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Abstract: Precision crop production requires accurate yield prediction and nitrogen management.
Crop simulation models may assist in exploring alternative management systems for optimizing
water, nutrient and microelements use efficiencies, increasing maize yields. Our objectives were:
(i) to access the ability of the CERES-Maize model for predicting yields in long-term experiments
in Hungary; (ii) to use the model to assess the effects of different nutrient management (different
nitrogen rates—0, 30, 60, 90, 120, and 150 kg ha−1). A long-term experiment conducted in Látókép
(Hungary) with various N-fertilizer applications allowed us to predict maize yields under different
conditions. The aim of the research is to explore and quantify the effects of ecological, biological,
and agronomic factors affecting plant production, as well as to conduct basic science studies on
stress factors on plant populations, which are made possible by the 30-year database of long-term
experiments and the high level of instrumentation. The model was calibrated with data from a
long-term experiment field trial. The purpose of this evaluation was to investigate how the CERES-
Maize model simulated the effects of different N treatments in long-term field experiments. Sushi
hybrid’s yields increased with elevated N concentrations. The observed yield ranged from 5016 to
14,920 kg ha−1 during the 2016–2020 growing season. The range of simulated data of maize yield
was between 6671 and 13,136 kg ha−1. The highest yield was obtained at the 150 kg ha−1 dose in
each year studied. In several cases, the DSSAT-CERES Maize model accurately predicted yields, but
it was sensitive to seasonal effects and estimated yields inaccurately. Based on the obtained results,
the variance analysis significantly affected the year (2016–2020) and nitrogen doses. N fertilizer made
a significant difference on yield, but the combination of both predicted and actual yield data did not
show any significance.

Keywords: long-term experiments; maize yield prediction; CERES-Maize model; sustainable crop
production

1. Introduction

Crop production is currently facing the challenge of meeting the increasing demand
by using less fertilizers, water, and pesticides, while ensuring safety of food, including the
presence of appropriate microelements. In order to clarify yield predictions, crop simulation
models consider several factors, and they can also contribute to more precise, site-specific
crop production [1]. Thus, it is crucial to integrate agronomy and decision support systems.
Databases of long-term experiments, linking with the possibilities provided by plant
physiological models, can create an integrated system in agricultural research, which can
play an important role in mapping the hypotheses of the yield gap. The performed field
experiment has been pivotal in assessing the effects of single or multiple factors on crop
productivity, because the crop yield prediction is based on soil, meteorological, crop, and
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environmental variables. The purpose of this study is to evaluate the simulation model,
based on big data and site-specific measurements. Through this, we can improve the
decision support system of precision agriculture. Maize (Zea mays L.) is the most important
crop in Hungary [2]. Although, sustainability of high crop yield under intensive cultivation
is possible only through the use of water, and the use of adequate chemical fertilizer, i.e.,
microelements.

The dataset of the Látókép long-term experiment (2016–2020) was used for the analysis
of this study. By testing the model, the yield of maize was analyzed:

- Growth and yield of maize hybrids in a context of environmental conditions;
- The initial parameters for the model run were established (soil chemical variables, soil

physical properties, soil mechanical structure, soil moisture, etc.);
- Phenological and growth characteristics of individual maize hybrids.

Use of the DSSAT Software under Precision and Experimental Conditions

In addition to comparing models, DSSAT is considered to be suitable for demonstrating
the effect of phenological and N-fertilizer, but it is less suitable for expressing water stress
or soil moisture. Modelling has been the subject of numerous publications and studies,
and continuous calibration and validation (temporal and spatial scaling) have been shown
to be essential to achieve the goals of sustainable crop production. They also became
important because of new scientific directions and hypotheses [3]. Based on the database
of the Látókép (Hungary) long-term experiment, maize hybrids were analyzed for the
effects of irrigation, soil tillage, and crop number [4,5], taking into account different season
effects. The sensitivity of the CERES-Maize model extends to extreme meteorological
years and vegetation periods. The model over- or underestimates the grain yield in rainy
and drier years. It overpredicted the yields systematically in extreme rainy years [6,7]
and under irrigated conditions [8]. For some treatments, the model overestimated corn
grain yield and underestimated total N uptake as well as underestimated total leached
nitrogen and soil moisture, which has an effect on yield [9]. Grain yield increased with
increasing nitrogen content; however, the model underpredicted grain yield with control
treatment [10]. Li et al. [11] observed a significant difference in two years, which were
extremely dry. There is also a similar experience with Liu et al. [6] that, in a low-rainy
year, the maize yields were undersimulated by the model. In the study [5], the average
percentage error of maize predictions for the run environment ranged from 4.8% to 46.6%,
with differences of 471 to 2407 kg/ha. Accurate, reliable yield estimates could be given
by measurements taken during the vegetation period of the crop, as the inaccuracy of the
prediction at sowing can reach 50% [12]. According to Quiring and Legates [5], the model is
partially sensitive to row spacing, seed, sowing depth, sowing, and harvesting time, hybrid,
soil type and soil moisture, as well as temperature and global radiation. Specifically, the
authors draw attention to the effect of the relationship between soil and precipitation, and
the time that can be extremely sensitive to yield development. Li et al. [11] used the model
to analyze a small plot experiment.

