1.0mm, Rheinische, Germany). Then, 0.03 g
of soybean powder was placed in a 2 mL sterile centrifuge tube, and 1 mL of n-hexane
was added into the centrifuge tube at 60 ◦C for 20 min with shaking every 5 min. Then,
1 mL of sodium methanol solution (0.5 mol/L) was added into each centrifuge tube and
oscillated for 10 min to complete the methyl esterification. Following centrifugation at
13,000 rpm/min for 2 min, 200 µL of supernatant was absorbed into a special sample bottle
for chromatographic analysis. The soybean fatty acid contents were determined using a
gas chromatograph (GC-2010) from the Shimadzu company (Japan). The gas chromato-
graphic analysis and detection conditions were: an RTX-Wax chromatographic column
(30 m × 0.25 m × 0.25 m), injection port temperature of 250 ◦C, nitrogen at 54 mL/min,
hydrogen at 40 mL/min, and air at 400 mL/min using a programmed temperature rise
mode. The detector temperature was 300 ◦C, and the area normalization method was used
to calculate the fatty acid content [24]. The samples of the genetically modified soybean
lines consisted of three biological replicates; each replicate was tested three times. The
average value of the three repeated tests was determined as the content of the fatty acid
component, and the fatty acid content of each transgenic soybean line was based on the
average value of the three repeated tests.

2.5. Phenotype Identification

The germination, flowering time, and maturity time were recorded in the wild type and
fad2-1a/fad2-1b mutants. The flowering time was recorded when the first flower appeared
at any node on the main stem. The maturity time was recorded when the first mature pod
appeared at any node on the main stem. The statistical analyses were performed using
Microsoft Excel.

3. Results
3.1. Generation of fad2-1a, fad2-1b, and fad2-1a/fad2-1b Mutants with the CRISPR/Cas9 System

The GmFAD2-1A and GmFAD2-1B genes were located on soybean chromosomes
10 and 20, respectively. Two target sites (named SPA and SPD) in the second exon were
selected. SPA was used to target GmFAD2-1A (Figure 1a) alone, and SPD was used to target
both GmFAD2-1A and GmFAD2-1B simultaneously (Figure 2a).

At the SPA target site, we obtained 14 T0-positive transgenic events. A total of
102 T1 plants from the different T0 generation plants were detected; 37 T1 plants were het-
erozygous and 65 plants were identified as the wild type. Thus, homozygous mutants were
identified in the T2 generation. Among them, we detected 28 T2-generation homozygous
fad2-1a mutants and obtained four types of mutations: a 1 bp deletion, a 2 bp deletion, an
11 bp deletion, and a 1 bp insertion (Figure 1b).

