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Abstract: Nitrogen (N) dynamics in ley-arable cropping systems require better understanding in 

order to assess the potential of such systems to contribute to improved productivity and reduced 

nutrient losses in crop production. Large inputs of organic matter after termination of the ley phase 

result in increased mineralization and N availability to subsequent crops. The description and quan-

tification of this residual N effect in ley-arable systems remains a major scientific challenge due to 

its variability and many influencing factors. Simulation modeling could contribute to improved un-

derstanding of N dynamics in ley-arable systems. The aim of this study was to evaluate the robust-

ness of the Agricultural Production Systems Simulator (APSIM) to predict biomass yield, N yield, 

and N leaching of different forage maize systems in northwest Europe, while using two different 

approaches to predict the residual N effect. The evaluation was based on three field experiments 

covering plant phenology, biomass, N yield, and N leaching over several years. Model adjustments 

were necessary to describe mineralization of organic matter and release of N after ploughing of the 

grass leys. For this purpose, three scenarios were investigated by accounting for either (1) above-

ground grass residues; (2) above- and belowground grass residues, both with the generic turnover 

approach in the model; or (3) N release depending on the carbon-to-N ratio of the residue compiled 

in a simple mineralization model (SMM). The results showed that APSIM-simulated biomass and 

N yield of maize were reasonable to poor across the different systems and sites, regardless of using 

the residue-related approach. The SMM performed more accurately compared to the generic turn-

over approach in predicting N leaching in a maize following a grass-clover ley. However, for all 

scenarios, APSIM had difficulties to predict a delay of N leaching observed in the experimental data 

after a pure ryegrass ley. In conclusion, the process description in APSIM related to organic matter 

mineralization in ley-arable systems under northwest European pedo-climatic conditions needs im-

proved accounting of belowground grass residues, while the SMM is of added value to improve N 

mineralization patterns and leaching after a ley phase. 

Keywords: Europe; field experiments; mineralization; nitrogen; residual effect; sandy soil; simula-

tion 

 

1. Introduction 

The largest challenges of current crop production systems include resistance to pes-

ticides, pollution of surface and groundwater bodies, and dependence on external inputs 

[1,2]. Continuous monocropping systems in the European regions with sandy soils and 

high drainage potential are problematic due to their vulnerability to nitrogen (N) losses 

[3]. Increasing plant diversity to, among other reasons, improve N use efficiency, has been 
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identified as a promising approach to lessen these challenges in specialized crop produc-

tion systems across northwest Europe [4–6]. 

Leys introduced temporarily into an all-arable cropping system are a promising strat-

egy to increase plant diversity and contribute to resilient and sustainable crop rotations. 

Ley pastures are typically composed of perennial herbaceous plants such as grasses, 

legumes, and their mixtures cultivated from a few months up to five years [7]. Gains re-

ported in the scientific literature of introducing ley pastures into arable systems as com-

pared to specialized cropping systems include improved biological control of weed and 

pest populations and positive effects on soil quality as well as on other ecosystems ser-

vices [7–9]. Another important gain is the capacity of ley pastures to facilitate nutrient 

cycling and provisioning to following crops, especially N [7]. For example, strong soil–

vegetation interactions, a long active growing season of perennials, and the absence of soil 

tillage reduce the risk of N losses to the environment through leaching and gaseous fluxes 

[10,11]. Furthermore, at the end of a ley phase, N can be transferred to following crops, a 

phenomenon known as a ‘residual N effect’, induced by the decomposition of soil organic 

matter (SOM). 

Ley-arable systems are characterized by a particularly dynamic SOM pattern and resid-

ual N effect, which involves a build-up during the ley phase and a rapid decomposition after 

ley termination, i.e., during the arable phase. Already shortly after ley establishment, SOM 

accumulates at a rate that is thought to decline asymptotically with time [12]. This build-up of 

SOM is mainly concentrated in the upper part of the soil profile, and occurs primarily via 

rhizodeposition (roots), but also via phyllodeposition (stubble and litter) [12,13]. In contrast to 

annual crops, herbaceous crops are characterized by a large belowground biomass produc-

tion. The amount of grass residues can range from 3000 up to 16,000 kg dry matter (DM) ha−1 

depending on the cropping system, soil properties, and methodology used for measurements 

[11,14–17]. After termination of the ley phase, mineralization increases and nutrients become 

available to subsequent crops. This residual N effect is the result of the large inputs of organic 

matter (OM) exposed to microbial decomposition, increased aeration, and disruption of soil 

aggregates, and can last up to several years [12]. The description and quantification of the re-

sidual N effect in ley-arable systems remains a major scientific challenge due to its variability 

and many influencing factors. 

Field experiments are conducted to study residual N effects and to optimize nutrient 

cycling and efficiency in these systems. Adjusting N fertilizer application in the following 

crop, for example, has shown to reduce the risk of N leaching [13]. Although such ap-

proaches provide the opportunity to perform detailed measurements and offer insight 

into pre-crop effects of grass leys on the arable phase of the rotation, they are time con-

suming and expensive and prone to modulations due to weather, soil type, management, 

and rotation designs [8,13,18]. Alternatively, simulation modeling overcomes the influ-

ence of external factors and could contribute to improved understanding of nutrient dy-

namics in ley-arable systems. 

The agroecosystem modeling framework, the Agricultural Production Systems Sim-

ulator (APSIM; Holzworth et al. [19]), is a tool designed to study nutrient dynamics in 

cropping systems and has, for example, recently been used to evaluate N dynamics in a 

cereal-grain legume rotation with different catch crops [20,21]. However, only a few stud-

ies have used this process-based model to simulate N dynamics in crop rotations under 

northwest European conditions, and these have highlighted the importance of further 

testing (e.g., Böldt et al. [21]; Hoffman et al. [17]; Vogeler et al. [22]). 

One of the main limitations of process-based models, including APSIM, is the 

inherent difficulty in predicting the observed enhanced mineralization after the transfer 

from ley to arable cropping and especially the residual N effect [17,22,23]. This might be 

due to the underestimation of belowground biomass production in ley pastures. To im-

prove the simulation of the residual N effect, modeling approaches need to be evaluated, 

i.e., against measurements of experimental data. 
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In addition, robust simulation models are required to support decision making 

among a diverse range of environments and management practices [24,25]. The use of 

multiple sites with different crop rotations could increase the testing power and the ro-

bustness of APSIM. Biomass yield, N yield, and N leaching are important and frequently 

used parameters to evaluate model performance. 

