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Abstract: Cover cropping (CC) is the most promising in-field practice to improve soil health and
mitigate N losses from fertilizer use. Although the soil microbiota play essential roles in soil health, their
response to CC has not been well characterized by bioindicators of high taxonomic resolution within
typical agricultural systems. Our objective was to fill this knowledge gap with genus-level indicators
for corn [Zea mays L.] monocultures with three N fertilizer rates (N0, N202, N269; kg N ha−1), after
introducing a CC mixture of cereal rye [Secale cereale L.] and hairy vetch [Vicia villosa Roth.], using
winter fallows (BF) as controls. A 3 × 2 split-plot arrangement of N rates and CC treatments was
studied in a randomized complete block design with three replicates over two years. Bacterial and
archaeal 16S rRNA and fungal ITS regions were sequenced with Illumina MiSeq system. Overall, our
high-resolution bioindicators were able to represent specific functional or ecological shifts within the
microbial community. The abundances of indicators representing acidophiles, nitrifiers, and denitrifiers
increased with N fertilization, while those of heterotrophic nitrifiers, nitrite oxidizers, and complete
denitrifiers increased with N0. Introducing CC decreased soil nitrate levels by up to 50% across N rates,
and CC biomass increased by 73% with N fertilization. CC promoted indicators of diverse functions
and niches, including N-fixers, nitrite reducers, and mycorrhizae, while only two N-cycling genera
were associated with BF. Thus, CC can enhance the soil biodiversity of simplified cropping systems and
reduce nitrate leaching, but might increase the risk of nitrous oxide emission without proper nutrient
management. This primary information is the first of its kind in this system and provided valuable
insights into the limits and potential of CC as a strategy to improve soil health.

Keywords: bioinformatics; nitrogen cycling; soil microbiota; maize; nitrate leaching;
nitrous oxide emission

1. Introduction

Soil health represents a soil’s capacity for ecosystem services, making it a crucial
component of sustainable agriculture [1,2]. Hence, the soil health of critical agricultural
regions such as the US Midwest must be protected to maintain global food security [3–6].
However, this region is dominated by simplified and intensely managed cropping systems
centered on corn [Zea mays L.] and soybean [Glycine max (L.) Merr.], which makes the
soil more vulnerable to both anthropogenic and natural disturbances [7–9]. Corn-based
systems often have low N use efficiency, leading to excess soil N [10] that causes a chemical
imbalance that degrades soil health and contributes to greenhouse gas (GHG) emissions
and nutrient pollutions [11–14].
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Cover cropping (CC) has many potential benefits for soil health, such as providing
physical protections, adding organic matter, and scavenging excess soil N [3,15,16]. Thus,
CC has been proposed as a tool of ecological intensification to improve soil health [17,18]. In
particular, CC is anticipated for its ability to mitigate soil chemical imbalances by immobi-
lizing excess soil nutrients as biomass and releasing them slowly through decomposition.
Indeed, past primary research and research syntheses demonstrated that CC that includes
non-legumes significantly reduces NO3

− leaching [3,16]. Yet, many aspects of CC interaction
with the soil remain unexplored or ambiguous. For example, whether CC can effectively
reduce emissions of nitrous oxide (N2O), a very potent GHG, may depend on soil microbial
responses to CC management [19]. Thus, the soil microbes can regulate the CC impacts
on soil health as the fundamental driver of soil processes [15,20,21]. Likewise, a diverse
microbial community with groups of overlapping roles leads to higher functional redundancy
that indicates a healthy and resilient soil [22]. Therefore, proper evaluation of CC as a tool
to alleviate soil health degradation and N loss requires a better understanding of the soil
biodiversity under CC management.

Despite the importance of soil biodiversity for successful CC strategies, many gaps
in knowledge still exist due to the vast complexity of the soil microbiome. Therefore,
indicators need to be identified to describe a microbiome reliably. Initially, properties of the
whole microbial community, such as total microbial biomass, respiration, and α-diversity,
served as indicators in CC research [15,23–26]. For example, a global meta-analysis by Kim
et al. [25] found beneficial effects of CC on thirteen parameters of microbial abundance,
activity, and diversity. However, these indicators from broad-scale integrative methods do
not describe the microbial diversity and functionality with enough detail. Therefore, CC
research adopted approaches, such as metabarcoding, that can quantify the changes in the
abundances of individual microbial taxa and identify those sensitive to the treatments as a
type of bioindicator [27]. These indicator taxa can provide taxonomic characterization of
the responsive microbes that can complement other bioindicators such as β-diversity and
the functional genes. This effort started from identifying the taxa sensitive to CC at lower
taxonomic resolutions [28]. For example, a study by Castle et al. [29] showed that the N
fertilization rate changed the relative abundances of bacterial phyla, while CC proved to
be a stronger predictor of fungal community composition [29]. However, due to the wide
ecological and functional diversity within each phylum, these bioindicators are still too
low in taxonomic resolution to infer on more specific microbial processes, such as plant
symbiosis or a particular step of denitrification [30].

The recent advancements in sequencing technology and bioinformatics have enabled
the identification of genus- or even species-level indicators from surveying the vast mi-
crobial community data at higher taxonomic resolutions. Thus, these indicator taxa can
represent more specific microbial guilds or functions. For example, Villamil et al. [31] used
bacterial and archaeal 16S rRNA and fungal internal transcribed spacer (ITS) sequence
data to select genus-level indicators through predictor screening and principal component
analysis. They found indicator genera whose responses to management practices were
consistent with their known characteristics, such as those of acidophiles that increased with
soil acidification. Thus, the authors demonstrated that low-rank indicator taxa can reliably
describe the soil microbial community and complement other taxonomic or functional
bioindicators. Therefore, identifying genus-level bioindicators after introducing CC may
lead to detailed insights into whether CC can improve the soil biodiversity. So far, however,
only a few studies have identified the high taxonomic resolution indicators of CC. Alahmad
et al. [32] identified species-level indicators to represent guilds that specialize in different
C substrate groups, but their system widely differed from the simple cropping systems.
Another study by Kim et al. [33] identified indicator genera within a typical corn–soybean
rotation after five years of CC. However, this study did not include an unfertilized control
to test the N rate effect and included tillage treatments in the model. Thus, high-resolution
indicator taxa have not been well-identified for CC deployment in simplified cropping
systems with and without N fertilization.
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Therefore, our objective was to describe the soil microbial community of a typical corn
monoculture with and without N fertilizers upon introducing CC with high taxonomic
resolution, using bacterial, archaeal, and fungal genera as indicators. Our aim was to
use these bioindicators to investigate whether CC can increase soil biodiversity and has
the potential to improve soil health of this system. Three published studies have each
characterized the soil properties [14], the N-cycling genes [21], and the indicator genera [31]
of the experimental site of this study before CC deployment. Consistent with these past
studies, we expected to still observe soil acidification and an increased abundance of
acidophiles, nitrifiers, and denitrifiers with N fertilization. Thus, based on the assumption
that CC will improve the soil biodiversity and N use efficiency of corn monocultures, we
hypothesized that CC would (1) reduce soil NO3

− levels through assimilation, which
would (2) compete with the denitrifiers for NO3

− and decrease their abundances, and that
(3) indicators associated with CC would represent more diverse niches and functions than
those of bare fallow. These bioindicators will help us assess whether CC can improve the
soil health of simplified and intensely managed cropping systems and reduce their soil
N loss. In addition, these bioindicators will facilitate identifying the core microbiota that
could be managed to optimize CC in high-N-input agroecosystems.

2. Materials and Methods
2.1. Experimental Site Description and Management Practices

The field experimental site was established in 1981 at the Northwestern Illinois Agricul-
tural Research and Demonstration Center (40◦55′50′′ N, 90◦43′38′′ W) to study the effects of
N fertilization rates on corn yields when the crop is in a corn monoculture or short rotation
with soybeans (Figure S1). The site has mean annual precipitation and temperature of 914
mm and 10.6 ◦C, respectively [34]. The soil series is Muscatune silt loam (fine-silty, mixed,
mesic Aquic Argiudoll) on nearly flat topography [35]. These are dark-colored and very
deep soils with moderate permeability and low surface runoff potential developed under
prairie vegetation in a layer of loess 2–3 m thick over glacial till [35]. Further information
regarding the experimental site and management before 2018 can be found in Kim et al. [14].