In addition to yield estimation, DSSAT can to run various dynamics, such as soil
dynamics, simulation of the nitrogen cycle, and monitoring of changes in soil organic
matter content [13]. The crop simulation program contributes to decision making for
environmental risks, this model is applied to the evolution of the climatic conditions [14].
Provides crop simulation models for management decision making, risk management,
and evaluation [15]. The CERES-Maize model was applied under farm conditions [16],
and embedded in the Apollo [17] decision support system. A 20.25 ha experimental
parcel [18] was divided into nearly 100 management zones, based on which the current
and future corn yield was validated in the Apollo framework. Based on his studies, he
found that later larger treatment units also could be effective as yields show a smaller
spatial distribution. Paz et al. [19] tested the optimum (141–160 kg/ha) application of N
(between 60 and 220 kg/ha) on ~500 m2 units of a 16 ha parcel. DSSAT and APSIM models
were examined, and the most notable difference in treatment units was 6 tons based on
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a comparison of the three-year model estimates. Salmerón et al. [20] simulations in the
La Violada watershed did not adequately estimate yield loss under high yield conditions
under reduced nitrogen. Furthermore, under optimized water and nitrogen management
N leaching (44–98 kg N ha−1 yr−1) would still be high. Zhu et al. [21] emphasizes that
without the adaptation of precision crop cultivation techniques, or in the absence of these
data, the development of models for plant physiology and agro-ecosystems and the use
of newer model generations will fail. However, there is little information on modelling
the combined effects of water and N limitations on water productivity responses of maize
to irrigation.

2. Materials and Methods
2.1. Experimental Site and Treatments

The Látókép Crop Production Experiment Site was established in 1983. The area
of the Látókép experiment is 190 ha, most of which, i.e., a 125 ha site, can be irrigated.
The experiment site is located in eastern Hungary in the Hajdúság region (47◦33′27” N,
21◦26′52” E.) (Figure 1.) The site is relatively isolated, which provided excellent condi-
tions for establishing long-term experiments. Over the past 38 years, the experiment has
remained unchanged in terms of location, nutrient replenishment rate, soil tillage, and
agricultural elements. The field experiment is arranged in a randomized complete block
design with 360 blocks (including 6 treatments, 15 hybrids in four replications). Size of
one repetition: 1260 m2, for fertilizer plots: 210 m2. In this study we examined 1 hybrid
including 6 treatments in four replications. There were 24 blocks in a year.
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Figure 1. The experimental design in Látókép.

The recommended fertilizer doses were 0: 0 kg ha−1 N, 1: 30 kg ha−1 N, 2: 60 kg ha−1 N,
3: 90 kg ha−1 N, 4: 120 kg ha−1 N, and 5: 150 kg ha−1 N in the experimental treatments.
The application rates of chemical fertilizers are described in Table 1, based on a soil analysis
recommendation. In the experiment, 30% of the total nitrogen dose and 100% of the
phosphorus and potassium doses were applied at the beginning, before plowing, and 70%
of the nitrogen dose was applied as top-dressing in April.
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Table 1. Fertilizer input of different treatments in our experiment.

Fertilizer Amount N P2O5 K2O Sum

0 - - - -
1 30 23 27 80
2 60 46 54 160
3 90 69 81 240
4 120 92 108 320
5 150 115 135 400

2.2. Soil Data

The long-term experiment was set up to collect data for calibrating and validating the
CERES-Maize model. It was conducted on silty clay loam soil as classified in USDA [22]
(Table 2.). The collected soil samples were analyzed for texture, bulk density, pH, organic
matter, total nitrogen, potassium (K), and phosphorus (P). The soil of the experiment site is
calcareous chernozem formed on the Hajdúság loess ridge with 80–90 cm depth top soil,
and the organic matter content is around 2.7%. The soil has a pH of 6.6 (slightly acidic). In
terms of its physical variety, it is a clayey loam, with Arany’s plasticity index number of
44 in 2017 and 2020. The soil input dataset was created by measuring soil properties such
as soil texture, soil bulk density, pH, organic carbon, total N, and available phosphorus
and nitrogen.

Table 2. Soil physical properties in the experimental site (2020).