This study evaluates the robustness of APSIM to predict biomass yield, N yield and 

N leaching of different forage maize systems in northwest Europe, while using two dif-

ferent approaches to predict the residual N effect. To this end, existing field experimental 

data from multiple sites on sandy soil and different cropping systems in northwest Europe 

were used.  

The two approaches to predict residual N effect include the generic approach for 

SOM decomposition currently available in APSIM and a simple mineralization model to 

predict N mineralization of fresh grassland residues, replacing this generic approach in 

APSIM. Forage maize was the main test crop as most previous studies using APSIM for 

this region already evaluated cereals in crop rotations. 

2. Materials and Methods 

We used data from three different field experiments being located on sandy soils in 

northwest Europe to set up and run APSIM. Three methodological steps were undertaken to 

test and compare the robustness of the model using different approaches for predicting the 

residual N effect. First, the APSIM Maize model was parameterized using experimental data 

to obtain a reasonable phenological development and aboveground maize biomass. Second, 

three different approaches for modeling the residual N effect of ley to the following maize 

crop were incorporated into the model. Third, the model predictions were compared with the 

measured data for aboveground maize biomass, N yield, and N leaching under each of the 

three approaches. 

2.1. Description of the Experimental Sites 

The first dataset (E1) was obtained from an experiment conducted at the Wageningen 

University Research farm in Vredepeel, southeast of the Netherlands, between 2013 and 2019 

(Table 1). This experiment is based on a 6-year crop rotation: potato, peas, leek, barley, carrot 

(which was replaced by sugar beet in 2016), and forage maize, with a sown cover crop after 

harvest of the main crop. The six fields used in this study were treated as replicates so that 

each crop was present every year. The experiment was originally designed to examine the 

effects of the level of OM application on systems performance, including crop yields and soil 

properties [26]. In this study, only seven maize years managed under common agricultural 

practices with ploughing and irrigation were used. Forage maize was fertilized by a combina-

tion of cattle slurry (96–202 kg N ha−1 yr−1) and mineral fertilizer (21–55 kg N ha−1 yr−1) (Table 

S1). 

Table 1. Characteristics of the three experimental sites. 

 Experimental Site 1 (E1) Experimental Site 2 (E2) Experimental Site 3 (E3) 

Location 
Vredepeel, Netherlands (51.32° 

N, 5.32° E) 

Jyndevad, Denmark (54.54° N, 

9.46° E) 

Schuby, Germany 

(54.31° N, 9.26° E). 

Modeled cropping system 
Single forage maize years (7 yr) 

in a crop rotation 

Continous forage maize and a ley-

forage maize system 

Continous cropping system (6 yr 

forage maize, 2 yr winter cereals, 

and once a ley period) 

Soil texture 92% sand, 7% silt, and 1% clay 89% sand, 7% silt, and 4% clay 84% sand, 11% silt, and 5% clay 

Organic carbon content 1 2.3% 3.0% 3.0% 

Soil pH 1 5.6  7.0 6.0 

Mean annual precipitation 2 661 mm 973 mm 895 mm 

Mean annual temperature 2 10.6 °C 7.9 °C 8.6 °C 
1 Measured in the upper 30 cm soil layer; 2 Averaged over the simulated period. For E1 between 2013 

and 2019, E2 between 2006 and 2011, and E3 between 2012 and 2019. 
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The second dataset (E2) was obtained from an experiment conducted in Jyndevad 

Southern Jutland, Denmark, between 2009 and 2011 (Table 1). In this experiment, forage 

maize was grown with preceding 10-year history of either continuous maize or grass-clo-

ver ley at low, standard, and high N fertilization rates [23]. The N fertilization rates in 

continuous maize system ranged between 86 and 195 kg N ha−1 yr−1 from cattle slurry and 

20 and 80 kg N ha−1 yr−1 mineral fertilizers, while only 20–140 kg N ha−1 yr−1 from mineral 

fertilizer was applied to the maize following the ley system [23]. 

The third dataset (E3) was obtained from an experiment conducted at experimental 

station ‘Schuby’ in Schleswig-Holstein, Northern Germany, between 2012 and 2019 (Table 

1). Briefly, this study site is part of a long-term soil monitoring project, started in the 1990s. 

Data of a rainfed field dominated by forage maize (6 years) and winter rye (2 years) crop-

ping and managed according to common agricultural practices were used. An early maize 

variety was sown in 2014, while mid-early varieties were cultivated in the other years 

(Table S2). 

In 2013, a ryegrass ley was sown after harvesting winter rye in July, which was 

ploughed in before sowing of the maize in April 2014. In 2014 and 2016, the maize was 

followed by a winter rye cover crop. For the years in which maize was cultivated, the site 

was fertilized by biogas digestate (82–182 kg N ha−1 yr−1) and mineral fertilizer applica-

tions (18–56 kg N ha−1 yr−1; Table S2). 

In E2 and E3, N fractions in drainage water were obtained from ceramic suction cups 

installed at a soil depth of 75 cm, using four replicates. The cumulative amount of NO3−-

N leaching was calculated by multiplying the concentrations with the amount of drainage 

water simulated by APSIM. 

2.2. Description of the APSIM Model 

APSIM is an open-source, process-based model, which simulates water movement 

and nutrient cycling in the soil–plant–atmosphere continuum on a daily timestep. The 

model is maintained by the APSIM Initiative (www.apsim.info, accessed on 18 January 

2022)) and has been described in detail by Keating et al. [27] and Holzworth et al. [19]. In 

this study, APSIM version 7.10 was used. APSIM consists of various models, with the 

following models used here: SurfaceOM, SoilN, and SoilWat; and the Maize, Wheat, and 

AgPasture crop models for a ryegrass-white clover ley in E2 and for a pure ryegrass in E3. 

The SurfaceOM and SoilN models simulate the dynamics of N and carbon (C) in the 

surface layer and in the soil profile, respectively. Processes such as mineralization, immo-

bilization, nitrification, and denitrification are simulated depending on soil temperature, 

moisture, and pH. APSIM uses multiple conceptual OM pools with different decomposi-

tion rates, namely a microbial biomass pool (BIOM) with a fast turnover rate, a humus 

pool (HUM), and a fresh organic matter pool (FOM). 