This study centers on the introduction of CC into the continuous corn management
plots that spanned two CC growing seasons: 2018–2019 and 2019–2020. Before introducing
CC, these plots had average topsoil pH of 6.31, soil organic C of 20.08 g kg−1, bulk density
of 1.34 Mg m−3, NO3

− level of 7.65 mg kg−1, and NH4
+ level of 6.15 mg kg−1 [14]. A

split-plot arrangement of N fertilization rates (0, 202, and 269; kg N ha−1) and CC (cover
crop, CC; bare fallow control, BF) in a randomized complete block design with three
replicates was used on the continuous corn production plots. The main plots were 18 m
long by 6 m wide, and the subplots were 18 m long and 3 m wide. Corn was planted
on 3 June 2019 and 26 May 2020 at 88,000 seeds ha−1. Nitrogen fertilization occurred in
early to mid-May with urea ammonium nitrate solution (UAN 28%). No P or K fertilizers
or lime were applied. Fertilizer, herbicide, and pest management decisions followed the
best management practices for the site as recommended by the Illinois Agronomy Hand-
book [36]. Cash crop harvesting occurred in mid-October with a plot combine (Almaco,
Nevada, IA, USA). Following harvest each year, a CC mixture of cereal rye [Secale cereale L.]
and hairy vetch [Vicia villosa Roth.] was no-till drill-seeded at the rate of 84 kg seeds ha−1

on 3 October 2018 and on 19 October 2019. The CC were terminated in early May after
soil sampling and before corn planting with glyphosate [N-(phosphonomethyl)glycine]
(Roundup WeatherMAX®, Bayer AG, Leverkusen, Germany) at the rate of 1.89 kg a.i. ha−1.
Spring tillage was conducted in all plots following CC suppression using a rotary tiller
(Dyna Drive Cultivator, EarthMaster, Alamo Group, Inc., Seguin, TX, USA) on 3 June 2019
and on 11 May 2020.

2.2. Soil and Cover Crop Biomass Sampling and Determinations

Soil samples were taken on 26 April 2019 and on 30 April 2020. Within each exper-
imental unit, three composited soil subsamples at a depth of 10 cm were taken with an



Agronomy 2022, 12, 954 4 of 25

Eijelkamp grass plot sampler (Royal Eijkelkamp Company, Giesbeek, The Netherlands)
collecting plugs while walking in a zig–zag pattern. For each plot, a composited soil sample
had about 15 plugs, rendering a total of 500 g of soil used for microbial DNA extraction.
These soil samples were transported from the experimental site in coolers filled with ice
and then stored at −20 °C in the lab. Additionally, three soil core subsamples 0–90 cm
in depth per experimental unit were taken using a tractor-mounted soil sampler with
soil sleeve inserts (Amity Tech, Fargo, ND, USA). These soil cores were cut at depths of
0–30 cm, 30–60 cm, and 60–90 cm in the lab and composited to determine general soil
properties. This study only used the soil property data from the top 0–30 cm soil. Water
content was determined by gravimetry (%), and the available soil NO3

− and ammonium
(NH4

+) (mg kg−1) were determined using KCl extraction (1:5 ratio of soil to solution)
followed by flow injection analysis with a SmartChem 200 (Westco Scientific Instruments,
Inc., Danbury, CN). The soil pH (1:1 soil–water) was determined via potentiometry [37] by
a commercial laboratory (Brookside Laboratories, Inc., New Bremen, OH, USA). Samples
of CC aboveground biomass growth were collected at the same time as soil sampling using
three random 0.25 m2 quadrat tosses in each CC plot. The dry weight of the biomass
samples was measured after drying them in the oven at 60 ◦C for 48 h.

2.3. Soil DNA Extraction, Sequencing, and Taxonomic Classification

Soil DNA was extracted from 0.25 g of each soil subsample using PowerSoil® DNA iso-
lation kits (MoBio Inc., Carlsbad, CA, USA) following the manufacturer’s instructions. The
quantity and quality of the extracted DNA were tested using Nanodrop 1000 Spectropho-
tometer (ThermoFisher Scientific, Waltham, MA, USA), and the extracted DNA samples
were stored at −20 °C until analysis. The DNA samples were sequenced for the bacterial
V4 region and archaeal 16S rRNA, and the fungal internal transcribed spacer (ITS) region
for taxonomic analysis with Illumina MiSeq paired-end System (2 × 250 bp) (Illumina,
Inc., San Diego, CA, USA) by the W.M. Keck Center for Comparative and Functional Ge-
nomic lab at the University of Illinois Biotechnology Center (Urbana, IL, USA). The sample
DNA concentration was limited to 50 ng µL−1. The primer sets used for amplification
were 515F (GTGYCAGCMGCCGCGGTAA) and 806R (GGACTACVSGGGTWTCTAAT) for
the bacterial 16S rRNA gene [38], 349F (GTGCASCAGKCGMGAAW) and 806R (GGAC-
TACVSGGGTATCTAAT) for the archaeal 16S rRNA gene [39], and 3F (GCATCGATGAA-
GAACGCAGC) and 4R (TCCTCCGCTTATTGATATGC) for the fungal ITS region [40].

Quality check and processing of the sequences were carried out using QIIME 2.0
pipeline [41,42]. When checking the archaeal demultiplexed sequences from the MiSeq
System, not enough sequences were retained for further analysis when the sequences were
trimmed at the base positions where the 25th percentile of the quality scores fell below 20 on
QIIME 2.0 View [43]. Therefore, the sequences were not trimmed for all bacteria, archaea,
and fungi to keep a consistent method across taxa. Nonetheless, bacterial and fungal
sequence qualities were mostly very high (25th percentile Q > 30) or at least good (25th
percentile Q > 20) throughout the base pair positions, so trimming was unnecessary [43].
The plugin DADA2 was used to denoise and remove chimeric and low-quality sequences
with the option chimera-method consensus, and then resulting sequences were clustered
into amplicon sequence variants (ASVs) [44]. The rarefaction curve for each bacterial,
archaeal, and fungal ASVs plateaued around 900, 150, and 300, respectively, in sampled
sequences on average (Figure S2).

The ASVs were classified with Ribosomal Database Project (RDP) web classifier or
RDPTool package [45] using 16S rRNA training set 18 and Warcup Fungal ITS trainset 2.
RDP database was chosen because it has a lower annotation error rate than other 16S rRNA
databases [46]. The resulting classified ASVs were grouped by genus and those with low
(<0.1%) per-sample relative abundances averaged across all samples were filtered out using
package dplyr version 1.0.5 [47] in R, version 4.1.0 [48]. The ASV sequences were aligned
using MAFFT method [49], and then the maximum-likelihood phylogenetic tree was built
using fasttree and midpoint-root methods in QIIME2. The resulting phylogenetic tree was
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used to calculate the UniFrac distance for β-diversity in QIIME2. The α-diversity measures
extracted were observed for a number of ASVs for richness, Pielou’s evenness parameter, J,
for evenness, and Shannon’s H’ for diversity. The β-diversity between treatment levels was
analyzed with pairwise permutational multivariate analysis of variance (PERMANOVA)
that reports the pseudo-F-value for testing the null hypothesis and the probability values
before (p-value) and after (q-value) using the Benjamini–Hochberg false discovery rate
(FDR) correction for multiple testing [33,50,51].

2.4. Indicator Microbes and Statistical Analysis

After classifying the ASVs to genus-level, a bootstrap forest partitioning method
deployed within the JMP® predictor screening platform was used to select the genera
sensitive to N fertilization and CC treatments [52–54]. The sparsity in the abundance data
of these selected indicator genera was resolved by using zero-replacement with the function
cmultRepl from R package zCompositions [55]. These datasets were then normalized by
central log-ratio transformation to manage the compositionality of the data [56]. Then, a
principal component analysis (PCA) was used as a data reduction technique to further
select the indicator genera. Procedure FACTOR in SAS software version 9.4 (SAS Institute,
Cary, NC, USA) with priors = 1 summarized the abundances of each genus into a set of
uncorrelated composite variables, or principal components (PCs). The PCs with eigenvalues
≥ 1 that also explained at least 5% of the variability in the dataset were used as response
variables for statistical analysis. Genera with an important correlation with each PC
(loading value > |0.5|) were considered as the bioindicators [57]. Each indicator genus
was then searched in the List of Prokaryotic names with Standing in Nomenclature (LPSN),
or other primary research, for its known characteristics [58].