Depth (cm) Sand Silt Clay

cm 2–0.25 0.25–0.05 0.05–0.02 0.02–0.01 0.01–0.005 0.005–0.002 <0.002

0–20 0.08 8.24 34.81 12.78 8.55 7.47 28.07
20–45 0.04 8.6 32.72 15.34 8.05 7.34 27.91
45–65 0.04 10.39 32.43 15.51 7.8 8.81 25.02
65–95 0.24 10.15 29.11 14.88 7.87 10.12 27.63
95–105 0.2 8.36 32.82 15.93 7.79 8.2 26.7
105–140 0.32 11.5 34.08 15.7 8.12 7.28 23

2.3. Climatic Conditions of the Experimental Site (2016–2020)

The experiment data were obtained from Centre for Agricultural Sciences, Institute of
Crop Sciences, at Látókép, and the daily weather data from the Meteorological Observatory
Debrecen of the National Meteorological Service. It was performed on the basis of the data
of an automatic weather station set up next to the experimental plots [23] (Tables 3 and 4).
The station provided the daily radiation, precipitation, wind speed, as well as minimum
and maximum temperature data. This area has a typical continental climate with one
growing season for maize production: from April to October. The mean annual rainfall
is around 600 mm, the distribution of which causes strong atmospheric drought at times,
resulting in low maize yield [24].

After the winter period of 2016, the considerably dry and warm April had a positive
effect. In April, a total amount of 16 mm of rain fell on several occasions. The remaining part
of the growing season was characterized by high rainfall and above-average temperatures.
The ideal conditions were provided for maize growth and its yield. Precipitation was above
average in each month. The total precipitation for the summer semester is 453 mm, of which
the values of 146 mm in June and 87 mm in July should be highlighted. The temperature
was mostly above average, but there was no long and extremely warm period. The months
of September (+1.6 ◦C) and June (+1.8 ◦C) showed positive temperature anomalies. The
average temperature in August conformed to the multi-year average.
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Table 3. Mean monthly air temperature (◦C) in the growing season of maize at Debrecen-Látókép
(2016–2020).

2016 2017 2018 2019 2020

April (1) 13.3 (+2.1) 10.7 (−0.5) 16.0 (+4.8) 12.4 (+1.2) 10.8 (−0.4)
May (2) 16.5 (−0.1) 17.2 (+0.6) 19.7 (+3.1) 14.1 (−2.5) 14 (−2.6)
June (3) 21.1 (+1.8) 22.2 (+2.9) 20.2 (+0.9) 22.8 (+3.5) 19.6 (+0.3)
July (4) 22.3 (+1.0) 22.3 (+1.0) 21.7 (+0.4) 21.1 (−0.2) 20.9 (−0.4)
August (5) 20.8 (0) 23.2 (+2.4) 23.2 (+2.4) 23.1 (+2.3) 22.6 (+1.8)
September (6) 17.6 (+1.6) 16.4 (+0.4) 17.1 (+1.1) 17.1 (+1.1) 17.9 (+1.9)
October (7) 9.7 (−0.9) 10.8 (+0.2) 12.3 (+1.7) 12.6 (+2.0) 11.7 (+1.1)
Summer period (IV–IX.) (8) 18.6 (+1.1) 18.7 (+1.2) 19.7 (+2.2) 18.4 (+0.9) 17.6 (+0.1)
Winter period (X–III.) (9) 3.9 (−0.3) 4.1 (−0.1) 4.1 (−0.1) 4.4 (+0.2) 4.6 (+0.4)

Note: Differences (in ◦C) from the climatic normal values of 1981–2010 are shown in brackets; (1) April, (2) May,
(3) June, (4) July, (5) August, (6) September, (7) October, (8) Summer period (April–September), (9) Winter period
(October–March).

Table 4. Monthly sum of precipitation (mm) in the growing season of maize at Debrecen-Látókép
(2016–2020).

2016 2017 2018 2019 2020

April (1) 16 (−37) 51 (−2) 37 (−16) 33 (−20) 17 (−36)
May (2) 68 (+4) 27 (−37) 57 (−7) 76 (+12) 45 (−19)
June (3) 146 (+80) 67 (+1) 64 (−2) 32 (−34) 119 (+53)
July (4) 87 (+21) 73 (+7) 55 (−11) 99 (+33) 188 (+122)
August (5) 72 (+23) 61 (+12) 92 (+43) 15 (−34) 70 (+21)
September (6) 64 (+16) 76 (+28) 14 (−34) 35 (−13) 44 (+4)
October (7) 98 (+60) 38 (0) 9 (−29) 22 (−16) 79 (+41)
Summer period (IV–IX.) (8) 453 (+107) 354 (+8) 318 (−28) 290 (−56) 483 (+137)

Note: Differences (in mm) from the climatic normal values of 1981–2010 are shown in brackets; (1) April, (2) May,
(3) June, (4) July, (5) August, (6) September, (7) October, (8) Summer period (April–September).