The FOM contains, for example, roots and plant residues from previous crops, as well 

as any organic amendments (e.g., manure), which are added to the soil. The FOM is again 

composed of three conceptual pools with different decomposition rates: carbohydrates 

(CARB), which is composed of nonstructural carbohydrates and proteins; cellulose 

(CELL), which is composed of cellulose and hemicellulose; and lignin (LIGN). 

By default, the C and N of the FOM is partitioned as 20% CARB, 70% CELL, and 10% 

LIGN. These three FOM pools have different default maximum decomposition rates, 

which are limited by temperature, soil moisture, pH, and C:N ratio. For C:N values 

smaller than 25, the decomposition is not limited. 

The SoilWat model uses a tipping bucket approach to calculate water movement 

from one layer to the next [28]. The Micromet model was used alongside AgPasture to 

compute plant water demand, using the Penman–Monteith equation [29]. 
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2.3. Description of the Model Set Up 

Available data, including weather data (e.g., temperature and precipitation), soil and 

crop characteristics, and management practices from each of the experimental sites, were 

set up in the model. Daily meteorological data were obtained from the nearest available 

weather station (Figure S1). A soil profile was created in APSIM based on available soil 

information (Tables S3 and S4). The soil evaporation coefficient U was set to 2 mm, and 

CONA was set to 3 mm d−0.5 and 4.6 mm d−0.5 during the winter and summer period, re-

spectively [30]. Initial water contents were set at field capacity, as the starting point of all 

simulations was in winter. The soil water parameter (SWCON), indicating the proportion 

of water above field capacity draining per day to the next deepest soil layer, was set to 0.7 

as recommended for sandy soils [31]. Maximum rooting depths were set to 0.8 m for maize 

and wheat, and to 0.7 m for AgPasture at all sites. Atmospheric deposition was assumed 

to be 24 kg N ha−1 in E1 and E3 and 15 kg N ha−1 in E2 [32]. Management such as sowing, 

irrigation, tillage, and harvesting dates were all set up according to available documenta-

tion for each site, using manager scripts [33]. 

The cropping systems were set up for the three experimental sites, as follows. For E1, 

only the maize crop of the rotation was simulated for each individual year from 2013 to 

2019. For the other crops, e.g., leek, carrots, and sugar beet, no models have yet been de-

veloped for APSIM 7.10. Furthermore, the model was initialized based on available soil 

mineral N measurements at the beginning of the growing season (Table S5). For E2, sim-

ulations were set up for three separate years (2009, 2010, and 2011). The continuous maize 

system was run in APSIM from October of the year before the sowing of maize (May) to 

initialize soil variables. For the maize following the ley system, the simulation started with 

a ryegrass-white clover ley for three years; thereafter, the mixture was ploughed in spring 

preceding the maize crop. For E3, the rotation was set up continuously from 2012 to 2019. 

The first months in 2012 were used to initialize the soil variables. The APSIM Wheat model 

was used to represent the two years of winter rye grown at this site. In addition, it was 

used to simulate the winter rye catch crop grown during the winter periods 2014–2015 

and 2016–2017. The cultivar Batten was used as previously described by Böldt et al. [21]. 

To obtain a reasonable plant growth for forage maize in northwest Europe, few ad-

aptations were made in the APSIM Maize model (Table 2). In the model, the phenological 

development of a crop is primarily based on cultivar-specific thermal time targets be-

tween phenological stages. Emergence and flowering dates of E1 were used to parameter-

ize the APSIM Maize model for phenological development (Table S6), while data of all the 

three sites were used to obtain a simulated biomass at harvest within the expected range. 

For E3, the thermal time from emergence to the end of the juvenile stage was increased 

from 135 to 200 °C days for the mid-early varieties grown at this site. This was done to 

account for the difference in development between the early maize variety sown in 2014 

and the mid-early varieties cultivated in the other years. 

Table 2. Coefficient and variable modifications for the early cultivar in the APSIM Maize model. 

Category Coefficient/Variable Default Fitted 

Thermal time units Time lag before linear coleoptile growth starts 15 50 

 tt_emerg_to_endjuv 135 200 

 tt_endjuv_to_init 180 135 

 tt_flower_to_maturity 990 700 

Biomass  Radiation use efficiency 1.6 1.7 

Phyllochron 

interval  
Leaf_app_rate1 65 60 

Grain yield GNmaxCoef 170 220 
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2.4. Model Adaptations to Predict Residual Nitrogen Effect 

Ley termination and increased mineralization from plant residues and SOM accumu-

lated in the previous years is currently not captured well in APSIM [17]. Therefore, model 

adjustments were made to identify potential options for improvement to predict the N 

release after a ley phase. For this purpose, the two experimental sites with a ley phase, i.e., 

E2 and E3, were used. Suitability of each of the alternative approaches for modeling the 

residual N effect of ley to the following maize crop was evaluated by comparing model 

outcomes and experimental data for biomass yield, N yield, and N leaching. 

When using the manager script ‘Kill AgPasture’, the aboveground biomass is auto-

matically removed from the system when AgPasture is terminated. Hence, we first tested 

if the N dynamics after termination of the ley phase could be simulated correctly when 

compensating only for this loss. This would be a practically easy way to compensate for 

the underestimation of mineralization occurring after a ley phase in APSIM. To do so, we 

added 2000 kg ha−1 aboveground grass residues at the end of the ley phase. These grass 

residues were directly added to the FOM, with the default partitioning of 20% CARB, 70% 

CELL, and 10% LIGN using manager scripts, here termed as ‘generic approach accounting 

for aboveground residues (APSIM-Ga)’. This is denoted as modeling approach (i) in Figure 

1a,b. 

 

Figure 1. Overview of the modeling approaches for experimental site 2 (a) and experimental site 3 

(b). The numbers show the fraction of C and N in the grass residues partitioned to the three fresh 

organic matter pools (carbohydrates (CARB), cellulose (CELL), and lignin (LIGN)) during mineral-

ization. In the simple mineralization model (SMM), the mineralization rate is based on soil temper-

ature, soil moisture, and the C:N ratio of residues. The MAN fraction is the maximum fraction of 

residues released in the first 200 days after ploughing. 