Linear mixed models were fitted using the GLIMMIX procedure in SAS software to
determine the effects of N rates, CC, and their interactions on soil properties, CC biomass,
α-diversity measures, and PC scores of the indicator genera [59]. N rates, CC, and their
interaction were considered fixed effects, whereas blocks, years, and their interactions with
the fixed effects were considered random terms in the analysis of variance (ANOVA). For
any significant treatment effects on the response variables based on ANOVA results, the
least square means of the response variables were separated by treatment levels, using the
lines option and setting the probability of a type I error at α = 0.1. The ggplot2 package in
R was used to create figures [60]. The figures for indicator genera visualized the combined
results of the PCA and mean separation procedure, illustrating the responses of each
indicator genus’s abundance to N rates, CC, and their interactions. These responses were
calculated as the mean PC score for a given treatment level multiplied by the PC loading
score of the listed indicator genus, which will be referred to as the “M × L” [33]. To assess
the relationships between indicator microbes and the soil properties, R function cor with
option method = “pearson” was used to calculate the Pearson’s correlation coefficients
among the selected soil properties, and the bacterial, archaeal, and fungal PC scores.
Here we considered the associations with coefficients above |0.8| as “very strong”, those
with values between |0.6–0.8| as “strong”, and those with values between |0.4–0.6| as
“moderate”, modified from the ranges used in Huang et al. [21]. The statistical significance
of these associations was calculated with rcorr function in R package Hmisc [61] setting the
Type I error rate (α) at 0.05.

3. Results
3.1. Soil Properties and Cover Crop Biomass

Table 1 summarizes the estimated treatment means, the standard errors of the mean
(SEM), sample size (n), degrees of freedom (df), and the probability values associated with
the ANOVA for each source of variation (p-values), as well as the results of mean separation
procedures for CC biomass and selected soil properties of NH4

+, NO3
−, and soil pH. In

this study, Nrate main effect was statistically significant for soil pH (p = 0.0025) and CC
biomass (p = 0.0099). Soil pH decreased sequentially with higher N rates. The CC biomass
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significantly decreased in the unfertilized controls (N0, 1.87 Mg ha−1) when compared
with the biomass recorded under both N rates, N202 and N269 (3.20 and 3.29 Mg ha−1,
respectively). The soil NO3

− level showed a marginal CC main effect (p = 0.1601) where it
nearly halved with CC, compared to BF.

Table 1. The estimated treatment means, standard errors of the treatment mean (SEM), and the
sample size (n) of the selected soil chemical properties, including soil ammonium level (NH4

+; mg
kg−1), nitrate level (NO3

−; mg kg−1), and soil pH, and cover crop biomass dry weight (CC biomass;
Mg ha−1) during the two years of experiment determined by the main effects of N fertilization
(Nrate), cover cropping (CC), and the interaction (Nrate × CC). Probability values (p-values) and
degrees of freedom (df) associated with the different sources of variations from Type III Test analysis
of variance results are shown below.

Treatments NH4
+ NO3− pH CC Biomass

n Mean SEM Mean SEM Mean SEM n Mean SEM

Nrate 2

0 12 24.32 4.602 1.23 0.380 6.72 a 1 0.126 6 1.87 b 0.273
202 12 28.24 1.68 5.82 b 6 3.20 a
269 12 25.48 1.76 5.43 c 6 3.29 a

CC 3

BF 18 25.20 3.654 2.06 0.426 5.92 0.115
CC 18 26.83 1.06 6.06

Nrate × CC
BF0 6 25.02 5.205 1.72 0.464 6.72 0.160

CC0 6 23.62 0.75 6.72
BF202 6 28.32 2.07 5.72

CC202 6 28.17 1.30 5.92
BF269 6 22.27 2.40 5.32

CC269 6 28.70 1.12 5.53

Sources of
Variation df NH4

+ NO3
− pH CC biomass

Nrate 2 0.7995 0.3440 0.0025 0.0099
CC 1 0.7071 0.1601 0.3079

Nrate × CC 2 0.4137 0.2141 0.6806
1 The treatment means followed by the same lowercase letter were not statistically different within a given column
of each taxon (α = 0.10); 2 Nrate levels: 0, 202, and 269 kg N ha−1; 3 CC levels: BF, bare fallow control; CC, hairy
vetch and cereal rye mixture cover cropping.

3.2. Overall Characterization of the Soil Microbial Community

The Supplementary Table S1 summarizes the estimated treatment means, standard
errors of the mean (SEM), and the probability values (p-values) of the α-diversity param-
eters of bacterial, archaeal, and fungal communities. Supplementary Table S2 shows the
PERMANOVA results for the β-diversity among the treatment levels of Nrate and CC, and
their interactions for the three taxa, including the pseudo-F-values and the probability values
after correction for multiple comparisons (q-value). For α-diversity, the evenness parameter
Pielou’s J of bacteria and the observed number of fungal ASVs both showed a statistically
significant main effect of Nrate (p = 0.0279, and p = 0.0394, respectively) (Table S1). The bacte-
rial community became more “even” under N269 compared to N0 and N202. Meanwhile,
the number of fungal ASVs decreased more in the unfertilized controls than in the fertilized
plots. As for the β-diversity, the differences between bacterial community composition were
statistically significant between N0 and N202 (q = 0.0015) and N269 (q = 0.0015), while they
were only marginal (q = 0.0740) between N202 and N269 (Table S2). The bacteria β-diversity
did not have a statistically significant CC effect (q = 0.2860). The β-diversity between the
archaeal community was also statistically significant (q = 0.0030) between N0 and N202 and
N269, but did not differ between N202 and N269 (q = 0.2510). Additionally, the archaeal



Agronomy 2022, 12, 954 7 of 25

community did not have a significant CC main effect (q = 0.5480). The fungal community
structure, on the other hand, showed statistically significant interaction effects of Nrate× CC,
as well as CC main effects (q = 0.0010). Thus, the fungal community structure differed
between CC and BF across Nrate comparisons. The fungal community structure differed
between N0 and N202 and N269 within CC, but not with in BF.

Metabarcoding analysis comprised 2,625,449 bacterial, 199,685 archaeal, and
424,800 fungal sequences. After denoising and removing chimeric sequences, the bacterial
sequences were grouped into 778 genera, of which 176 had average relative abundances
greater than 0.1%. Likewise, the archaeal sequences were grouped into four genera whose
average relative abundances were greater than 0.1%. Lastly, the fungal sequences were
grouped into 321 genera, with 144 of them being above average relative abundances of
0.1%. The most abundant bacterial phylum among all classified ASVs was Proteobacteria
(34.2%), followed by Actinobacteria (12.0%), Acidobacteria (11.9%), Bacteroidetes (11.2%),
and Chloroflexi (5.2%). Archaea was dominated by Thaumarchaeota (90.3%). The most
abundant fungal phylum was Ascomycota (59.5%), followed by Basidiomycota (29.7%),
Zygomycota (5.7%), and Glomeromycota (3.1%).

3.3. Indicators of Cover Crop and N Rate Treatments

Supplementary Tables S3–S5 each summarizes, for bacteria, archaea, and fungi re-
spectively, the eigenvalues and cumulative proportions of the variability in the data set
explained by each principal component (PC) in the PCA among the genera selected by
predictor screening, along with their respective eigenvectors. The eigenvectors consist of
the loading scores on these PCs from each of these selected genera. Tables 2 and 3 each show
the estimated treatment means, standard errors of the mean (SEM), their probability values
(p-values), and the results of the mean separation procedures for bacterial and archaeal PC
scores and fungal PC scores, respectively.

Table 2. The estimated treatment means and standard errors of the mean (SEM) of each group of
principal components (PC) calculated for bacterial and archaeal indicators determined by the main
effects of N fertilization (Nrate), cover cropping (CC), and their interaction. Probability values (p-values),
sample size (n), and degrees of freedom (df) associated with the different sources of variation from Type
III Test analysis of variance results are shown below.

Bacteria Archaea

Treatment PC1 PC2 PC3 PC4 PC5 PC1 PC2

Nrate 2

0 1.26 a 1 −0.25 0.05 0.00 −0.17 −0.66 b −0.10
202 −0.43 b 0.40 0.36 0.07 0.48 0.17 a 0.16
269 −0.83 c −0.14 −0.42 −0.07 −0.31 0.49 a −0.06

SEM 0.180 0.359 0.687 0.492 0.517 0.323 0.365

CC 3

BF −0.02 −0.60 b −0.13 0.06 −0.14 0.18 0.15
CC 0.02 0.60 a 0.13 −0.06 0.14 −0.18 −0.15

SEM 0.183 0.311 0.664 0.483 0.374 0.267 0.324

Nrate × CC
BF0 1.26 −0.61 −0.35 −0.18 b −0.63 b −0.60 0.20

CC0 1.27 0.10 0.46 0.18 ab 0.28 a −0.72 −0.40
BF202 −0.39 −0.45 0.60 0.66 a 0.76 ab 0.50 0.12

CC202 −0.47 1.24 0.12 −0.52 b 0.21 ab −0.16 0.21
BF269 −0.93 −0.75 −0.63 −0.31 b −0.54 ab 0.64 0.14

CC269 −0.73 0.46 −0.20 0.17 ab −0.07 ab 0.34 −0.26

SEM 0.245 0.446 0.714 0.547 0.561 0.412 0.466
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Table 2. Cont.