At the SPD target sites, we obtained 15 T0-positive transgenic events and identified
mutations in both GmFAD2-1A and GmFAD2-1B. A total of 154 T1 plants were derived
from 15 T0 transgenic events; 11 and 12 plants were heterozygous for single mutations
to GmFAD2-1A and GmFAD2-1B, respectively, and 42 plants were heterozygous for both
GmFAD2-1A and GmFAD2-1B mutant alleles. The seeds from heterozygous plants were
collected and planted for further genetic segregation, and 37 homozygous mutants were
identified in the T3 generation: 14 were homozygous fad2-1a mutants, 11 were homozygous
fad2-1b mutants, and 12 were homozygous fad2-1a/fad2-1b mutants. The fad2-1a mutants
consisted of three types of mutations: a 4 bp deletion, a 5 bp deletion, and a 10 bp dele-
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tion/1 bp insertion (Figure 2b). The fad2-1b mutants showed five types of mutations: a 1 bp
insertion, a 4 bp deletion, a 5 bp deletion, a 7 bp deletion, and a 17 bp deletion (Figure 2c).
The fad2-1a/fad2-1b mutants showed a total of nine types of mutations that were combina-
tions of two types of fad2-1a mutations (5 bp deletion and 10 bp deletion with 1 bp insertion)
and six types of fad2-1b mutants (3 bp deletion, 4 bp deletion, 5 bp deletion, 7 bp deletion,
8 bp deletion, and 1 bp insertion) (Figure 2d). Using the CRISPR/Cas9 system, we obtained
different materials that included fad2-1a, fad2-1b, and fad2-1a/fad2-1b mutants.
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Figure 1. Homozygous targeted mutagenesis of GmFAD2-1A induced by CRISPR/Cas9. (a) Gene
structures of GmFAD2-1A with target sites of CRISPR/Cas9. Black solid line: intron; blue stripe: CDS;
gray stripe: UTR (untranslated region). (b) Sequencing of the mutants. Deletions and insertions are
indicated as dashes and blue lowercase letters, respectively. The PAM is in red uppercase letters. The
types of indels (insertions–deletions) are indicated in the right column.
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1b using one target site. (a) Gene structures of GmFAD2-1A and GmFAD2-1B with the target sites
of CRISPR/Cas9 indicated and schematic illustrating the target site sequence and corresponding
PAM (red uppercase letters). (b) Sequencing results of the fad2-1a mutants. The types of indels are
indicated in the right column. (c) Sequencing results of the fad2-1b mutants. (d) Sequencing results
of the fad2-1a/fad2-1b mutants. Deletions and insertions are indicated as dashes and red lowercase
letters, respectively.
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3.2. Fatty Acid Profiles of Mutant Seeds

To detect the effects of inactivation of the GmFAD2-1A and GmFAD2-1B genes on the
fatty acid content of soybean seeds, three fad2-1a mutants (SEA-73, SEA-81, and SEA-122),
four fad2-1b mutants (PB-41, PB-86, PB-116, and PB-154) and three fad2-1a/fad2-1b mutants
(JM-72, JM-90, and JM-264) in the T3 generation were selected for the determination of
fatty acid content via gas chromatography. The editing genotypes of each line are shown in
Table 1. The wild-type soybean Jack was included as a control.

Table 1. Mutants types used for determination.

Mutant Lines Editing Types

SEA-73 fad2-1a (−2 bp)
SEA-81 fad2-1a (+1 bp)
SEA-122 fad2-1a (−1 bp)

PB-41 fad2-1b (−7 bp)
PB-86 fad2-1b (+1 bp)

PB-116 fad2-1b (−17 bp)
PB-154 fad2-1b (−4 bp)
JM-72 fad2-1a (−5 bp)/fad2-1b (−4 bp)
JM-90 fad2-1a (−5 bp)/fad2-1b (−8 bp)

JM-264 fad2-1a (−5 bp)/fad2-1b (+1 bp)

Our results showed that the oleic acid content was significantly higher in the mutant
lines compared to that of the wild type. The oleic acid composition in the seeds of the
fad2-1a mutant lines increased from ~21% in the wild type to ~35–50%, and the linoleic
acid content decreased from about 57% in the wild type to 31-41% in the different mutant
lines. The oleic acid content in the fad2-1b mutant seeds increased from ~21% in the wild
type to 39–50%, and the linoleic acid content decreased from about 57% to 27–38% in the
different mutant lines. The oleic acid content in the seeds of the fad2-1a/fad2-1b mutants
greatly increased to ~85%, whereas the linoleic acid content decreased from about 57% to
2% in the double mutant relative to the wild type (Table 2).

Table 2. Fatty acid profiles in different homozygous mutants.