In addition, there is an underestimation of the large amount of belowground biomass 

produced over time when using the AgPasture model [17]. The default predicted below-

ground biomass was only ~500 kg DM ha−1 for E2 and E3. The same default partitioning 

was used to compensate for both aboveground residues and additional root dry matter, 

here termed as ‘generic approach accounting for above- and belowground grass residues 

(APSIM-Gab)’. We added 8750 kg ha−1 to mimic additional aboveground residues and root 

dry matter at the end of the ley phase for E2, according to measurements from Acharya et 

al. [34]. Most residues were added to the upper soil (2000 kg ha−1 aboveground residues 

and 2700 kg ha−1 root dry matter in 0–28 cm). The remaining amount of root dry matter 
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was 2700, 900, and 450 kg ha−1 allocated at 28–35, 35–43, and 43–52 cm soil depth, respec-

tively [11,34]. This is modeling approach (ii) in Figure 1a. The amount of root dry matter 

is dependent on the length of the ley phase [34]. In E3, the ley was grown for a shorter 

period compared with E2; therefore, in total, 6500 kg ha−1 additional above- and below-

ground grass residues were added. This is modeling approach (ii) in Figure 1b. 

As the fresh root dry matter is likely prone to immediate decomposition after the ley 

is ploughed, and the generic approach in APSIM might not capture this directly [17], we 

also tested a previously described model, which has been developed to improve model 

predictions for the mineralization of catch crop residues [35]. This simple mineralization 

model (APSIM-SMM) uses an additional conceptual OM pool (i.e., the MAN fraction in 

Figure 1) to better reflect decomposition of fresh plant residues by faster mineralization. 

The MAN fraction is the maximum fraction of grass residue N that can be released 

over 200 days. The remaining is added to the CELL and the LIGN pools and decomposes 

slowly. Each day a fraction of the MAN pool that mineralizes is computed and added as 

NH4, in which the rate is dependent on the C:N ratio of the added residue, temperature, 

and soil moisture [35]. This is modeling approach (iii) in Figure 1a,b. In the measured data 

leaching increased in the second year after termination of the pure ryegrass ley was ob-

served in E3. Therefore, in one of the modeling approaches, a delay of 3500 °C days (+/− 1 

year) before mineralization of the residue starts was tested (iv), shown in Figure 1b. For 

E3, which only had one short period with ryegrass ley, APSIM was also run without a 

ryegrass period (v) in Figure 1b. The C:N ratio of the residues was set to 15 for E2 and 12 

for E3 in all the modeling approaches, to ensure rapid mineralization of N in the period 

following ley as observed in field experiments [17,36]. 

2.5. Model Evaluation 

Model outcomes were compared with experimental data using several statistical in-

dexes (Equations (1)–(3)); these included the coefficient of determination (R2), the Nash-

Sutcliffe efficiency score (NSE), the root mean square error (RMSE), and percentage bias 

(Pbias). The NSE score compares the predicted mean square error with the variance of the 

observations. A positive NSE indicates that the model has more predictive power than the 

mean observations [37]. The RMSE is an indication for the absolute error between the ob-

served and simulated numbers. The RMSE values can extend from zero to infinity, but 

when they approach zero, the residual estimation error is decreased. 

For Pbias the optimal value is 0, a negative value indicates that a model tends to 

underestimate the measured values, whereas a positive value indicates an overestimation 

[38]. 

𝑅𝑀𝑆𝐸 =  √[(
1

𝑛
) ∑(𝑆𝑖

𝑛

𝑖=1

−𝑂𝑖)2]  (1) 

𝑁𝑆𝐸 = 1 −  
∑ (𝑆𝑖

𝑛
𝑖=1 −𝑂𝑖)2

∑ (𝑆𝑖
𝑛
𝑖=1 − �̅�)2

  (2) 

𝑃𝑏𝑖𝑎𝑠 = 100 
∑ (𝑆𝑖

𝑛
𝑖=1 −𝑂𝑖)

∑ 𝑂𝑖
𝑛
𝑖=1

   (3) 

Where 𝑆𝑖, 𝑂𝑖, and �̅�  are the simulated, observed, and mean of the observed values, re-

spectively, and n is the number of observations in the dataset. In this study, the model 

performance is discussed for maize biomass, maize N yield (E1, E2 and E3), and N leach-

ing (E2 and E3). For E1, only the model outcomes regarding the phenology of maize and 

biomass of maize were evaluated, as no measurements of N leaching were done at this 

site. 
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3. Results 

3.1. Model Performance to Predict Maize Biomass Yield 

For E1, results were based on simulating maize production without a ley phase and 

no different modeling approaches for predicting the residual N were tested (Table 3, Fig-

ure 2a). The average of the measured biomass was 17,785 kg DM ha−1, with a range from 

14,417 up to 19,143 kg DM ha−1. APSIM tended to slightly overestimate biomass yield; the 

largest overestimation was found for the relatively low biomass yield in 2014 (~14,400 kg 

DM ha−1) being almost 3000 kg DM ha−1 lower than predicted by APSIM (~17,400 kg DM 

ha−1). With an RMSE of 1506 kg DM ha−1, but a fairly low R2 and a negative NSE model, 

the performance model performance is judged to be reasonable to poor. 

Table 3. Model performance statistics for dry matter (DM) and N yields of forage maize at experi-

mental site 1 (n = 7); RMSE = root mean squared error (kg ha−1 yr−1), NSE = Nash Sutcliffe efficiency 

score (−-), and Pbias = percent bias (%). 

 DM N Yield 

R2 0.16 0.04 

RMSE 1506 38 

NSE −0.11 −1.95 

Pbias 3.80 −7.50 

 

 

Figure 2. Measured and predicted values for forage maize biomass (DM) (a) and N yield (b) at E1 

(n = 7). 

For APSIM-Ga, APSIM tended on average to underestimate biomass production as 

indicated by the negative Pbias for E2 (Table 4, Figure 3). For example, APSIM underpre-

dicted biomass production in the maize following the ley system at the low and standard 

N fertilization rates in 2011. Besides, a RMSE of 1846 kg DM ha−1 was found and a negative 

NSE was found for E2. In case of E3, however, the model tended to slightly overestimate 

the maize DM yield as indicated by the positive Pbias (Table 5). In addition, a RMSE of 

1487 kg DM ha−1 and a positive NSE were found for E3. The positive NSE shows that 

APSIM had more predictive power than using the mean of the observations. 