Bacteria Archaea

Treatment PC1 PC2 PC3 PC4 PC5 PC1 PC2

Sources of
Variation

Bacteria Archaea

n df PC1 PC2 PC3 PC4 PC5 PC1 PC2

Nrate 12 2 <0.0001 0.4017 0.1589 0.9115 0.5350 0.0679 0.7921
CC 18 1 0.8727 0.0475 0.3274 0.7735 0.3948 0.4031 0.3722

Nrate × CC 6 2 0.7702 0.3717 0.1686 0.0436 0.0415 0.7121 0.6910

1 The treatment means followed by the same lowercase letter are not statistically different within a given column
of each taxon (α = 0.10); 2 Nrate levels: 0, 202, and 269 kg N ha−1; 3 CC levels: BF, bare fallow control; CC, hairy
vetch and cereal rye mixture cover cropping.

Table 3. The estimated treatment means and standard errors of the mean (SEM) of each group of
principal components (PC) calculated for fungal indicators determined by the main effects of N
fertilization (Nrate), cover cropping (CC), and their interaction. Probability values (p-values), sample
size (n), and degrees of freedom (df) associated with the different sources of variation from Type III
Test analysis of variance results are shown below.

Fungi

Effect PC1 PC2 PC3 PC4 PC5 PC6 PC7

Nrate 2

0 −0.31 −0.89 b 1 0.25 −0.13 0.34 −0.18 −0.20
202 0.22 0.32 a −0.35 −0.14 0.02 −0.12 0.01
269 0.09 0.56 a 0.10 0.27 −0.36 0.29 0.18

SEM 0.735 0.414 0.429 0.407 0.403 0.329 0.298

CC 3

BF 0.20 0.19 0.48 a 0.27 0.32 0.23 0.15
CC −0.20 −0.19 −0.48 b −0.27 −0.32 −0.23 −0.15

SEM 0.706 0.433 0.342 0.373 0.335 0.314 0.244

Nrate × CC
BF0 −0.22 −0.79 cd 0.81 0.06 0.28 −0.35 bc −0.10

CC0 −0.40 −0.98 d −0.32 −0.33 0.41 −0.01 ab −0.30
BF202 0.47 0.22 b 0.06 0.34 0.48 0.64 a 0.42

CC202 −0.03 0.43 ab −0.76 −0.61 −0.45 −0.87 c −0.39
BF269 0.34 1.15 a 0.57 0.41 0.21 0.40 ab 0.14

CC269 −0.16 −0.03 abc −0.36 0.13 −0.93 0.19 ab 0.23

SEM 0.789 0.471 0.502 0.501 0.520 0.422 0.422

Sources of
Variation n df PC1 PC2 PC3 PC4 PC5 PC6 PC7

Nrate 12 2 0.5901 0.0010 0.5654 0.5473 0.4633 0.4289 0.6725
CC 18 1 0.3361 0.4656 0.0753 0.2566 0.1782 0.3705 0.3828

Nrate × CC 6 2 0.9079 0.0318 0.8742 0.6983 0.3638 0.0353 0.5602

1 The treatment means followed by the same lowercase letter are not statistically different within a given column
of each taxon (α = 0.10); 2 Nrate levels: 0, 202, and 269 kg N ha−1; 3 CC levels: BF, bare fallow control; CC, hairy
vetch and cereal rye mixture cover cropping.

3.3.1. Bacterial and Archaeal Community

For bacteria, five PCs explained 51.6% of the variability in the 68 selected top con-
tributing ASVs. PC1 explained 24.5% of the variability, including positive loadings from
genera Archangium, Arenimonas, Formivibrio, Niabella, Pseudonocardia, Longimicrobium, Ther-
manaerothrix, Rhodoplanes, Nitrospira, Phaselicystis, Methyloligella, Basilea, Povalibacter, and
uncultured Acidobacteria subgroups 4 and 7; it had negative loadings from Micropepsis, Por-
phyrobacter, Baekduia, Nitrobacter, Rhizomicrobium, Chujaibacter, Denitratisoma, Pseudolabrys,
Vicingus, Flavitalea, and uncultured Acidobacteria subgroups 1 and 3 (Table S3). PC1 had a
statistically significant N rate main effect (p < 0.0001) where its mean PC scores decreased
sequentially from N0 to N269, and their differences were statistically significant (Table 2).
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Therefore, indicator bacteria with positive loadings on PC1 increased in abundance under
N0, while those with negative loadings increased with N202 and N269 (Figure 1).
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the probability value of the treatment effect from analysis of variance (***: p < 0.001). The bottom 

Figure 1. The top panel shows the estimated mean principal component (PC) scores of the bacterial
PC1 for each level of N rate treatment with their standard errors as whiskers. The asterisks indicate
the probability value of the treatment effect from analysis of variance (***: p < 0.001). The bottom
panel shows the contribution of each bacterial indicator (genera) to PC1 multiplied by the mean PC
scores of each level of N treatment (M × L). The treatment levels are: 0 kg N ha−1 (tan), 202 kg N
ha−1 (orange), and 269 kg N ha−1 (brown).

PC2 accounted for 9.7% of the variability and included positive loadings from genera
Panacibacter, Racemicystis, Mesorhizobium, Luteimonas, Hydrobacter, and Stenotrophobacter, and
negative loadings from Gemmata and Gemmatirosa. PC2 had a statistically significant (p =
0.0475) CC main effect, separating the mean PC scores between BF and CC. The abundances
of indicator bacteria that had positive loadings on PC2 thus increased in abundance under
CC, while those with negative loadings increased under BF (Figure 2).
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PC3 explained 6.4% of the variability and had positive loadings from genera Cae-

nibius and negative loadings from uncultured Acidobacteria subgroup 6 and Nitrolancea 

Figure 2. The top panel shows the estimated mean principal component (PC) scores of the bacterial
PC2 for each level of cover cropping treatment with their standard errors as whiskers. The asterisks
indicate the probability value of the treatment effect from analysis of variance (**: p < 0.05). The
bottom panel shows the contribution of each bacterial indicator to PC2 multiplied by the mean PC
scores of each level of cover cropping treatment (M × L). The treatment levels are bare fallow (BF;
crossed box) and cover crop mixture (CC; filled box).

PC3 explained 6.4% of the variability and had positive loadings from genera Caenibius
and negative loadings from uncultured Acidobacteria subgroup 6 and Nitrolancea (Table S3).
However, PC3 had no significant effect from the treatments (Table 2). PC4 explained 5.7% of
the variability and had a negative loading from genus Parafilimonas. PC5 accounted for 5.4%
of the variability and had positive loadings from genus Pirellula and Bacillariophyta and a
negative loading from Luteimonas. However, Bacillariophyta is a misnomer of unclassified
sequences in the RDP database; thus, this taxon was excluded from further results [62].
Interaction effects were statistically significant for both bacterial PC4 (p = 0.0436) and
PC5 (p = 0.0415). For PC4, the mean PC score increased statistically significantly with
N202 compared to N0 and N269 within BF; within CC, it rather decreased with N202,
but the difference was not statistically significant (Table 2). Therefore, the abundance of
Parafilimonas decreased within BF202 compared to BF0 and BF269. Under CC, this trend
flipped so that its abundance was the highest within CC202, but the differences among N
rates were not significant (Figure 3). A statistically significant difference in the mean PC5
scores between CC0 and BF0 was detected (Table 2). Thus, indicator bacteria with positive
loadings on PC5 were more abundant with CC0 than BF0, while those with negative
loadings increased in abundance with BF0 than CC0 (Figure 4).
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Figure 3. The top panel shows the estimated mean principal component (PC) scores of the bacterial
PC4 for each level of N rate and cover cropping (CC × Nrate) treatment interactions with their
standard errors as whiskers. The asterisks indicate the probability value of the treatment effect from
analysis of variance (**: p < 0.05). The bottom panel shows the contribution of each bacterial indicator
to PC4 multiplied by the mean PC scores of each level of N rate and cover cropping treatment
interactions (M × L). The N rate treatment levels are: 0 kg N ha−1 (tan), 202 kg N ha−1 (orange), and
269 kg N ha−1 (brown). The cover cropping treatment levels are bare fallow (BF; crossed box) and
cover crop mixture (CC; filled box).