Mutant Palmitic (%) Stearic (%) Oleic (%) Linoleic (%) Linolenic (%)

WT 11.14 ± 0.22 4.29 ± 0.32 21.69 ± 0.84 57.22 ± 1.14 5.66 ± 0.37
SEA-73 10.32 ± 0.03 * 3.1 ± 0.02 ** 35.64 ± 0.15 ** 41.97 ± 0.08 ** 8.97 ± 0.06 **
SEA-81 9.68 ± 0.06 ** 3.48 ± 0.07 ** 50.11 ± 0.28 ** 31.12 ± 0.22 ** 5.61 ± 0.08

SEA-122 11.12 ± 0.15 4.25 ± 0.07 38.28 ± 0.43 ** 40.9 ± 0.23 ** 5.44 ± 0.07
PB-41 8.63 ± 0.03 ** 4.52 ± 0.02 54.08 ± 0.33 ** 27.52 ± 0.27 ** 5.25 ± 0.02
PB-86 8.51 ± 0.06 ** 4.60 ± 0.03 53.30 ± 0.46 ** 28.27 ± 0.38 ** 5.32 ± 0.02

PB-116 10.44 ± 0.07 * 3.79 ± 0.06 * 39.95 ± 0.13 ** 38.98 ± 0.18 ** 6.84 ± 0.09 *
PB-154 8.88 ± 0.05 ** 4.39 ± 0.11 50.67 ± 0.41 ** 30.92 ± 0.49 ** 5.14 ± 0.05
JM-72 6.11 ± 0.02 ** 4.23 ± 0.01 84.55 ± 0.05 ** 2.35 ± 0.01 ** 2.76 ± 0.05 **
JM-90 6.13 ± 0.03 ** 3.50 ± 0.04 ** 85.42 ± 0.06 ** 2.36 ± 0.06 ** 2.59 ± 0.03 **

JM-264 6.70 ± 0.01 ** 2.78 ± 0.03 ** 84.69 ± 0.12 ** 2.78 ± 0.05 ** 3.04 ± 0.09 **
* Indicates significant difference compared with WT at 0.05 level; ** indicates significant difference compared with
WT at 0.01 level; ± indicates standard error.

3.3. Identification of Transgene-Free fad2-1a/fad2-1b Mutant Plants

As the fad2-1a/fad2-1b mutant was obtained using the CRISPR/Cas9 system, the Cas9
gene and bar selectable marker genes were integrated into the soybean genome during the
transformation process, thereby producing transgenic plants. However, these genes can be
separated while retaining the genetic modification at the genes of interest in the progeny of
self-crossed plants. In order to obtain fad2-1a/fad2-1b mutants that did not contain Cas9 and
its associated selectable marker gene, the sequence encoding the Cas9 gene was detected
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via PCR (Figure 3a), and the bar strip test was used to detect the presence of the selectable
marker gene (Figure 3b). In the T3 generation, two of the six tested lines were T-DNA-free,
and 15 progeny plants in the T4 generation were transgene-free. Four of six T3 generation
lines were T-DNA-positive, but some transgene-free mutants were identified in the T4
generation following self-crossing (Table 3). We obtained fad2-1a/fad2-1b transgene-free
mutants through the selection.

Agronomy 2022, 12, x FOR PEER REVIEW 7 of 10 
 

 

be separated while retaining the genetic modification at the genes of interest in the prog-
eny of self-crossed plants. In order to obtain fad2-1a/fad2-1b mutants that did not contain 
Cas9 and its associated selectable marker gene, the sequence encoding the Cas9 gene was 
detected via PCR (Figure 3a), and the bar strip test was used to detect the presence of the 
selectable marker gene (Figure 3b). In the T3 generation, two of the six tested lines were 
T-DNA-free, and 15 progeny plants in the T4 generation were transgene-free. Four of six 
T3 generation lines were T-DNA-positive, but some transgene-free mutants were identi-
fied in the T4 generation following self-crossing (Table 3). We obtained fad2-1a/fad2-1b 
transgene-free mutants through the selection. 

 
Figure 3. Identifying “transgene-free” mutant soybean lines of fad2-1afad2-1b. (a) PCR method to 
detect a partial sequence that encoded the Cas9 protein with an expected PCR product of 910 bp. M 
represents the marker, N represents the negative control, WT represents the wild type, and Lanes 
1-10 are the respective tested transgenic lines. (b) The bar strip test to detect transgenic elements. 
The arrow indicates that the bar was positive for the presence of the transgene. 