For the APSIM-Gab, the goodness-of-fit values slightly improved for E2 compared 

with APSIM-Ga (Table 4, Figure 3). Similar to APSIM-Ga, APSIM tended to underpredict 
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biomass production. For E3, however, using this approach did not result in improved 

model predictions. For example, the RMSE increased from 1487 (APSIM-Ga) to 1666 

(APSIM-Gab) kg DM ha−1 (Table 5). 

For APSIM-SMM, model predictions did not improve compared with the two generic 

turnover approaches for E2 (Table 4, Figure 3). Using this modeling approach, APSIM also 

tended to underestimate biomass production. The RMSE increased, for example, with 74 

and 185 kg DM ha−1 compared with the APSIM-Ga and APSIM-Gab, respectively. For E3, 

similar results were found for the SMM with immediate and delayed mineralization (Ta-

ble 5). In addition, the results found using the SMM are comparable to those using two 

generic turnover approaches. The prediction accuracy was, however, best for the ap-

proach without a ryegrass period (Table 5). 

Table 4. Model performance statistics for forage maize dry matter (DM) (n = 18) and nitrogen (N) 

yield (n = 18) as well as N leaching (n = 18) for the continuous maize and maize following grass-

clover ley at low, standard, and high N fertilization levels for experimental site 2; RMSE = root mean 

squared error (kg ha−1 yr−1), NSE = Nash Sutcliffe efficiency score (−-), and Pbias = percentage bias 

(%). Testing used the generic approach accounting for aboveground residues (2000 kg ha−1 yr−1), 

above- and belowground residues (8750 kg ha−1 yr−1), and the simple mineralization model (SMM; 

8750 kg residues kg ha−1 yr−1; see Figure 1). 

 Generic Approach Generic Approach SMM 

 Aboveground  Above- and Belowground    

 DM N Yield N Leaching DM N Yield  N Leaching DM N Yield N Leaching 

RMSE 1846 30 113 1735 23 90 1920 27 37 

NSE −1.32 −0.18 −1.51 −1.05 0.30 −0.61 −1.51 0.09 0.72 

Pbias −7.70 −6.70 −59.40 −7.10 −2.50 −46.40 −7.60 4.70 −12.30 

 

 

Figure 3. Measured and APSIM predicted maize biomass yield for the experimental site 2, for the 

low, standard, and high fertilization levels. Results are shown for the generic approach accounting 

for aboveground residues (a), above- and belowground residues (b), and the simple mineralization 

model (c) (see Figure 1). 
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Table 5. Performance statistics for harvested maize dry matter (n = 6) for experimental site 3; R2 = 

coefficient of determination, RMSE = root mean squared error (kg ha−1 yr−1), NSE = Nash Sutcliffe 

efficiency score (−), and Pbias = percentage bias (%). Tested modeling included the generic approach 

accounting for aboveground residues (2000 kg ha−1 yr−1), for above- and belowground residues (6500 

kg ha−1 yr−1), and the simple mineralization model (SMM) with immediate and delayed mineraliza-

tion (6500 kg residues kg ha−1 yr−1) and the approach without a ryegrass period (see Figure 1). 

 Generic Approach Generic Approach SMM SMM Without a Ryegrass Period 

 Aboveground 
Above- and 

Belowground 

Immediate 

Mineralization 

Delayed 

Mineralization 
 

R2 0.82 0.79 0.75 0.74 0.86 

RMSE 1487 1666 1664 1680 1299 

NSE 0.48 0.34 0.35 0.33 0.60 

Pbias 7.90 9.50 8.90 8.90 6.60 

3.2. Model Performance to Predict Maize Nitrogen Yield 

For E1, the negative Pbias shows that, on average, APSIM tended to underestimate 

the N yield. The largest deviation was found for the last two simulated years (2018 and 

2019) for which measured values were underestimated with more than 50 kg N ha−1. How-

ever, a large variation was found in the predicted values (146–219 kg N ha−1) and for some 

years APSIM simulated a higher N uptake than measured, which eventually compensated 

the Pbias values. The RMSE was 38 kg N ha−1, the low R2 and negative NSE indicate a poor 

model performance. 

For APSIM-Ga, a poor model fit was found for E2 (Table 4, Figure 4). The highest 

RMSE was found for this approach, the NSE was negative and N yield was tended to be 

underestimated. Additionally, for E3, the low R2, the negative Pbias, and negative NSE 

indicate a poor model performance (Table 6). 

 

Figure 4. Measured and APSIM predicted maize nitrogen (N) yield of maize for experimental site 

2, for the low, standard, and high N fertilization levels. Results are shown for the generic approach 

accounting for aboveground residues (a), above- and belowground residues (b), and the simple 

mineralization model (c) (see Figure 1). 
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Table 6. Performance statistics of maize nitrogen yield (n = 6) for experimental site 3; R2 = coefficient 

of determination, RMSE = root mean squared error (kg ha−1 yr−1 ), NSE = Nash Sutcliffe efficiency 

score (−), and Pbias = percent bias (%) without a ryegrass period; tested using the generic approach 

accounting for aboveground residues (2000 kg ha−1 yr−1), above- and belowground residues (6500 

kg ha−1 yr−1), and the simple mineralization model (SMM) with immediate and delayed mineraliza-

tion (see Figure 1). 

 Generic Approach Generic Approach SMM SMM Without a Ryegrass Period 

 Aboveground 
Above- and  

Belowground 

Immediate 

Mineralization 

Delayed  

Mineralization 
 

R2 0.25 0.49 0.56 0.06 0.44 

RMSE 37 29 27 43 35 

NSE −0.17 0.31 0.38 −0.53 −0.02 

Pbias −12.80 −5.00 −4.40 −11.30 −13.00 

For APSIM-Gab, a positive NSE was found for E2, pointing more predictive power of 

this modeling approach (Table 4). Moreover, values for R2, RMSE and Pbias improved for 

this approach compared with APSIM-Ga (Table 4, Figure 4). For E3, model predictions 

improved as well, as indicated by the higher R2, the RMSE of 29 kg N ha−1, positive NSE, 

and lower Pbias. 