Regarding the summer months (2017), precipitation (354 mm) is essentially the same as
the multi-year average (+8 mm), and it was well balanced in terms of monthly precipitation.
There was a significant difference from the multiple-year average in May (−37 mm) and
September (+28 mm). Significant positive temperature anomalies occurred in June (+2.9 ◦C),
July (+1.0 ◦C), and August (+2.4 ◦C).

In the year 2018, from the beginning of April, the nature of weather changed funda-
mentally and permanently, which is also well reflected in the monthly data. The growing
season started with a very warm April, with an average temperature of 16.0 ◦C, almost
5 ◦C above the average value. Sunny, warm weather continued in May, again resulting
in a record high average temperature (19.7 ◦C). These two significantly warm months
contributed favorably to the emergence and initial development of maize.

The positive temperature anomaly in April 2019 (+1.2 ◦C) was followed by a signifi-
cantly negative anomaly in May (−2.5 ◦C). The development of maize was slow, but the
water supply was optimal. In the summer months, the temperatures in June (+3.5 ◦C)
and August (+2.3 ◦C) were well above average. The positive anomaly continued into the
fall. During the growing season, April (−20mm), June (−34 mm), and July (−34 mm) had
significantly below average rainfall. The 99 mm rainfall in July was favorable during the
silking and grain filling phase of maize.

In the initial growing season in 2020, the significant negative temperature anomaly
(−0.4 ◦C in April; −2.6 ◦C in May) was associated with low precipitation. Spring precipi-
tation was followed by particularly high monthly meteorological values during the three
summer months. This weather negatively affected the development of the sown maize and
its emergence. During the summer months, there was a significant surplus of precipitation
compared to the multiple-year average (June +53 mm, July +122 mm, August +21 mm).
This rainy weather continued into the fall months. The difference in the average monthly
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temperatures from the average continued even in August (+1.8 ◦C), September (+1.9 ◦C),
and October (+1.1 ◦C) months.

2.4. Model Calibration and Evaluation/Data Requirements for Calibrating and Validating the
Ceres-Maize Model

The CSM-CERES Maize model (v.4.7) is a deterministic model to simulate crop growth
and development on a daily basis [25]. The CERES-Maize model simulates conversion
processes of soil water, carbon, and nitrogen balances and predicts maize yield and N
uptake, as well as water use efficiency. Daily records of minimum and maximum tem-
perature, total rainfall, and solar radiation are required for the model. The Weatherman
utility also needs information from the weather station. Soil data tool (SBuild, Version
4.7.5, DSSAT Foundation, Gainesville, Florida, USA) was used to adapt site coordinates,
soil profile, and classification. Measured soil characteristics were used to calculate soil
physical and chemical parameters that are needed to run the model for yield prediction
(Tables 5 and A1). For simulation options, initial conditions were reported for each year
and location (hybrids). The Priestly–Taylor (Ritchie method) was selected for simulating
evapotranspiration and the Soil Conservation Service method for infiltration. The Ritchie
Water Balance model was set for soil evaporation. Photosynthesis was configured, while
phosphorus and potassium were not modelled in all runs.

Table 5. The physical and chemical parameters of the soil in the experimental area in 2020.

2020

Layer
Depth, cm

Organic
Carbon %

Total
Nitrogen %

pH in
Water

Lower Limit,
cm3 cm−3

Drained
Upper Limit,

cm3 cm−3

Saturated Water
Holding Capacity,

cm3 cm−3

Bulk
Density
g/cm3

Sat. Hydraulic
Conduct, cm/h

Root Growth
Factor, 0.0

to 1.0

5 1.39 0.13 7.3 0.204 0.414 0.489 1.26 0.15 1.000
10 1.39 0.13 7.3 0.204 0.414 0.489 1.26 0.15 1.000
15 1.45 0.14 7.3 0.206 0.417 0.488 1.26 0.15 1.000
20 1.45 0.14 7.3 0.206 0.417 0.488 1.26 0.15 1.000
25 1.39 0.13 7.2 0.203 0.412 0.489 1.26 0.15 0.638
30 1.39 0.13 7.2 0.203 0.412 0.489 1.26 0.15 0.577
35 1.59 0.15 7.2 0.209 0.423 0.495 1.24 0.15 0.522
40 1.59 0.15 7.2 0.209 0.423 0.486 1.24 0.15 0.472
45 0.27 0.12 7.2 0.2 0.406 0.493 1.27 0.15 0.427
50 0.27 0.12 7.2 0.186 0.392 0.484 1.25 0.68 0.387
55 0.95 0.09 7.2 0.177 0.376 0.484 1.28 0.68 0.35
60 0.95 0.09 7.2 0.177 0.376 0.484 1.28 0.68 0.317
65 0.81 0.08 8.0 0.173 0.369 0.478 1.3 0.68 0.287
70 0.81 0.08 8.0 0.186 0.378 0.478 1.3 0.15 0.259
75 0.75 0.07 8.0 0.184 0.375 0.479 1.3 0.15 0.235
80 0.75 0.07 8.0 0.184 0.375 0.479 1.3 0.15 0.212
85 0.92 0.09 8.4 0.189 0.384 0.481 1.29 0.15 0.192
90 0.92 0.09 8.4 0.189 0.384 0.481 1.29 0.15 0.174