The archaeal PC1 explained 48.3% of the variability in the archaeal data and included
negative loading from the genus Nitrososphaera and positive loadings from the uncultured
Woesearchaeota AR16 and AR20 (Table S4). The mean scores of PC1 had a marginally
significant statistical main effect of Nrate (p = 0.0679) where they were greater with N202
and N269 than N0 (Table 2). Therefore, with higher N rates, Nitrososphaera decreased in
abundance while AR16 and AR20 increased (Figure 5). Archaeal PC2 explained 29.2% of the
variability in the data and included positive loading from the genus Methanomassiliicoccus.
However, PC2 did not have any significant effects from the treatments (Table 2).
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Figure 4. The top panel shows the estimated mean principal component (PC) scores of the bacterial
PC5 for each level of N rate and cover cropping (CC × Nrate) treatment interaction with their
standard errors of the mean as whiskers. The asterisks indicate the probability value of the treatment
effect from analysis of variance (**: p < 0.05). The bottom panel shows the contribution of each
bacterial indicator to PC5 multiplied by the mean PC scores of each level of N rate and cover cropping
treatment interactions (M × L). The N rate treatment levels are: 0 kg N ha−1 (tan), 202 kg N ha−1

(orange), and 269 kg N ha−1 (brown). The cover cropping treatment levels are bare fallow (BF; crossed
box) and cover crop mixture (CC; filled box).

Agronomy 2022, 12, x FOR PEER REVIEW 12 of 26 
 

 

 

Figure 4. The top panel shows the estimated mean principal component (PC) scores of the bacterial 

PC5 for each level of N rate and cover cropping (CC × Nrate) treatment interaction with their stand-

ard errors of the mean as whiskers. The asterisks indicate the probability value of the treatment 

effect from analysis of variance (**: p < 0.05). The bottom panel shows the contribution of each bac-

terial indicator to PC5 multiplied by the mean PC scores of each level of N rate and cover cropping 

treatment interactions (M × L). The N rate treatment levels are: 0 kg N ha−1 (tan), 202 kg N ha−1 

(orange), and 269 kg N ha−1 (brown). The cover cropping treatment levels are bare fallow (BF; 

crossed box) and cover crop mixture (CC; filled box). 

 

Figure 5. The top panel shows the estimated mean principal component (PC) scores of the archaeal 

PC1 for each level of N rate treatment with their standard errors of the mean as whiskers. The as-

terisks indicate the probability value of the treatment effect from analysis of variance (*: p < 0.1). The 

Figure 5. The top panel shows the estimated mean principal component (PC) scores of the archaeal
PC1 for each level of N rate treatment with their standard errors of the mean as whiskers. The asterisks
indicate the probability value of the treatment effect from analysis of variance (*: p < 0.1). The bottom
panel shows the contribution of each archaeal bioindicator to PC1 multiplied by the mean PC scores of
each level of N treatment (M × L). The treatment levels are: 0 kg N ha−1 (tan), 202 kg N ha−1 (orange),
and 269 kg N ha−1 (brown).
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3.3.2. Fungal Community

Seven PCs explained a total of 58.8% of the variability among 36 selected top contribut-
ing ASVs (Table S5). PC1 explained 16.0% of the variability and included positive loadings
from genera Acremonium, Alternaria, Davidiella, Exophiala, Phaeosphaeria, and Phaeosphaeri-
opsis and negative loadings from Coemansia, Glomus, and Mortierella. However, fungal
PC1 did not have a statistically significant treatment effect (Table 3). PC2 accounted for
11.3% of the variability in the data and included positive loadings from genera Podospora,
Sporobolomyces, and Pestalotiopsis and negative loadings from Tetracladium, Ajellomyces, and
Edenia. PC2 had a statistically significant (p = 0.0318) Nrate × CC interaction effect. The
mean PC2 scores generally increased with N fertilization for both CC and BF; within BF, the
mean PC2 score increased sequentially with higher N rates, but it was rather smaller with
N269 than N202 within CC (Figure 6). The mean separation results in Table 3 also show a
statistically significant difference between BF202 and BF269. Therefore, the abundances
of indicator fungi with positive loadings on PC2 generally increased with N fertilization,
so that they continued to increase with BF269 but not with CC269. Conversely, those with
negative loadings on PC2 showed the opposite trend where their abundances decreased
with N fertilization.
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Figure 6. The top panel shows the estimated mean principal component (PC) scores of the fungal PC2
for each level of N rate and cover cropping (CC × Nrate) treatment interaction with their standard
errors of the mean as whiskers. The asterisks indicate the probability value of the treatment effect from
analysis of variance (**: p < 0.05). The bottom panel shows the contribution of each fungal indicator to
PC2 multiplied by the mean PC scores of each level of N rate and cover cropping treatment interaction
(M × L). The N rate treatment levels are: 0 kg N ha−1 (tan), 202 kg N ha−1 (orange), and 269 kg N
ha−1 (brown). The cover cropping treatment levels are bare fallow (BF; crossed box) and cover crop
mixture (CC; filled box).
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PC3 explained 7.3% of the variability and included a positive loading from genus
Talaromyces and a negative loading from Albatrellus. PC3 had a marginally significant
statistical effect of (p = 0.0753) for the CC main effect, separating the mean PC scores
between CC and BF treatment. Thus, Talaromyces increased in abundance with BF, while
Albarellus did so with CC (Figure 7). PC4 accounted for 6.9% of the variability and included
positive loadings from genera Gibberella and Phoma. PC5 explained 6.0% of the variability
and included a negative loading from the genus Guehomyces. However, PC4 and PC5 did
not have statistically significant responses to treatment effects. PC6 explained 5.6% of the
variability but did not have ASVs with significant loading scores. PC6 had a statistically
significant (p = 0.0353) Nrate × CC interaction effect where the mean scores differed
statistically significantly between BF202 and BF0 and CC202, with other interactions being
intermediate. PC7 accounted for 5.6% of the variability and included a negative loading
from the genus Tetraploa. PC7 did not have a statistically significant treatment effect.
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significance (p < 0.05). As expected, when following a PCA, bacterial, fungal, and archaeal 
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Figure 7. The top panel shows the estimated mean principal component (PC) scores of the fungal PC3
for each level of cover cropping treatment with their standard errors of the mean as whiskers. The
asterisks indicate the probability value of the treatment effect from analysis of variance (*: p < 0.1). The
bottom panel shows the contribution of each fungal indicator to PC3 multiplied by the mean PC scores
of each level of cover cropping treatment (M × L). The treatment levels are bare fallow (BF; crossed
box) and cover crop mixture (CC; filled box).

3.4. Pearson’s Correlation Matrix among Variables

A heatmap in Figure 8 visualizes the Pearson’s correlation matrix, showing the coef-
ficients among the bacterial, fungal, and archaeal PC scores (BPC# for bacteria, FPC# for
fungi, and APC# for archaea), NH4

+, NO3
−, and soil pH. Overall, we found one very strong

(>|0.8|), three strong (|0.6–0.8|), and six moderate (|0.4–0.6|) associations of statistical
significance (p < 0.05). As expected, when following a PCA, bacterial, fungal, and archaeal
PCs were not correlated within their respective taxa. BPC1 had very strong positive associ-
ations with soil pH. Meanwhile, BPC1 was associated negatively and strongly with FPC2
and moderately with APC1. BPC2 had moderately negative associations with FPC3 and
NO3

−. BPC3 did not have any significant association. BPC4 was associated strongly and
positively with FPC1. BPC5 did not have significant associations. FPC1 was associated
moderately and positively with NO3

−, and negatively with NH4
+. FPC2 was associated

negatively and strongly with soil pH. Besides those already described, FPC3, FPC4, FPC5,
FPC6, and FPC7 did not have additional significant correlations. In addition to a moderate
negative association with BPC1, APC1 also had a moderate negative association with soil
pH. Lastly, APC2 did not show any statistically significant association with soil properties
or the bacterial or fungal PCs.
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Figure 8. The heatmap depicting the matrix of Pearson’s correlation coefficients among the principal
components (PCs) of the bioindicators and the selected soil properties: soil ammonium (NH4), nitrate
(NO3), and pH. The red and blue hues indicate positive and negative associations, respectively. The
higher saturation of these colors indicates greater absolute values of Pearson’s correlation as shown
in the legend on the right. BPC#, bacterial PC; FPC#, fungal PC; APC#, archaeal PC.