For APSIM-SMM, the prediction accuracy was between the two generic turnover ap-

proaches for E2 (Table 4, Figure 4). The RMSE of 27 kg N ha−1, positive NSE, and improved 

Pbias indicate a better model fit for APSIM-SMM compared with APSIM-Ga. Using the 

SMM, however, did not result in better prediction compared with APSIM-Gab. Interest-

ingly, the positive effect of the high N fertilization rates on N yield was lower compared 

to the measured data in the maize following the ley system for the generic approaches as 

well as for APSIM-SMM. Similarly, in the measured data, a decline of 33 kg N ha−1 was 

found for the continuous maize system for the low compared to the standard fertilization 

rate, while in the model predictions this was only 15 kg N ha−1. For E3, the best model fit 

was found for the SMM with immediate mineralization, where N yield was only slightly 

underpredicted and the NSE was positive (Table 6). Using the SMM with delayed miner-

alization did not improve model predictions compared with immediate mineralization. 

Furthermore, model accuracy was not better for the approach without a ryegrass period 

compared APSIM-Ga or the SMM with immediate mineralization. 

3.3. Model Performance to Predict Nitrogen Leaching 

Model performance to predict N leaching was tested only for E2 and E3. 

For APSIM-Ga, a large underprediction of N leaching was found for E2 (Table 4, Fig-

ure 5). Similarly, the results of other statistical indexes, including R2, RMSE, and NSE, 

indicate a poor model performance. The maize following ley resulted in the highest N 

leaching levels and was strongly influenced by the fertilization rate, according to the 

measured data. For E3, a high negative Pbias was found for APSIM-Ga (Table 7). 

For APSIM-Gab, model predictions improved for E2, as indicated by a higher R2, a 

lower RMSE of 90 kg N ha−1, and improved NSE and Pbias values compared with APSIM-

Ga. In case of E3, however, using this approach did not result in an improved model per-

formance. The NSE, for example, decreased from 0.08 to −0.14. 

For APSIM-SMM, the prediction accuracy was best for E2 as indicated by a higher R2 

and a positive NSE compared with the two generic approaches (Table 4, Figure 5). Fur-

thermore, the lowest RMSE was obtained, and N leaching was less underpredicted using 

the SMM. In contrast, using the SMM for E3 did not result in a clear improvement of model 

predications (Table 7). The R2, RMSE, and NSE were, however, better for the approach 

with delayed compared with immediate mineralization. Using the delayed mineralization 

in the SMM resulted, however, in an increased underprediction as indicated by the high 

negative Pbias. 
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Figure 5. Measured and APSIM predicted nitrogen (N) leaching in experimental site 2, for the low, 

standard, and high N fertilization levels. Results are shown for the generic approach accounting for 

aboveground residues (a), above- and belowground residues (b), and the simple mineralization 

model (c) (see Figure 1). 

Table 7. Performance statistics for annual nitrogen leaching (n = 7) for experimental site 3; R2 = co-

efficient of determination, RMSE = root mean squared error (kg ha−1 yr−1 ), NSE = Nash Sutcliffe 

efficiency score (−) , and Pbias = percentage bias (%). Tested modeling approaches included the ap-

proach without a ryegrass period, the generic approach accounting for aboveground residues (2000 

kg ha−1 yr−1), above- and belowground residues (6500 kg ha−1 yr−1), and the simple mineralization 

model (SMM) with immediate and delayed mineralization (see Figure 1). 

 Generic Approach Generic Approach SMM SMM Without a Ryegrass Period 

 Aboveground 
Above- and 

Belowground 

Immediate 

Mineralization 

Delayed 

Mineralization 
 

R2 0.34  0.09  0.03  0.37  0.00  

RMSE 21  24  26  21  25 

NSE 0.08  −0.14 −0.38  0.13  −0.27  

Pbias −35.60  −21.80  −17.20  −33.80  −14.00  

Figure 6 shows the cumulative N leaching over the full observation period for E3. 

When APSIM was run without a ryegrass period, the predicted cumulative N leaching 

(275 kg N ha−1) was closest to the measured data (315 kg N ha−1). During the winter of 

2015–2016, one year after the ley period, when no cover crops were grown, a peak of N 

leaching was observed. Both the SMM with immediate mineralization and the generic ap-

proach accounting for above- and belowground residues, predicted a peak in N leaching, 

but in the winter period the year before. A similar cumulative leaching pattern was found 

for the generic approach accounting for aboveground residues and the SMM model with 

delayed mineralization. These two approaches predicted only a small peak in the winter 

period in the same year the ley was ploughed in, after which it gradually increased. 
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Figure 6. Cumulative nitrogen (N) leaching at experimental site 3, shown based on measured data 

(black line) and predicted in APSIM for the using different approaches including the approach with-

out a ryegrass period (grey line), the generic approach accounting for aboveground residues (2000 

kg ha−1 yr−1) (light blue line), the generic approach accounting for above- and belowground residues 

(6500 kg ha−1 yr−1)(dark blue line), and the simple mineralization model (SMM) (6500 kg ha−1 yr−1) 

with immediate (light green line) and delayed mineralization (dark green line). 

4. Discussion 

4.1. Overall Model Performance of APSIM to Simulate Biomass Yield, N Yield, and N Leaching 

in Maize Systems in Northwest Europe 

Earlier studies have reported that process-based models often have difficulties to pre-

dict crop yields and N dynamics in crop rotations with a high accuracy under a wide range 

of conditions [17,38–42]. Manevski et al. [23], for example, found a R2 of 0.69 for maize 

DM and maize N content validating the process-based model DAISY, when using data of 

a maize monocrop system in Denmark. Results were found to be less accurate when an 

intercropped maize system was simulated compared to the monocrop system. In case of 

the intercropped system, a R2 of −0.12 was reported for maize DM and −0.21 for N content. 

The model fit for N leaching was, however, good, with a R2 of 0.83. Using DSSAT-CERES-

Maize, another simulation model being used for an experiment in Canada, to simulate 

yield and N dynamics for a long-term continuous maize production system did not result 

in accurate predictions of annual maize yields, with a R2 of 0.36 and 0.40, dependent on 

the fertilization level. Furthermore, a negative model efficiency was found, which indi-

cates that the simulated values were worse than simply using mean values. It was con-

cluded that the model simulated N leaching reasonably well as both a positive (0.64) and 

negative model efficiency (−8.0) were found [43]. Similarly, APSIM also has difficulties to 

capture the full complexity and dynamics of factors affecting crop production [44,45]. 