2.5. Weather Data

Daily records of solar radiation amount (SRAD), maximum temperature (Tmax), mini-
mum temperature (Tmin), and precipitation (RAIN), wind speed, and the relative humidity
(RHUM) are required for the CERES-Maize model. According to Banda (2005) [26], the most
important factors are the intensity and distribution of precipitation during the growing
season, which greatly influences the development of maize yield.

2.6. Examined Hybrid Parameters

In the field experiment (11 measuring points), hybrids were characterized in the
vegetation period of 2018 on the basis of Hanway’s scale, and values were used to determine
genetic parameters [27]. To calibrate the genetic coefficients of the maize cultivar, dates of
emergence, silking and physiological maturity, biomass, grain yield, and leaf area index
were used. These phenological parameters include thermal time from seedling emergence
to the end of the juvenile phase (P1), photoperiod-sensitivity (P2), thermal time from silking
to physiological maturity above base temperature of 8 ◦C (P5), potential kernel number
(G2), potential grain filling rate (G3), and interval in degree-days between successive leaf
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tip appearance (PHINT) (Table 6). In this study, we selected one hybrid Sushi (FAO 340).
Crop development was assessed by observing the phenology of different maize varieties
and recording the daily sum of heat required to reach each phenological phase (Hanway,
1963) [28]. Maize is a heat-demanding crop, but temperatures higher than 30 ◦C are not
taken into account in the heat sum calculation. The total heat demand of the hybrids during
the growing season is 1100–1400 ◦C [24]. Hanway (1963) [28] determined the growth stages
before silking based on the number of leaves, the subsequent stages defined on kernel
development, the growing season of maize was divided into eleven growth stages [24].

Table 6. Genetic coefficients for the Sushi hybrid.

Hybrid P1 P2 P5 G2 G3 PHINT

Sushi 118 0.500 926 830 7.1 42

The Sushi hybrid was sown on 19 April 2016, 25 April 2017, 24 April 2018, 16 April
2019, and 17 April 2020. The harvesting dates were in 14 October 2016, 12 October 2017, 19
September 2018, 16 October 2019, and 24 October 2020. The sowing machine was set by
76 cm at intervals 18 cm in row with 70.000 ha−1 seedlings (Table 7).

Table 7. Sowing and harvest dates between 2016 and 2020 years.

Years Sowing Date Harvest Date

2016 19 April 14 October

2017 25 April 12 October

2018 24 April 19 September

2019 16 April 16 October

2020 17 April 24 October

Initial conditions were based on those reported for each year and location (hybrids).
The Priestly–Taylor (Ritchie method) was selected for simulating evapotranspiration and
the Soil Conservation Service method for infiltration. The Ritchie Water Balance model was
set for soil evaporation. Photosynthesis was configured and Phosphorus and Potassium
were not modelled in all runs. In addition to the agrotechnological applications performed
during the long-term experiment (tillage, sowing, fertilizer application, method, and dates
of harvest), additional information was used to build the model. The objective of this study
is to analyze the effect of fertilizer doses on yields and the differences between seasons.

2.7. Statistical Analysis

Statistical assessment to judge the accuracy of CERES-Maize outputs included the root
mean square error (RMSE), normalized-RMSE (n-RMSE). These indicators were measured
as Yang and Huffman (2004) [29]:

RMSE =

√
∑n

i=1(mi − si)
2

n

n-RMSE =
RMSE

m
where n is the number of measured dataset, si is simulated data, mi is measured data, and
m is the mean of the measured data. In addition, because n-RMSE is unbounded, and it
is unstable if m or n approaches zero, an index of agreement (d) statistic was used in this
study [30].

In this study, the univariate statistical method was used (regression analysis and
analysis of variance) to analyze hybrids and NPK treatment interactions. Regression
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examines the trend in the relations and describes the mode of the relation with a certain
function, i.e., it quantifies the causal relations. The regression coefficient gives the average
change in the “explanatory” variable per unit change in the “response” variable,

Y = β0 + β1X,

where β1 represents the regression coefficient. Parameter β0 can usually only be interpreted
mathematically if the variable X is set to 0, then β0 is the estimate given 0 in X.