4. Discussion
4.1. Short-Term Agronomic Effects of Legume and Grass Cover Crop Mixture

Overall, this study observed that N fertilization acidified the topsoil by more than a
unit in pH. This was expected as protons from nitrification of N fertilizers and increased
crop root nutrient uptake, among many other factors, are known to acidify the soil [14,63].
As hypothesized, CC decreased soil NO3

− levels in this study, likely by scavenging it.
Similarly, Acuña and Villamil [64] evaluated the short-term effects of CC on soil properties
under soybean production in Illinois and found a significant decrease in soil NO3

− each
spring after the CC season. The NO3

− reduction by CC also agrees with the significant
increase in CC biomass with N fertilization, showing that CC indeed assimilated the excess
soil NO3

− as biomass, decreasing the risk of NO3
− leaching in this system [3,16]. On the

contrary, NH4
+ did not respond significantly to CC. This showed that cereal rye and hairy

vetch CC preferred the uptake of NO3
− over NH4

+ in corn monoculture, suggesting that
CC may not alleviate soil acidification from nitrification. Another study on the effects of
tillage, CC, and crop rotation on Missouri Entisols also reported a pH increase of about
0.2 with grass CC within corn monoculture, similar to this study [65]. Overall, our results
demonstrate that while CC can effectively reduce the risks of NO3

− leaching, it has a
limited ability to alleviate soil acidification from NH4

+ fertilizers.

4.2. Bacterial and Archaeal Indicators
4.2.1. Indicators of N Fertilization

Bacterial genera sensitive to N rate treatment were primarily grouped in PC1. Of
its 27 indicator genera, 12 increased in abundance under N fertilization, while 15 experi-
enced decreased abundance. Interestingly, some of the genera favored by N fertilization
were also responsive to high N rates within corn monoculture in 2015–2016 data from
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Villamil et al. [31]: uncultured Acidobacteria subgroup Gp1, Micropepsis, Porphyrobacter,
Denitratisoma, Rhizomicrobium, Chujaibacter, and Pseudolabrys. The consistent associations
of these indicators with high N rates across studies of the same site suggested that these
genera are reliable indicators of soil environment under heavy N fertilization. Here, the
N rate main effect does not exclude the underlying CC effect in our model. Thus, the
persistent associations of these indicators with N fertilizers across studies imply that the
changes brought about by N fertilization in the soil environment have overwhelmed those
induced by introducing CC. Indeed, our study and that of Villamil et al. [31] did not share
any genera favored by unfertilized control, which suggests the two studies used differ-
ent microbial communities in unfertilized soils. Therefore, the different assortments of
indicators before [31] and after introducing CC (this study) indicated that CC did shift the
soil microbial community of corn monocultures. However, this shift was outshined by the
dominating effects of N fertilization.

As demonstrated by a very strong association between soil pH and bacterial PC1,
soil acidification from N fertilization seems to be a primary factor that shaped the soil
environment for the microbes across studies. Villamil et al. [31] observed that the acidophilic
indicators flourished with soil acidification from N fertilization. Indeed, some of the
indicators favored by N-input have been characterized or suspected to be acidophiles,
including Micropepsis [66], Rhizomicrobium [67], and Acidobacteria subgroup Gp1 and
Gp3 [68]. The opposite also held as some of the indicators favored by unfertilized control
were either associated with higher pH (Acidobacteria subgroup Gp4 [69]; Nitrospira [70]),
or were neutrophilic (Archangium [71]; Formivibrio [72]; Rhodoplanes [73]; Povalibacter [74];
Thermanaerothrix [75]), or alkaliphilic (Arenimonas [76]). Soil pH has already been recognized
as a primary modulating factor for the bacterial community, as demonstrated by Wu
et al. [77], who found bacterial diversity indices decreased at lower pH. Additionally, Ma
et al. [78] observed a strong association between soil pH and bacterial β-diversity after
35 years of NPK fertilization in Chinese Mollisols. Therefore, our bioindicators further
suggest that the pH-sensitive guilds largely dictate the shifts in the bacterial community
upon soil acidification from excessive N inputs.

Many of these N-rate-associated indicators had potential roles in the soil microbial
N-cycling. Of those that increased with N fertilization, Nitrobacter is a well-known genus
of nitrifiers that oxidize nitrite (NO2

−) into NO3
− [79]. Their proton-producing NO2

−

oxidation could have contributed to soil acidification that favors the acidophilic indica-
tors mentioned above. Meanwhile, Baekduia includes denitrifiers that reduce NO3

− to
NO2

− [80], and Denitratisoma includes denitrifiers that reduce NO3
− to N2O and nitro-

gen (N2) gas [81]. The abundance of NO3
− substrates from fertilizers and nitrification

would have promoted these denitrifiers, while the NO2
− reduced from NO3

− by Baekduia
would, in turn, promote the growth and activity of Nitrobacter. Likewise, Villamil et al. [31]
identified several bioindicators of denitrification that increased with N fertilization (Aci-
dobacteria subgroup Gp1, Denitratisoma, Dokdonella, and Thermomonas). These findings
agree well with the meta-analysis of field studies by Ouyang et al. [82] that found consistent
increases in the abundances of nitrifying (amoA) and denitrifying (nirK, nirS, and nosZ)
genes with N rates over 200 kg N ha−1. Therefore, our indicators suggest that frequent
N fertilization at above-optimal rates typical for the corn monoculture may augment the
nitrifying and denitrifying communities and contribute to the risk of soil N loss as NO3

−

and N2O.
A longer list of N-cycling indicators associated with unfertilized control. Povalibacter

is known to assimilate N by reducing NO3
− and NO2

− into NH4
+ [74]. For the nitrifiers,

Pseudonocardia includes ammonia-oxidizers and species capable of heterotrophic nitrifica-
tion [83]. The genus Niabella potentially includes heterotrophic nitrifiers as well [84,85].
Nitrospira includes known chemolithotrophic NO2

− oxidizers [86] and complete ammonia
oxidizers (comammox) [87]. As for the denitrifiers, Rhodoplanes is known for photoorgan-
otrophy, but also completely denitrifies NO3

− into N2 gas under darkness [73]. Arenimonas
is a complete denitrifier as well [88]. While Thermanaerothrix is known to harbor NO2

−
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reducing gene, nirS, its denitrification capacity is not yet confirmed [89]. Detecting these
indicators involved in diverse N metabolisms can be explained by the inorganic N defi-
ciency being a major ecological pressure in unfertilized soils. Under such pressure, the
microbes represented by Pseudonocardia and Niabella could heterotrophically nitrify organic
N, instead of NH3, into NO3

− [90]. Even if NH3 is partially nitrified, the guild represented
by Nitrospira could complete the nitrification. Subsequently, these nitrifiers could supply
the NO3

− to the denitrifiers represented by Rhodoplanes and Arenimonas, which they will
completely denitrify into N2 gas. Thus, the two complete denitrifiers (Rhodoplanes and
Arenimonas) and Povalibacter (reduces NO3

− and NO2
− into NH4

+) imply less risk of N2O
emission and NO3

− leaching, as the NO3
− from nitrifiers could be either assimilated back

to NH4
+ or be completely denitrified into N2 gas. Although heterotrophic nitrifiers could

denitrify and produce N2O, this process is associated with low pH condition, which should
be less of the case for unfertilized soils [90]. Therefore, these bioindicators suggested
that the microbial N-cycling unaffected by heavy N input may have greater functional
diversity and redundancy. Nonetheless, changes in the abundances of these indicators do
not warrant subsequent changes in soil N-cycling, because abundance may not translate
to activity and not all members of these genera necessarily perform N-cycling. Thus, the
results of this study should be complemented by analyses on the overall soil N-cycling and
on the microbial functionality, such as enzyme assays and functional genes.

Besides the sensitivity to pH and involvement in the soil N-cycling, bioindicators in
PC1 also have been characterized for other interesting properties. Among those that pre-
ferred N fertilization, Micropepsis [91] and Rhizomicrobium [67] have fermentative metabolisms.
Rhizomicrobium can reduce ferrous and ferric iron in the presence of glucose, which may
be an adaptation to iron that readily oxidizes into a ferrous state in acidic soils, and to the
overall increase in the iron solubility with decreasing soil pH [67,92]. Indeed, soil iron level
increased sequentially with a higher N rate, with 202 kg N ha−1 being intermediate, in the
topsoil (data not shown). As for those favored by unfertilized control, Longimicrobium is a
known oligotrophic genus adapted to low nutrient concentration, which is consistent with
the relatively nutrient-poor conditions of the control [93]. Methyloligella includes specialized
obligatory methylotrophs that reduce single carbon compounds as carbon source but does
not grow on methane [94]. Understanding what these indicators and their relations with
soil properties signify within the microbial network however, will require more exploration.
Thus, future efforts should expand our findings, improving the characterization of more
soil microbial taxa in field settings and their interconnection with their soil environment.