Here we explored if the APSIM Maize model could be used to predict biomass yield, N 

yield, and N leaching across different regions and forage maize systems in northwest Eu-

rope. 
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The results collectively suggested that the model performance of APSIM in its current 

state was poor to reasonable for estimating maize biomass, maize N yield, and N leaching 

across the different systems and experimental sites included in this study. The low R2 and 

negative NSE that were frequently observed in this study could, however, be caused by 

the narrow range of measured values. Especially for E1 and E3, no replicates or different 

fertilization levels were available. Interpreting results of a statistical evaluation with only 

a limited amount of observations is difficult, and ideally, separate datasets would have 

been used for independent model calibration and validation [46]. In addition, some of the 

measurements did not reflect the expected responses to N fertilization in E2. 

A second factor that could have influenced model performance is the amount of crop 

variables used to assess model performance. In this study, we only considered two crop 

variables; thus, the observed over- or underprediction could be caused by a cascading 

effect of other crop variables. An overestimation of maize leaf number, for example, can 

finally result in a too high predicted biomass production and total N uptake [47]. Flower-

ing is, however, one of the key components for accurate simulation of phenological devel-

opment [48]. In APSIM, this is based on a specific thermal time target, and data of E1 could 

be used in this study. As highlighted by Akhavizadegan et al. [49], the estimation of pa-

rameters, such as cultivar or soil input values, is a time-consuming and challenging pro-

cedure that is susceptible to errors. Even models with a similar structure can, for example, 

give very different model fits to the same dataset, depending on the model users and their 

calibration protocol [46,50]. 

A third potential factor contributing to the uncertainty in model predictions are the 

mathematical functions used to simulate temperature responses of physiological pro-

cesses [51]. Since the mean air temperatures were different across the three study sites, 

and one function was fitted to simulate this relation, this could have influenced the simu-

lated phenological development and predicted biomass. 

Another factor is the uncertainty related to N leaching predictions, which is more 

frequently observed in modeling studies [52]. This has been attributed to a time offset 

between simulated and measured leaching, spatial variability in soil hydraulic properties 

within a field, the often high uncertainty in N leaching measurements, and the general 

complexity of soil N dynamics [22,42]. For example, limitations of using suction cups for 

N leaching measurements include the uncertainty in the sampling volume and the influ-

ence on natural soil water flows [53]. 

To conclude, although the overall model performance was judged to be reasonable 

to poor, several factors might have influenced the results. While the use of data from dif-

ferent experimental sites could potentially contribute to improving the testing power and 

robustness of APSIM, it also has its limitations. In this study, using datasets from different 

experimental sites without common protocol structurally limited the accuracy figures for 

biomass, maize N yield, and N leaching. Nevertheless, APSIM has proven to be an inter-

esting tool for modeling, based on biological processes and generalization for northwest 

Europe. Using more datasets in combination with a framework to capturing historical 

yield trends and combining simulation results from multiple models are interesting steps 

to improve model predictions and to facilitate long-term simulations [38,49]. Furthermore, 

to reduce the uncertainty related to input parameters, the use of long-term datasets with 

detailed knowledge about methodologies facilitates the option to use a spin-up period. 

The initial size of the SOM pools is then, for example, better reflected [47,54]. Finally, the 

model performance can be improved by adaptations of various model components in 

APSIM. In this study, we specifically focused on model adaptations to predict the residual 

N effect, which is outlined in the next sections. 
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4.2. Belowground Biomass and Residual Nitrogen Effect of Ley Pastures 

The results point to caution when using the current AgPasture and SoilN models for 

modeling ley-arable systems, and imply on need to improve these models for this pur-

pose. Specifically, modifications are needed to better reflect the development of below-

ground biomass and the subsequent decomposition of OM when the grassland ley is 

ploughed. Previous studies often only used AgPasture in a permanent grassland system 

with a focus on aboveground biomass production and composition of the grassland ley, 

as well as N leaching in grazing systems [55–57]. 

Root biomass and SOM increase with ley age until an equilibrium is reached [12]. In 

field experiments, it was shown that the development of root biomass after cropland con-

version to grassland is progressive with 30% and 80% after 12 and 24 months, respectively 

[58]. 

Therefore, we assumed that the quantity of the extra residues needed to be added in 

APSIM was lower in E3 than in E2. The amounts for both sites were relatively high com-

pared to the 7000 kg ha−1 additional biomass used by Hoffmann et al. [17] after the break-

up of a permanent grassland. The quantities assumed in this study are, however, subjected 

to uncertainty because the amount of plant residues was not always found to be related 

to ley age, and a wide range of root biomass in temperate grasslands has been reported 

[11,15,16]. In addition, information regarding the amount and composition of below-

ground biomass is subject to a high variability due to methods employed to separate roots 

from soil and conditions under which the measurements have been obtained [59,60]. De-

spite these uncertainties, the findings of this study suggest that modifications are needed 

in the AgPasture model, such as the root turnover rate, the senescence of roots, and the 

root-to-shoot ratio to better account for belowground biomass production. Chen et al. [61] 

showed that the belowground net primary production could be well predicted by a linear 

regression using grass shoot measurements. This might be a potential way to improve 

model predictions. 

Modeling soil N dynamics and N leaching after the break-up of the ley is another 

challenge where models often tend to have difficulties. The residual effect is of particular 

interest for ley-arable systems and its effect on N mineralization can be substantial [13,36]. 

The N accumulation and release are influenced by many factors and interacting processes 

such as climate conditions, ley management and composition, age, and soil type [62,63]. 

The mineralization of OM after a ley phase has been described as a two-stage process, 

with an initial phase of rapid mineralization over the first 160–230 days, followed by a 

second phase in which mineralization rates decrease progressively and are two to seven 

times lower compared to the initial phase [12,36,64]. The high amounts of residual N after 

a ley make this a particular period, prone to leaching losses. Measurements at E2 showed 

that even at low N fertilization levels, N leaching is substantially higher in the maize fol-

lowing ley (91–157 kg N ha−1 yr−1) compared with the continuous maize (54–69 kg N ha−1 

yr−1). The effect of ley ploughing on N dynamics in the following years is unknown at this 

site. In contrast to what would be expected, measurements did not show the expected 

rapid N mineralization and peak in N leaching in the first year after termination of the ley 

phase at E3. 