The linear correlation coefficient is known as the coefficient of determination (R2), and
it shows the percentage of the variance of the response variable is explained by the factor
variable, explain its reliability.

Comparing two or more groups observed by ANOVA (variance of analysis) shows
if there are significant differences. The value of R2 is between 0 and 1, and it expresses a
percentage of the strength of the relations between the variables. The assay performs an
F-test. The value can be used to determine if the test is statistically significant. The program
determines the p-value from the F-value, which determines whether the treatments have
produced significant results. If the results are significant, the model is predictably valid.
All analyses were performed using Minitab.

3. Results and Discussion

The weather variations from year to year in this study were significant. Examining
the five years, 2016 and 2020 can be considered significantly rainy years. In 2018 and 2019,
high average temperature values were associated with drought [23,31]. The total rainfall in
the experimental years was 817 mm (2016), 641 mm (2017), 552 mm (2018), 479 mm (2019),
and 708 mm (2020).

3.1. CERES-Maize Simulation Results

The CERES-Maize model was used to analyze the N-fertilization experiments con-
ducted in Látókép during the given growing seasons (2016–2020). The hybrid Sushi (FAO
340) that we tested was calibrated from preliminary field and crop phenological mea-
surements. From the long-term experiment field measurement results and according to
the agrotechnical elements for the given year, simulation settings were determined. The
performance of the CERES-Maize model was evaluated by comparison between simulated
and observed grain yield under different N treatments (Table 8). The observed yield ranged
from 5016 to 14,920 kg ha−1 during the 2016–2020 growing season, respectively. Higher
yields (at 150 kg ha−1 N dose) were measured in the rainy years: 13,858 kg ha−1 (2016),
13,400 kg ha−1 (2020), with the exception of the average rainfall year 2018 (14,920 kg ha−1).
The simulated data of maize yield ranged between 6671–13,136 kg ha−1. Simulated and
observed maize yield results are similar to the results obtained by Bao et al. (2017) [32],
and in other research works [9–12]. The aim of this evaluation was to investigate how the
CERES-Maize model simulated the effects of different N treatments on the observed yield
data in long-term experiments, in Hungarian conditions. In both years (2016 and 2017), the
maximum yield of the Sushi hybrid was achieved at 150 kg ha−1 N [33].

Based on the obtained results, the model most accurately predicted the yield of our
test plant in 2016 and 2019. The agrotechnical settings were used according to the given
year and the soil test results were also different only in 2020 due to the new sampling tests.
Figures 2–6 show the comparisons of the measured and estimated yields by the simulation
model. The good fit between predicted and measured yield data showed that the model
could be relevant to simulate the performance of yield for the dissimilar N treatments.
Maize grain yield is significantly affected by fertilization (N). In the examined years, the
Sushi hybrid yields increased with increasing doses of N. In 2016, except for the N0 dose,
the model underestimated the yield in all cases. Due to the year with favorable rainfall,
the high yields are also reflected in the simulation results. The measured yield data were
determined with R2 = 0.88 (R2 = coefficient of determination) and the simulated results
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with R2 = 0.98. One unit increase in nitrogen dose increased the yield by 32.14 kg/ha for
the measured data, while it was 28.68 kg/ha for the simulated data (Figure 2).

Table 8. Measured and simulated yields of Sushi maize hybrid (2016–2020).

Year N Rate (kg N ha−1)
Grain Yield (kg ha−1)

Measured Simulated

2016 0 8657 8838
30 11,036 10,010
60 12,318 11,010
90 12,773 11,792
120 13,467 12,624
150 13,858 13,136

2017 0 5016 8344
30 6629 8638
60 8627 9095
90 9652 9438
120 11,011 9866
150 11,688 10,004

2018 0 6995 6671
30 9980 6984
60 11,540 7338
90 12,030 7525
120 14,640 7595
150 14,920 7592

2019 0 7200 7740
30 9920 8639
60 9940 9181
90 9780 9269
120 10,240 9387
150 10,860 9392

2020 0 5488 10,520
30 7999 11,186
60 8629 11,864
90 10,259 12,056
120 11,757 12,056
150 13,400 12,056
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An increase in the nitrogen dose per unit increases the yield by 45.26 kg/ha for the
measured data, while it was 11.74 kg/ha for the simulated data. Up to the N60 dose, the
model estimated yields at the top and then at the bottom (Figure 3) In 2018, the simulated
results (R2 = 0.87) followed the increase in yield in parallel with the increase in the fertilizer
dose. However, the values lagged far behind the measured results (R2 = 0.94). An increase
in the nitrogen dose per unit increases the yield by 51.51 kg/ha for the measured data,
while it was 6.30 kg/ha for the simulated data (Figure 4).