Table 3. The fad2-1a/fad2-1b mutants without transgenic elements in the T3 and T4 generations. 

fad2-1a/fad2-1b Mutant Lines T-DNA in the T3 
Mutants 

No. of Progeny 
Plants Identified 

No. of T4 “Transgene-Free” 
Mutants 

fad2-1-SPD-JM-72 T-DNA-free 7 7 
fad2-1-SPD-JM-264 T-DNA-free 8 8 
fad2-1-SPD-JM-90 T-DNA-positive 10 3 
fad2-1-SPD-JM-95 T-DNA-positive 9 0 
fad2-1-SPD-JM-113 T-DNA-positive 8 1 
fad2-1-SPD-JM-196 T-DNA-positive 12 4 

3.4. No Adverse Phenotyping of fad2-1a/fad2-1b Mutant Plants 
Germination testing is often the most reliable way of assessing viability. The seeds 

were germinated on filter paper for two days (Figure 4a). We counted the seeds with the 
hypocotyl. The germination rate was 95.56% and 93.33% in the wild type and fad2-1a/fad2-
1b mutant, respectively (Figure 4b). There was no significant difference in the germination 
rate between the wild type and fad2-1a/fad2-1b mutant. 

Under the natural conditions, the fad2-1a/fad2-1b mutants flowered at 29.4 days after 
emergence (DAE), while the WT plants flowered at 28.8 DAE (Figure 4c,d). The fad2-
1a/fad2-1b mutants matured at 75.4 DAE, while the WT plants matured at 74.8 DAE (Fig-
ure 4e). The results of these experiments demonstrated that fad2-1a/fad2-1b mutant had no 
adverse phenotyping compared with the wild type. 

Figure 3. Identifying “transgene-free” mutant soybean lines of fad2-1afad2-1b. (a) PCR method to
detect a partial sequence that encoded the Cas9 protein with an expected PCR product of 910 bp. M
represents the marker, N represents the negative control, WT represents the wild type, and Lanes
1-10 are the respective tested transgenic lines. (b) The bar strip test to detect transgenic elements. The
arrow indicates that the bar was positive for the presence of the transgene.

Table 3. The fad2-1a/fad2-1b mutants without transgenic elements in the T3 and T4 generations.

fad2-1a/fad2-1b
Mutant Lines

T-DNA in the T3
Mutants

No. of Progeny
Plants Identified

No. of T4
“Transgene-Free”

Mutants

fad2-1-SPD-JM-72 T-DNA-free 7 7
fad2-1-SPD-JM-264 T-DNA-free 8 8
fad2-1-SPD-JM-90 T-DNA-positive 10 3
fad2-1-SPD-JM-95 T-DNA-positive 9 0

fad2-1-SPD-JM-113 T-DNA-positive 8 1
fad2-1-SPD-JM-196 T-DNA-positive 12 4

3.4. No Adverse Phenotyping of fad2-1a/fad2-1b Mutant Plants

Germination testing is often the most reliable way of assessing viability. The seeds
were germinated on filter paper for two days (Figure 4a). We counted the seeds with the
hypocotyl. The germination rate was 95.56% and 93.33% in the wild type and fad2-1a/fad2-
1b mutant, respectively (Figure 4b). There was no significant difference in the germination
rate between the wild type and fad2-1a/fad2-1b mutant.

Under the natural conditions, the fad2-1a/fad2-1b mutants flowered at 29.4 days after
emergence (DAE), while the WT plants flowered at 28.8 DAE (Figure 4c,d). The fad2-1a/fad2-
1b mutants matured at 75.4 DAE, while the WT plants matured at 74.8 DAE (Figure 4e).
The results of these experiments demonstrated that fad2-1a/fad2-1b mutant had no adverse
phenotyping compared with the wild type.
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4. Discussion

There are few soybean germplasm resources and mutagenic materials with a high oleic
acid content and no soybean materials with oleic acid content higher than 80%. The content
of oleic acid in the natural mutant is ~46% of the total fatty acids, which introduces great
difficulties in the cultivation of high-oleic-acid varieties. Traditional breeding methods
entail the crossing of the existing Gmfad2-1a and Gmfad2-1b mutants to create a double
mutant [13,14]. However, crossing, genotyping, and phenotyping is a long and expensive
process to create soybean lines with high oleic acid content through hybridization.