Reducing fertilization levels in the first growing season after a ley up to a rate of 0 kg 

N ha−1 and the use of cover crops are efficient strategies to mitigate N leaching [62,64]. 

Both the measurements and model predictions showed a decline in N leaching when the 

low N fertilization levels were used for E2. Even during the second year the effect on N 

dynamics can still be noticeable, in combination with the N conserved in the catch crop 

over the winter [64]. Thus, additional N fertilization induces a risk that N availability ex-

ceeds crop demand as observed by Kayser et al. [62]. In contrast, the ley period is charac-

terized by a sharp reduction in N leaching to groundwater [65]. Therefore, to be able to 

compare the environmental impact of continuous cropping systems with ley-arable sys-

tems, full cropping cycles need to be considered. 
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4.3. Comparison of the Generic and the Modified Approach 

We hypothesized that the generic approach in APSIM would not be able to accurately 

describe the amount and timing of N cycling from ley to arable systems. Here, we tested 

three different modeling approaches to improve the model performance of APSIM by sim-

ulating the residual N effect of ley to the following crop more accurately. 

The results indicated that predictions of maize biomass yield did improve with 

APSIM-Gab, while using APSIM-SMM was not of added value for E2. In case of E3, how-

ever, the approach without a ryegrass period resulted in the highest accuracy. This could 

be related to the limited number of measurements to validate model performance, and the 

limited effect of increased N availability on maize biomass production. 

N yield predictions improved with APSIM-SMM compared with APSIM-Ga. The 

APSIM-Gab, however, had the highest accuracy for N yield among the three modeling ap-

proaches for E2. Similar to E2, model predictions improved when accounting for below-

ground grass residues for E3. The best model fit was found for the SMM with immediate 

mineralization. Overall, this shows the sensitivity of model predictions to both the amount 

of available N and to the timing of mineralization of grass residues. 

In contrast to maize biomass yield and N yield predictions, the SMM resulted in the 

highest accuracy for N leaching for E2. This shows that enhancing mineralization with 

SMM was an effective strategy to improve model predictions compared with the generic 

approach. For the two generic approaches, the unsatisfactory model fit for N leaching is 

caused by the slower mineralization of grass residues. Hence, the relatively high meas-

ured N leaching was not simulated in the first maize year after termination of the ley 

phase. The results of E3 showed the difficulty of finding an appropriate set up even when 

only three model outputs were considered. None of the approaches outperformed the 

others for forage maize biomass, N yield, and leaching across all the statistical indexes. 

For E3, the observed rapid increase in N leaching in winter 2015–2016 might be attributed 

to the bare soil during that period. The surplus of N was not retained in the system and 

easily drained out of the root zone. 

Despite inconclusive results for the three studied parameters across the different 

modeling approaches and sites, we speculated that the results of E2 might be more reliable 

due to the use of replicates and different N fertilization rates. Nevertheless, we concluded 

that accounting for belowground residues seems especially important for N yield predic-

tions, but less for harvestable forage maize biomass. Our study clearly documented and 

added value of the SMM to improve N mineralization patterns and N leaching after a ley 

phase in APSIM. Potential limitations of the alternative modeling approaches used in this 

study are outlined below. 

Previous studies have demonstrated that, in specific cases, the decomposition of 

plant residues is underestimated when FOM pools and turnover rates are based on default 

values. Adjustments were, therefore, made in the partitioning of residues to the different 

FOM pools by better accounting for the biochemical composition and increasing FOM 

pool sizes [27,35,66,67]. The SMM used here is based on incubation studies of Brassica 

catch crop residues with a C:N ratio lower than 25. The derived model parameters of these 

incubations studies might not necessarily fully align with the mineralization pattern of 

grass residues [68]. In this study, we used relatively low C:N ratios, and the use of static 

values might not correctly reflect the related C dynamics [35]. 

The C:N ratio of residues was set to 15 for E2 and 12 for E3 to ensure timely mineral-

ization in APSIM and to find a balance between simulated biomass, N yield, and N leach-

ing for each site. Both figures are in line with data gathered from literature under high N 

input levels [68]. The measured C:N ratios of grassland residues can, however, cover a 

wide range. Vertès et al. [12] documented for both pure ryegrass and grass-clover residues 

values between 14 and 33. This variability is caused by, for example, the species composi-

tion of the ley, their phenology at harvest, and the type and quantity of fertilizer applied 

[34]. 
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The use of field datasets from ley-arable systems is useful to assess APSIM’s suitabil-

ity for simulating the N dynamics that occur in these systems. With the addition of extra 

grass residues, we were able to reproduce, i.e., mimic the increased mineralization typi-

cally occurring after termination of the ley. Ideally, data of long-term ley-arable experi-

ments with various ley lengths, fertilization levels, and different species compositions 

should be used in further studies to fully reveal the robust approach for modeling these 

systems in APSIM. In addition, analyzing the implementation of leys at higher spatial 

scales, for example, within regionally integrated crop–livestock systems, is a prerequisite 

to assess its full potential in sustainable future food systems. 

5. Conclusions 

We evaluated the robustness of APSIM to predict biomass yield, N yield, and N 

leaching of different forage maize systems in northwest Europe, while using different ap-

proaches to predict the residual N effect. The model simulated biomass and N yield of 

maize fairly well across the different systems and sites, independent of using the generic 

approach or the SMM. When APSIM was linked with the SMM, the prediction accuracy 

of N leaching improved at E2, regardless of the fertilization level. This clearly documents 

an inherent shortcoming of APSIM to capture enhanced mineralization in arable crops 

following ley cultivation. In all the modeling approaches, APSIM had difficulties to pre-

dict a delay of N leaching after a ley observed at E3. Therefore, we conclude that APSIM 

requires a process description review related to OM mineralization in ley-arable systems, 

at least under the pedo-climatic conditions in northwest Europe. Accounting for below-

ground residues of leys seems to be important for N yield predictions of the following 

crop, while the SMM could be of added value to improve the predication of the minerali-

zation patterns and N leaching after a ley phase in APSIM. A comprehensive modeling 

approach is, therefore, needed to predict the N transfer to the following crops in APSIM. 

This is of particular interest for ley-arable systems due to the large input of OM. 
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