In 2019, the measured yields were also below the average and the highest yield was
10 t/ha. An increase in the nitrogen dose per unit increases the yield by 18.19 kg/ha
for the measured data, while it was 10.08 kg/ha for the simulated data. This trend was
followed by the simulation yield, but underestimated the yields in all cases except for the
N0 dose. The measured results were determined with R2 = 0.65 and the estimated yields
with R2 = 0.76 (Figure 5) In the year 2020, the measured yield values are R2 = 0.98 and
the simulated R2 = 0.77. An increase in the nitrogen dose per unit increases the yield by
49.96 kg/ha for the measured data, while it was 9.98 kg/ha for the simulated data. The
model accurately estimated the yield of the N120 dose in 2020, but examining the other
doses showed different results, maintaining the increasing trend (Figure 6).

According to similar studies [34–38], the CERES-Maize model was very sensitive to
changes in climate factors. In summary, the model simulated the maize yields inaccurately
in different N treatments and for the different growing season.

3.2. Results of the Statistical Analysis

According the analysis variance had a significant effect on years (2016–2020) and
nitrogen doses. N fertilizer had significant impact on yield but the simulated data and
measurement data do not show any significance together (Table 9). The Tukey analysis
showed that there was a significant difference between the examined years. There was
no difference between 2016 and 2020 (group A), in case of 2017, 2018, and 2019, but there
was a significant difference compared to 2016 and 2020 (group B) (Table 10). On average,
over the examined years, the Tukey grouping analysis showed that there was a significant
difference between the various nitrogen doses. There were similar values in the case of
the 150 and 120 N doses, while the second group involved the 90 and 60 N doses, and the
third group included the 30 N dose and the fourth group is 0 nitrogen (Table 11). Based on
the Tukey grouping analysis, there was no significant difference between measured and
simulated values in the case of averaged years (Table 12).
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Table 9. Component variance analysis on parameters.

Source DF Adj SS Adj MS F-Value p-Value

year 4 57283327 14320832 5.78 0.001
N 5 114917792 22983558 9.28 <0.001

type 1 2040570 2040570 0.82 0.396
Error 49 121361829 2476772
Total 59 295603519

Table 10. Tukey Pairwise Comparisons on years.

Year N Mean Grouping

2016 12 11,626.6 A
2020 12 10,605.8 A B
2018 12 9484.2 B
2019 12 9295.7 B
2017 12 9000.7 B

Means that do not share a letter are significantly different.

Table 11. Tukey Pairwise Comparisons on N fertilizer.

N N Mean Grouping

150 10 11,690.6 A
120 10 11,264.3 A
90 10 10,457.4 A B
60 10 9954.2 A B
30 10 9102.0 B C
0 10 7546.9 C

Means that do not share a letter are significantly different.

Table 12. Tukey Pairwise Comparisons on modeling.

Type N Mean Grouping

M 30 10,187.0 A
S 30 9818.2 A

Means that do not share a letter are significantly different.

The analysis of variance had a significant effect on nitrogen, measured and simulated
values. The Tukey grouping analysis showed that there was a significant difference between
measured and predicted yields in 2016. The analysis of variance showed no significant
effect on nitrogen and type. The Tukey grouping showed no significant difference between
measured and simulated data in 2017. The analysis of variance showed no significant
effect on nitrogen; however, the analysis of variance showed a significant effect on type
factor. The Tukey grouping analysis showed significant difference between measured and
simulated values in 2018. The analysis of variance had a significant effect on nitrogen;
however, no significant effect was shown on measured and simulated values. The Tukey
grouping analysis showed that there were not significantly difference between measured
and simulated values in 2019. The analysis of variance did not have any significant effect on
the examined parameters. The Tukey grouping analysis showed no significant difference
between simulated and measured values in 2020 (Tables 13 and 14).
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Table 13. Simple variance analysis on yield.

Year Source DF Adj SS Adj MS F-Value p-Value

2016

N 5 30900853 6180171 47.16 <0.001
type 1 1840050 1840050 14.04 0.013
Error 5 655247 131049
Total 11 33396151

2017

N 5 26086128 5217226 2.86 0.137
type 1 635720 635720 0.35 0.581
Error 5 9125963 1825193
Total 11 35847811

2018

N 5 27856557 5571311 1.63 0.303
type 1 58080000 58080000 16.98 0.009
Error 5 17102215 3420443
Total 11 103038772

2019

N 5 8826853 1765371 6.99 0.026
type 1 1563852 1563852 6.19 0.055
Error 5 1262346 252469
Total 11 11653051

2020

N 5 28850326 5770065 2.20 0.204
type 1 12415536 12415536 4.73 0.082
Error 5 13118546 2623709
Total 11 54384408

Table 14. Tukey Pairwise Comparisons.