4.2.2. Archaeal Indicators

The archaeal indicators were primarily sensitive to N fertilization, as demonstrated by
archaeal PC1. This PC was moderately associated with soil pH, similar to bacterial PC1 as
discussed above. Its component, Nitrososphaera, increased in abundance with unfertilized
control, which is expected considering that this ammonia-oxidizing archaea (AOA) is
neutrophilic [95] and oligotrophic [96]. Thus, it may not be well adapted to the relatively
acidic and N-rich environment under heavy N input. This observation also agrees with
Yu et al. [97] who studied the relationships between the ammonia-oxidizing community
and soil biogeochemical processes, reporting a positive correlation between soil pH and
the family Nitrososphaeraceae that includes Nitrososphaera. Therefore, our results well
demonstrated that Nitrososphaera flourishes as neutrophilic and oligotrophic AOA in an
unfertilized agroecosystem. This poses the possibility that Nitrososphaera contributes to
nitrification in this system along with the bacterial nitrifiers described above. Meanwhile,
PCA suggested that uncultured Woesearchaeota AR16 increased with N fertilization. While
these uncultured genera are much less studied, Woesearchaeota AR16 is found to have
some association with soil pH and nitrogen level, consistent with its preference for N
fertilization [98]. This study used the universal primer that targets 16S rRNA of both
bacteria and archaea because of its common use. The small number of archaeal sequences
and indicators compared to those of bacteria and fungi in this study demonstrated that
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these primers have low specificity to this domain and might not fully capture the archaeal
diversity [99]. Therefore, future efforts that focus on archaeal communities using more
specific primer sets may reveal more archaeal indicators of this system.

4.2.3. Indicators of Cover Cropping

The bacterial indicators that responded to CC were mainly grouped in PC2 (Figure 2). Of
the indicators that increased in abundance with CC, Mesorhizobium is a known nodule-forming
N-fixing symbiont of legumes including the species of Vicia [100,101]. The abundance of this
genus with legume-grass CC mixture indicated that hairy vetch CC may recruit N-fixers
during their growth [102]. Additionally, Mesorhizobium includes species that reduce NO2

−

into N2O under both aerobic and anaerobic conditions [103]. Similarly, Luteimonas includes
known denitrifiers that reduce NO2

− into nitric oxide [104], and one of its species L. memphitis
reduces NO2

− into N2O [105]. Additionally, as hypothesized, genera associated with CC
indicated diverse niches with unique metabolic or adaptive characteristics. For example, genus
Racemicystis includes species of various properties including desiccation resistance, bacteria,
and yeast lysis, growth under starch, fructose, and glucose, and inability to lyse cellulose [106].
Panacibacter grows optimally in near-neutral pH and does not hydrolyze starch and cellulose
but grows on other various sugars [107]. Stenotrophobacter is a suspected oligotroph [108] and
has been observed to increase in abundance with CC [109]. Conversely, only two indicators
increased in abundance with bare fallow. The species of Gemmata can perform heterotrophic
nitrification and anaerobic ammonia oxidation (anammox) [87]. Gemmatirosa includes known
oligotrophic chemoheterotrophs holding N2O reducing nosZ gene [110,111].

The four N-cycling indicators that responded to CC (Gemmata, Gemmatirosa, Luteimonas,
and Mesorhizobium) suggest that the guilds that they represent may mediate the fate of
N2O in fertilized CC soil; with CC, less NO2

− may be directly converted into N2 gas
(fewer Gemmata), more NO2

− is reduced to N2O (more Luteimonas and Mesorhizobium),
but less N2O is reduced to N2 gas (fewer Gemmatirosa). These indicators imply that
the relationship between CC and the denitrifier guilds may not be as simple as initially
hypothesized. Indeed, a field and lab study in Illinois Mollisols by Foltz et al. [112]
reported that grass CC decreased N2O emissions in the field of corn fertilized at 180
kg N ha−1, but that the soil with CC showed greater denitrification potential and N2O
emissions in laboratory assays. The authors explained that the rye CC decreased N2O
emissions by immobilizing its NO3

− substrate in a field setting, but adding abundant
labile C (glucose) and N (NO3

−) under an assay setting led to more emissions in CC
soil than the bare control [112]. Meanwhile, a climate chamber study in Germany by
Wang et al. [113], on perennial ryegrass [Lolium perenne L.] growth, reported more NO2

−-
reducing nirK genes with ryegrass growth regardless of N rates (0, 50, 100, 200 kg N
ha−1), although the ryegrass growth still decreased the N2O emissions by scavenging
soil N. The authors explained that the labile C from CC root exudates promoted the nirK-
holding NO2

− reducers, regardless of nutrient availability [113]. Therefore, the observed
CC effects in this study on the denitrifying bioindicators support the scenario that CC
modulates the soil nutrient availability via means such as root exudates to make the soil
microbial community more prone to N2O production. Yet, the actual N2O production
is determined by conditions such as net NO3

− availability, labile C availability from
residue decomposition, and waterlogging [20]. Nonetheless, this scenario should be further
investigated with studies that encompass functional genes, potential denitrification rates,
and N2O emissions.

Meanwhile, the bacterial indicators in PC4 and PC5 showed a N fertilization and CC
interaction effect. The genus Parafilimonas in PC4 includes neutrophilic decomposers [114]
whose positive response to an intermediate N rate and CC could be a combined result of
this genus exploiting the greater residue return from CC and fertilizer input and negatively
responding to soil acidification from the highest N rate. As for PC5, besides Luteimonas,
which is already discussed with PC2, the genus Pirellula includes species that perform
anammox [87]. Performing ANOVA and mean separation on its gene counts (normalized
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by central log-ratio) revealed a statistically significant interaction effect (p = 0.0105; data
not shown) where their mean was greater in unfertilized CC soil compared to all other N
rate and CC combinations (Figure S3). Thus, this genus may work against N2O emissions
by oxidizing NO2

− and NH4
+ into N2 gas if the soil’s N availability is low. Along with

the four above-mentioned N-cycling bioindicators of CC, the sensitivity of Pirellula to both
CC and N input further suggests that soil N availability may play a role in microbially
mediated N2O emission under CC.

In this study, more indicators responded positively to CC than bare fallow, and the
indicators of CC displayed various characteristics and functions, compared to only two
indicators of bare fallow that were mainly involved in the microbial N-cycling. These
results suggest that introducing CC enhanced the soil biodiversity of corn monoculture.
Meanwhile, significantly fewer bacterial indicators responded to the CC main effect than
that of the N rate. The β-diversity results reflect this since the bacterial community com-
position did not differ significantly after CC introduction, unlike among the three N rates
(Table S2). As speculated earlier with bacterial PC1, perhaps CC has a relatively smaller
impact on the bacterial community of corn monoculture compared to the overwhelming
changes brought about by decades of annual N fertilization. Nonetheless, the CC impact
on the bacterial community should not be underplayed as the indicators imply that this
practice may increase the soil biodiversity and affect the soil microbial N-cycling. Since this
study had only two years of CC, future efforts with longer-term CC should test whether its
effects can accumulate over the years.

4.3. Fungal Indicators

The fungal indicators responsive to main treatment effects comprised PC3. The
genus Albatrellus includes mycorrhizae, but they are known to associate with coniferous
hosts [115]. Yet, Albatrellus associated very strongly with CC because this genus was nearly
absent in bare fallow (only 1.7% of this genus’s total gene counts; Figure S3) despite being
one of the most abundant fungal genera in the data. This suggests that the members of this
genus may have a wider range of hosts or have other unknown relationships with the CC
species of this study. As for the genus Talaromyces, eight of its species and three Penicillium
teleomorphs were observed. This ubiquitous genus occupies a wide range of niches,
including endophytes, which promote plant growth and resistance, antagonists to plant
pathogens, and those associated with insects [116,117]. Since Albatrellus and Talaromyces
were two of the most abundant genera in the data, their differences in abundance between
CC treatments may have driven the significant β-diversity results for the fungal community
(Table S2). These results agree well with those of Castle et al. [29], who found winter rye
CC to be the stronger factor for fungal community structure than N rates in a corn–soybean
rotation in Minnesota.

Meanwhile, the six fungal genera in PC2 responded significantly to the N fertilization
and CC interaction effect. Performing ANOVA and mean separation on the gene copy
counts (normalized by central log-ratio) of the genus Tetracladium displayed a clear sequen-
tial decrease in its abundances with increasing N rates that was statistically significant
(p < 0.0001; data not shown) (Figure S3). Tetracladium includes saprotrophs [118] and en-
dophytes [119] and prefers neutral to slightly acidic soil pH [120]. Therefore, its negative
response to higher N rates seems largely driven by soil acidification, which also agrees
with fungal PC2 associating negatively with soil pH, as this genus had a negative loading
on PC2. A negative loading from Genus Edenia to PC2 suggests that this genus responded
positively to the unfertilized control, which agrees with the results of Bello et al. [121], who
observed a negative correlation between this genus and soil NO3

− levels in a study on
the effects of biochar application on fungal community structure after one year of corn on
Chinese Mollisols.