Genome-editing technology has revolutionized biological research and has been used
to improve many agronomic traits [25,26]. Here, we used the CRISPR-Cas9 system to edit
the GmFAD2-1 genes in soybean. A single-guide-RNA construct was designed to target
different positions of the GmFAD2-1 genes in soybean. We chose two targets: one targeting
GmFAD2-1A and the other targeting both GmFAD2-1A and GmFAD2-1B; transgenic plants
were obtained through a soybean-transformation system. Through a double-knockout
vector using only one sgRNA, we successfully obtained three mutants (fad2-1a, fad2-1b,
and fad2-1a/fad2-1b). This shows that the vector could effectively edit two genes at the
same time in soybean. The CRISPR/Cas9 system provides a fast and efficient method
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to simultaneously edit homologous soybean genes, which can promote the breeding of
important crops with complex genetic architecture.

Previous studies have been reported in which the CRISPR-edited homozygous mutants
of both GmFAD2-1A and GmFAD2-1B were created by Do [20]. Do et al. designed two
gRNAs to guide Cas9 to simultaneously cleave two sites within the second exons of
GmFAD2-1A and GmFAD2-1B. The analysis of the fatty acid profile showed that the oleic
acid content was dramatically increased to over 80% in the T1 seeds of both GmFAD2
mutants. In our study, we achieved the simultaneous knockdown of the GmFAD2-1A gene
and the GmFAD2-1B gene by designing only one target site to obtain the target plant with
high oleic acid content. In addition, we also isolated and obtained the single mutants from
the offspring of the heterozygous fad2-1a/fad2-1b.

Significant progress has been made to increase the oleic acid content of soybean seeds
by downregulating the expression of GmFAD2-1A and GmFAD2-1B. Using RNAi technology,
the oleic acid content in the obtained genetically modified soybean seeds was increased
from 20% to 51.7% and 80% [15,17]. Haun used TALEN technology to design target
sequences for recognizing and cleaving GmFAD2-1A and GmFAD2-1B, and the oleic acid
content in the resulting soybean double-mutant seeds increased to 80% [18]. In this study,
we used CRISPR/Cas9-mediated genome-editing technology to knock out GmFAD2-1A
and/or GmFAD2-1B in the quality parent (Jack). The average relative contents of oleic acid
and linoleic acid were significantly different from those of the unmodified Jack variety. The
oleic acid content increased from ~21% to 40–50% in the fad2-1a and fad2-1b single mutants,
whereas the oleic acid content in the fad2-1a/fad2-1b double-mutant seeds reached about
85%. The content of linoleic acid was reduced from ~57% to 2% in the double mutant as
well. This study thus provided mutant materials with enhanced oleic acid contents, which
is of great value in breeding high-quality soybean varieties with a high oleic acid content.

We also generated transgene-free double mutants that retained their higher oleic acid
contents through self-crossing of the mutant lines. Cas9 and the associated selectable
marker were removed in later generations via genetic segregation. Taken together, we
obtained transgene-free soybean plants with a higher oleic acid content using homozygous
targeted mutagenesis of endogenous GmFAD2 homologs via CRISPR/Cas9 in this study.
We also estimated the phenotyping of the fad2-1a/fad2-1b double mutant. The results
showed no significant changes in the seeds’ germination, flowering time, and maturity
time. There was no adverse result in the pot experiment. In addition, we have obtained
permission to conduct field trials for the fad2-1a/fad2-1b double mutant, so the intermediate
experiments will be performed and evaluated in the field. Thus, this technology can provide
excellent mutant materials for improving soybean quality with reduced safety concerns
due to the absence of transgenes.
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