Year Type N Mean Grouping

2016
S 6 12,018.2 A
M 6 11,235.0 B

2017
S 6 9230.83 A
M 6 8770.50 A

2018
M 6 11,684.2 A
S 6 7284.2 B

2019
M 6 9656.67 A
S 6 8934.67 A

2020
S 6 11,623.0 A
M 6 9588.7 A

4. Conclusions

The CERES-Maize model was evaluated using a long-term experiment in Hungary. In
summary, simulated maize yields were not associated with site-specific measured maize
yields from experimental plots. Our long-term experiment indicated that, as a result of
increasing fertilization, crop yields increase. In addition to fertilization, yields were also
affected by the weather. The model did not simulate the annual Sushi yields precisely. The
examined years in this study differed significantly depending on the seasonal conditions.
In the rainy year (2016), the hybrid Sushi reached a yield of 13.858 kg ha−1, while the
obtained yield was 3 tons less (10,860 kg ha−1) even in the drought year (2019).

The simulated results of the model followed the increase in yields with increasing
N dose. The measured and predicted yield during the years tracked the maize yields
reasonably well for the 0N treatments. On specific treatment levels, the model accurately es-
timated yields for the Sushi hybrid, but in several cases, the model under- or overestimated
yields. According the performed variance analysis, a significant effect was observed on
crop year (2016–2020) and nitrogen doses. The Tukey analysis showed significant difference
between each year. Even though the DSSAT-CERES Maize have showed some uncertainties
associated in estimating the yields of different years, the increase in yield under the nitrogen
dose was accurately modeled. The results of this study support the potential of using the
model for the application of appropriate agrotechnics, including the determination of the
nitrogen dose. Higher fertilizer doses resulted in higher yields each year.
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In order to predict yields that meet the requirements of precision farming, care must
be taken to collect data from experiments performed under optimal conditions. In addition,
the data required for calibration should be collected from a location where detailed soil
data are available. Analysis of varieties (hybrids) will help farmers to have more accurate
decision support tools. Precision farming, which takes into account low spatial resolution
management units, requires accurate, reliable crop yield models. Without validating these
decision support systems for our growing conditions, we will not be able to make good
agronomic decisions.
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Appendix A

Table A1. The physical and chemical parameters of the soil in the experimental area in 2017.

2017

Layer
Depth, cm

Organic
Carbon %

Total
Nitrogen %

pH in
Water

Lower Limit,
cm3 cm−3

Drained
Upper Limit,

cm3 cm−3

Saturated Water
Holding Capacity,

cm3 cm−3

Bulk
Density
g/cm3

Sat.
Hydraulic
Conduct,

cm/h

Root Growth
Factor, 0.0

to 1.0

5 1.58 0.16 7.3 0.21 0.424 0.495 1.24 0.15 1.000
10 1.58 0.16 7.3 0.21 0.424 0.495 1.24 0.15 1.000
15 1.58 0.16 7.3 0.21 0.424 0.495 1.24 0.15 1.000
20 1.58 0.16 7.3 0.21 0.424 0.495 1.24 0.15 1.000
25 1.34 0.13 7.2 0.202 0.41 0.489 1.26 0.15 0.638
30 1.34 0.13 7.2 0.202 0.41 0.489 1.26 0.15 0.577
35 1.34 0.13 7.2 0.202 0.41 0.489 1.26 0.15 0.522
40 1.34 0.13 7.2 0.202 0.41 0.489 1.26 0.15 0.472
45 0.97 0.1 7.2 0.192 0.391 0.477 1.3 0.15 0.427
50 0.97 0.1 7.2 0.177 0.377 0.484 1.28 0.68 0.387
55 0.97 0.1 7.2 0.177 0.377 0.484 1.28 0.68 0.35
60 0.97 0.1 7.2 0.177 0.377 0.484 1.28 0.68 0.317
65 0.6 0.06 8.0 0.167 0.358 0.472 1.32 0.68 0.287
70 0.6 0.06 8.0 0.18 0.367 0.472 1.32 0.15 0.259
75 0.6 0.06 8.0 0.18 0.367 0.472 1.32 0.15 0.235
80 0.6 0.06 8.0 0.18 0.367 0.472 1.32 0.15 0.212
85 0.5 0.05 8.4 0.178 0.362 0.47 1.33 0.15 0.192
90 0.5 0.05 8.4 0.178 0.362 0.47 1.33 0.15 0.174
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