Of the fungal indicators that preferred N fertilization, Podospora includes known
coprophilous fungi that are associated with animal dung [122] and endophytes of plant
barks and shoots [123]. Sporobolomyces is a known yeast genus common in agricultural soil
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and on the phyllosphere of crops, which may explain its positive response to the treatment
with the highest N rate, which typically leads to a higher crop yield [124]. Moreover, in
a Spanish study by Illescas et al. [125], calcium nitrate fertilization helped this genus to
colonize wheat. Thus, our results suggest that this genus might also be associated with corn
and benefits from N fertilization. Finally, Pestalotiopsis occupies a wide spectrum of niches
from plant pathogens, endophytes, and saprobes [123,126]. Thus, this genus may have
responded positively to an increased crop yield and residue with N fertilization. Compared
to bacterial indicators, fungal genera did not show clear overarching ecological patterns
between their known characteristics and their responses to treatments. Nonetheless, the
strong association between fungal PC2 and soil pH, and the increased number of observed
ASVs with N fertilization (Table S1) suggest that soil pH and soil N availability could have
acted as major modulating factors for these fungal indicators. Moreover, considering that
many of the fungal genera included endophytes, further research on the crop microbiome
might elucidate the potential endophytic relationship among the fungal indicators of this
study, crop production, and the soil fungal community.

5. Conclusions

This study provided a unique opportunity to use bioindicators to characterize and
monitor the soil microbial community upon introducing cover crops to an intensely man-
aged corn monoculture common in the US Midwest region. In this study, most of the
bioindicators had known characteristics that could reasonably explain their responses
to the treatments. Therefore, we found that genus-level indicators with high-taxonomic
resolution can provide detailed insights into the soil microbiota that were inaccessible for
past taxonomic and functional indicators. Namely, the opposite responses to N fertilization
from acidophilic bioindicators versus those of neutrophiles and alkaliphiles demonstrated
that soil acidification from N fertilizers dominated the soil microbiota of this system. The
N-cycling bioindicators suggested that N fertilization may stimulate the nitrifiers and
denitrifiers. Conversely, unfertilized soils may form a more diverse N-cycling commu-
nity with functions that might mitigate the risks of NO3

− leaching and N2O emissions.
The bioindicators under cover cropping indicated greater microbe–plant symbiosis and
diverse ecological niches. However, this study also observed that the soil microbiota under
cover crops may be more primed for N2O production than bare soil under high nutrient
availability. Thus, although cover cropping may effectively reduce the NO3

− leaching risk,
further investigation is needed to understand the microbial contribution to N2O emissions
under cover crop management. Overall, cover cropping has the potential to improve
the soil health of a simplified cropping system by increasing its soil biodiversity, but its
short-term use may have a limited impact in a heavily fertilized system. Future research
should expand on this study by identifying bioindicators of similar taxonomic resolutions
in various conditions and cropping systems, especially with longer use of cover cropping.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12040954/s1. The Supplementary Material section has
five tables and three figures. Table S1 shows the α-diversity indices, observed number of amplicon
sequence variants, Pielou’s J, and Shannon’s H’, by N rate, CC, and their interactions for each bacteria,
archaea, and fungi. Table S2 refers to the β-diversity measure and probability values (p- and q-
value) of compositions of the bacterial, archaeal, and fungal communities by N rate, CC, and their
interactions. Tables S3–S5 show the eigenvalue and cumulative proportion of the variability that each
principal component (PC) explains in a dataset for each bacteria, archaea, and fungi, respectively;
they also show the loading values that each indicator genus contributed to each PC. Figure S1 shows
the location of the experimental site within the USA and the state of Illinois. Figure S2 shows the
rarefaction curves of bacteria, archaea, and fungi. Figure S3 shows the estimated means of gene
counts of bacterial indicators Luteimonas and Pirellula and fungal indicators Albatrellus, Tetracladium,
and Ajellomyces normalized by central log-ratio transformation separated by the interactions of N
rate and CC treatments.
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120. Grządziel, J.; Gałązka, A. Fungal biodiversity of the most common types of polish soil in a long-term microplot experiment. Front.
Microbiol. 2019, 10, 6. [CrossRef] [PubMed]

121. Bello, A.; Wang, B.; Zhao, Y.; Yang, W.; Ogundeji, A.; Deng, L.; Egbeagu, U.U.; Yu, S.; Zhao, L.; Li, D.; et al. Composted biochar
affects structural dynamics, function and co-occurrence network patterns of fungi community. Sci. Total Environ. 2021, 775,
145672. [CrossRef] [PubMed]

122. Bell, A.; Mahoney, D. Coprophilous fungi in New Zealand. I. Podospora species with swollen agglutinated perithecial hairs.
Mycologia 1995, 87, 375–396. [CrossRef]

123. Mueller, G.M. Biodiversity of Fungi: Inventory and Monitoring Methods; Elsevier: Burlington, MA, USA, 2004.
124. Sláviková, E.; Vadkertiová, R. The diversity of yeasts in the agricultural soil. J. Basic Microbiol. 2003, 43, 430–436. [CrossRef]

[PubMed]
125. Illescas, M.; Rubio, M.B.; Hernández-Ruiz, V.; Morán-Diez, M.E.; Martínez de Alba, A.E.; Nicolás, C.; Monte, E.; Hermosa, R.

Effect of inorganic n top dressing and Trichoderma harzianum seed-inoculation on crop yield and the shaping of root microbial
communities of wheat plants cultivated under high basal N fertilization. Front. Plant Sci. 2020, 11, 575861. [CrossRef] [PubMed]

126. Maharachchikumbura, S.S.N.; Guo, L.-D.; Chukeatirote, E.; Bahkali, A.H.; Hyde, K.D. Pestalotiopsis—Morphology, phylogeny,
biochemistry and diversity. Fungal Divers. 2011, 50, 167. [CrossRef]

http://doi.org/10.1264/jsme2.20.208
http://doi.org/10.1016/j.biortech.2020.122760
http://doi.org/10.1099/00207713-50-1-273
http://doi.org/10.1099/ijsem.0.001045
http://doi.org/10.1099/ijsem.0.001307
http://doi.org/10.1016/j.syapm.2015.08.001
http://doi.org/10.3390/su12083256
http://doi.org/10.2323/jgam.59.305
http://www.ncbi.nlm.nih.gov/pubmed/24005180
http://doi.org/10.1016/j.soilbio.2020.107974
http://doi.org/10.1016/j.scitotenv.2020.144295
http://www.ncbi.nlm.nih.gov/pubmed/33412379
http://doi.org/10.1111/ejss.13047
http://doi.org/10.1099/ijs.0.061945-0
http://www.ncbi.nlm.nih.gov/pubmed/24925599
http://doi.org/10.1007/s00572-009-0274-x
http://www.ncbi.nlm.nih.gov/pubmed/20191371
http://doi.org/10.1080/00275514.2017.1369339
http://doi.org/10.1007/s11104-020-04454-y
http://doi.org/10.1111/j.1574-6941.2011.01291.x
http://doi.org/10.3389/fmicb.2019.00006
http://www.ncbi.nlm.nih.gov/pubmed/30740092
http://doi.org/10.1016/j.scitotenv.2021.145672
http://www.ncbi.nlm.nih.gov/pubmed/33618307
http://doi.org/10.2307/3760836
http://doi.org/10.1002/jobm.200310277
http://www.ncbi.nlm.nih.gov/pubmed/12964187
http://doi.org/10.3389/fpls.2020.575861
http://www.ncbi.nlm.nih.gov/pubmed/33193517
http://doi.org/10.1007/s13225-011-0125-x

	Introduction 
	Materials and Methods 
	Experimental Site Description and Management Practices 
	Soil and Cover Crop Biomass Sampling and Determinations 
	Soil DNA Extraction, Sequencing, and Taxonomic Classification 
	Indicator Microbes and Statistical Analysis 

	Results 
	Soil Properties and Cover Crop Biomass 
	Overall Characterization of the Soil Microbial Community 
	Indicators of Cover Crop and N Rate Treatments 
	Bacterial and Archaeal Community 
	Fungal Community 

	Pearson’s Correlation Matrix among Variables 

	Discussion 
	Short-Term Agronomic Effects of Legume and Grass Cover Crop Mixture 
	Bacterial and Archaeal Indicators 
	Indicators of N Fertilization 
	Archaeal Indicators 
	Indicators of Cover Cropping 

	Fungal Indicators 

	Conclusions 
	References

